2016

Selevinia

Selevinia

погический ежегодник

том 24 **TOM 24**

2016

- Herpetologia
- Ichthyologia
- Entomologia
- Theriologia
- Ornithologia
- O Arachnologia
- O Malakologia
- O Helmintologia
- O Protozoologia

Балхашский окунь (*Perca schrenkii*), его характерное местообитание — озеро Балхаш (фото А.Э.Гаврилова) и естественный ареал: красным цветом выделена область, где вид находится на грани исчезновения; жёлтым цветом — где он ещё достаточно многочислен.

К статье Б.А. Жданко, стр. 24.

фото 1. голотип сверху; фото 2. голотип снизу; фото 3. аллотип сверху; фото 4. аллотип снизу. фото 5. биотоп *Plebejus sarydzhazi*; фото 6. *Plebejus sarydzhazi* самец

К статье В.Л. Казенаса, стр. 157

Рис. 1. Самка выкапывает гнездовую норку челюстями; Рис. 2. Роющая оса *Eremochares dives*, самка; Рис. 3. Место гнездования *Eremochares dives* близ плотины Бугунького вдхр.; Рис. 4. Участок гнездования *E.dives*, превращенный в грунтовую дорогу, близ г. Шардара

Selevinia

Зоологический ежегодник Казахстана и Центральной Азии. Основан в 1993 г.

Tom **24 2016**

Редакционный совет:

Д.А. Бланк (Израиль), З.К. Брушко, В.М. Галушин (Россия), Ц.З. Доржиев (Россия, Бурятия), Т.Н. Дуйсебаева, W. Yang (КНР, Синьцзян), Р.Х. Кадырбеков, В.Л. Казенас, В.И. Капитонов, В.А. Ковшарь (зам. гл. редактора), Н.Ш. Мамилов, Э.А. Рустамов (Туркменистан), Цэвээнмядаг Нацагдорж (Монголия)

Главный редактор А.Ф. Ковшарь

ISSN 1024-7688

Editorial Board:

David A. Blank, Zoya K. Brushko, Vladimir M. Galushin, Tsydypzhap Z. Dorzhiev, Tatyana N. Duisebaeva, Weikang Yang, Rustem Kh. Kadyrbekov, Vladimir L. Kazenas, Vadim I. Kapitonov, Victoria A. Kovshar (Assistant editor), Nadir Sh. Mamilov, Eldar A. Rustamov, Tseveenmyadag Natsagdorzh

Editor-in-chief Anatoly F. Kovshar

- © А.Ф. Ковшарь, составление, 2016
- © В.А. Ковшарь, вёрстка, 2016
- © Т.Е. Lopatina, обложка, 1999.

ОО «Союз охраны птиц Казахстана»

Алматы, 2017

Содержание

знакомьтесь: рад	ритет
Балхашский окунь (Perca schrenkii Kessler, 1874) – эндемик Балхашского бассейна.	
Мамилов Н.Ш., Дукравец Г.М	7
Систематика, морфол	огия
/ . .	
Kadyrbekov R.Kh. A new genus and species of the aphids of Macrosiphina subtribe (Homoptera: Aphididae) from Kazakhstan	21
из восточной Киргизии	24
Златанов Б.В. Новый подвид <i>Chrysotoxum bicinctum</i> (Linnaeus, 1758) (Diptera, Syrphidae) из Джунгарского Алатау (Казахстан)	26
Кабак И.И. Микродаккус Глазунова (<i>Microdaccus glasunovi</i> Emetz, 1979) – эндемик Южного Казахстана	28
Арифулова И.И., Чирикова М.А . Об аномалиях в строении ротового аппарата головастиков озёрной лягушки <i>Pelophilax ridibundus</i> в природных популяциях юго-востока Казахстана	32
Харадов А.В., Кадырова Б.К. Морфометрическая изменчивость эритроцитов крови у ондатры <i>Ondatra zibethicus</i> (Rodentia, Cricetidae)	42
Фауна, зоогеогра	офиа
	афия
Дукравец Г.М., Мамилов Н.Ш., Митрофанов И.В. Рыбы Казахстана:	
аннотированный список, исправленный и дополненный	47
(Центральный Казахстан)	71
Особенности фауны и экологии насекомых (Insecta) степной зоны Павлодарской области (Северный Казахстан)	91
Белялов О.В., Михайлов К.Е., Торопов С.А. Результаты орнитологической поездки во Внутренний Тянь-Шань в июне 2016 г	96
Танитовский В.А., Аязбаев Т.З., Майканов Н.С., Бидашко Ф.Г., Кдырсих Б.Г., Берденов М.Ж. Материалы по фауне мелких млекопитающих	100
степных районов Северного Прикаспия	108
из Зайсанской впадины (Казахстан)	112
Экология, повед	ение
Кошкина А.И., Кошкин А.В., Тимошенко А.Ю., Шильцет Х. Результаты учётов савки на ключевых местообитаниях в Акмолинской, Костанайской и Северо-Казахстанский областях	
в 2013-2016 г	117
(Spermophilus pygmaeus Pallas, 1778) как биоиндикатор глобального изменения климата	124
Остащенко А.Н., Касымбекова К.Т., Воробьев А.Г., Давлетбаков А.Т., Захаров А.Ю. Роль водно-болотных угодий Кыргызстана в циркуляции вируса гриппа среди мигрирующих птиц	127
Тушкенов С.Н. Чёрный аист, серпоклюв и другие редкие птицы Жонгар-Алатауского национального парка (Казахстан)	129
Иващенко А.А., Ковшарь А.Ф. Доминанты строительного материалы гнёзд желчной овсянки (<i>Emberiza bruniceps</i>) в Таласском Алатау (Западный Тянь-Шань)	135
Шаймарданов Р.Т. О среднеазиатской речной выдре <i>Lutra lutra seistanica</i> в Казахстане . Байдавлетов Е.Р., Саловаров В.О. К экологии каратауского архара	138
(Ovis ammon nigrimontana Severtzov, 1873)	141
and protection of family plot from individuals of the same species in Kyrgyzstan	150
Краткие сообш	ения
Казенас В.Л. Роющая оса Eremochares dives (Brullé, 1833) (Hymenoptera, Sphecidae) –	
новый кандидат в Красную книгу Казахстана	157
Carabus (Tomocarabus) marginalis Fabricius 1794 (Coleontera Carabidae) в Казаустане	159

(D' + C 1'1) IC	
(Diptera, Syrphidae) на юго-востоке Казахстан	161
Зима Ю.А. О токсичности укуса серого варана (Varanus griseus)	162
Федоренко В.А., Торопов С.А. Новые данные по чёрной каменке <i>Oenanthe picata</i> Blyth, 1847	
в Южном Казахстане	163
Байшашов Б.У., Алиясова В.Н., Касымбекова Г.И. Представители ископаемых хищных	1.65
(Carnivora) кайнозоя Зайсанской впадины (Восточный Казахстан) и Павлодара	165
Байшашов Б.У. Находки костей пантодонта и диноцерата	1.65
(Mammalia, Pantodonta, Dinocerata) из Зайсанской впадины	167
Дворянов В.Н. Клетка как основное звено при случайном освоении млекопитающими	1.00
новых мест обитания	168
Зам	етки
О необычном месте гнездования фламинго на Каспийском море. В.А. Ковшарь, Ф.Ф. Карпов	20
Первая находка длиннохвостого сорокопута (Lanius schach erythronotus)	
на гнездовании в городе Атырау (Северный Каспий). Φ . А. Сараев	116
Первая зимняя встреча перевозчика в Казахстане. В.А. Ковшарь, Φ .Ф. Карпов	156
Новый объект промысла (Astacus leptodactylus Eschholz)в Алакольской системе озёр (Казахс	тан).
Е.К. Данько – Трогонтериевый слон в Иссык-Кульской котловине А.П. Горбунов О летних встр	ечах
сибирской чечевицы (Carpodacus roseus) на Западном Алтае. Ф.Ф. Карпов - О высыпках гарш	
(Lymnocryptes minimus) в период сезонных миграций на юго-востоке Казахстан. Φ . Φ . Карпов – О нах	одке
лапландского подорожника (Calcarius lapponicus) на территории Кыргызстана С.В. Кулагин – О ги	
птиц от града на Иссык-Куле. С.В. Кулагин – О встречах моевки (Rissa tridactyla) и клуши (Larus fusc	cus) в
казахстанской части акватории Каспийского моря В.П. Мищенко, Ф.Ф. Карпов О гнездов	
краснокрылого чечевичника Rhodopechys sanguinea Gould, 1838 в горах Каратау. В.А. Федорен	
О кормовом поведении галстучника (Charadrius hiaticula) в период осенней миграции в южных рай	
Казахстана В.В. Хроков – Встреча черного чекана в городе Чимкент (Южный Казахстан). Е.С. Чали	
	170
Зоологические коллен	сции
Джусупов Т.К. Оологические сборы Е.П. Спангенберга в Казахстане	177
История зооле	огии
•	
Боркин Л.Я. Пётр Симон Паллас (1741–1811), учёный и путешественник	105
Ковшарь А.Ф К истории создания и становления	185
Чокпакского орнитологического стационара	
	185 193
Гаврилов А.Э., Абаев А.Ж., Зарипова С.Х. Материалы по срокам пролёта и численности	193
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг	
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в	193 201
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг	193
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель»	193 201
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель»	193 201 209
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель»	193 201 209 илеи
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель»	193 201 209 илеи 217
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель»	193 201 209 илеи 217 219
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 106 Зоя Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов Викопаевич Грачев (к 80-летию). А.Ф. Ковшарь Вина Андреевна Иващенко (к 75-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков	193 201 209 илеи 217 219 220 221 222
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 106 309 Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов Виколаевич Грачев (к 80-летию). А.Ф. Ковшарь Вина Андреевна Иващенко (к 75-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков Владимир Григорьевич Березовский (к 70-летию). А.И. Левина, А.С. Левин	193 201 209 илеи 217 219 220 221 222 224
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 106 Зоя Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов Викопаевич Грачев (к 80-летию). А.Ф. Ковшарь Вина Андреевна Иващенко (к 75-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков	193 201 209 илеи 217 219 220 221 222
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 106 309 Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов Виколаевич Грачев (к 80-летию). А.Ф. Ковшарь Вина Андреевна Иващенко (к 75-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков Владимир Григорьевич Березовский (к 70-летию). А.И. Левина, А.С. Левин	193 201 209 илеи 217 219 220 221 222 224 225
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 1066 Зоя Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов	193 201 209 илеи 217 219 220 221 222 224 225 ауки
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 1066 Зоя Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов	193 201 209 илеи 217 219 220 221 222 224 225 ауки 227
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 106 Зоя Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов	193 201 209 илеи 217 219 220 221 222 224 225 ауки 227 229
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 — 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 1066 309 Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов Валентина Андреевна Смирнова (к 80-летию). А.Ф. Ковшарь Валерий Наколаевич Грачев (к 80-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков Владимир Григорьевич Березовский (к 70-летию). А.И. Левина, А.С. Левин Николай Николаевич Березовиков (к 60-летию). С.Н. Ерохов Потери на Иван Дмитриевич Митяев. Р.В. Ященко Антонина Ивановна Горюнова. Н.Ш. Мамилов Владимир Александрович Грачев. Ю.А. Грачев, А.В. Грачев, А.А. Грачев	193 201 209 илеи 217 219 220 221 222 224 225 ауки 227 229 230
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 106 Зоя Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов	193 201 209 илеи 217 219 220 221 222 224 225 ауки 227 229
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 — 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 1066 309 Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов Валентина Андреевна Смирнова (к 80-летию). А.Ф. Ковшарь Валерий Наколаевич Грачев (к 80-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков Владимир Григорьевич Березовский (к 70-летию). А.И. Левина, А.С. Левин Николай Николаевич Березовиков (к 60-летию). С.Н. Ерохов Потери на Иван Дмитриевич Митяев. Р.В. Ященко Антонина Ивановна Горюнова. Н.Ш. Мамилов Владимир Александрович Грачев. Ю.А. Грачев, А.В. Грачев, А.А. Грачев	193 201 209 илеи 217 219 220 221 222 224 225 ауки 227 229 230
мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг. Ковшарь А.Ф. История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель» 1066 309 Карповна Брушко (к 85-летию). Т. Дуйсебаева, М. Чирикова, Ю. Зима Валентина Андреевна Смирнова (к 80-летию). Коллектив авторов Орий Николаевич Грачев (к 80-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 75-летию). А.Ф. Ковшарь Валерий Васильевич Хроков (к 80-летию). Н.Н. Березовиков Владимир Григорьевич Березовский (к 70-летию). А.И. Левина, А.С. Левин Николай Николаевич Березовиков (к 60-летию). С.Н. Ерохов Потери на Иван Дмитриевич Митяев. Р.В. Ященко Антонина Ивановна Горюнова. Н.Ш. Мамилов Владимир Александрович Грачев. Ю.А. Грачев, А.В. Грачев, А.А. Грачев	193 201 209 илеи 217 219 220 221 222 224 225 ауки 227 229 230 232

Contents

	Rarity
Balkhash perch (Perca schrenkii Kessler, 1874) is an endemic fish species of the Balkhash watershed.	
Mamilov N.Sh, Doukravets G.M	. 7
Systematics, mor	phology
Kadyrbekov R.Kh. A new genus and species of the aphids of Macrosiphina subtribe	
(Homoptera: Aphididae) from Kazakhstan	. 21
(Lepidoptera, Lycaenidae) from Eastern Kyrgyzstan	. 24
C 71 1: A1 (77 11 ()	. 26
Kabak I.I. <i>Microdaccus glasunovi</i> Emetz, 1979 is an endemic species from Southern Kazakhstar Arifulova I.I., Chirikova M.A. About anomalies of larval mouthpart structure of the marsh frog	n 28
Pelophylax ridibundus in natural populations of South-Eastern Kazakhstan Kharadov A.V., Kadyrova B.K. Morphometric variation of erythrocytes	. 32
of muskrat Ondatra zibethicus	. 42
Fauna, zooge	ography
Dukravets G.M., Mamilov N.Sh., Mitrofanov I.V Amended and enriched annotated list	
of lampreys and fishes of the Republic of Kazakhstan	. 47
(Central Kazakhstan)	. 71
Features of fauna and ecology of insects (Insecta) in the steppe zone of Pavlodar region (Northern Kazakhstan)	. 91
Belyalov O.V., Mikhaylov K.E., Toropov S.A. The results of ornithological trip to Inner Tien Shan in June, 2016	. 96
Tanitovsky V.A., Ajazbaev T.Z., Maikanov N.S., Bidashko F.G., Kdyrsikh B.G., Berdenov M.Zh. Materials on the fauna of small mammals in steppe regions of Northern Caspian Abdrakhmanova L.T., Bayshashov B.U. New findings of Gazella (Vetagazella) dorcadoides	. 108
in Zaysan basin (Kazakhstan)	. 112
Ecology, t	oehavio
Koshkina A.I., Koshkin A.V., Timoshenko A.Yu., Schielzeth H. Results of White-headed Duck monitoring at key sites in Akmola, Kostanai and North Kazakhstan provinces in 2013-2016 . Tanitovsky V.A., Ajazbaev T.Z., Maikanov N.S., Ahmedenov K.M Pygmy ground squirrel	. 117
(Spermophilus pygmaeus Pallas, 1778) as a bioindicator of global climate change	. 124
The role of Kyrgyzstan's wetlands in the circulation of flu virus among migrating birds	. 127
Tushkenov S.N. Black Stork, Ibisbill and other rare birds of Zhongar-Alatau National Park Ivaschenko A.A., Kovshar A.F. Dominants of nest material of Red-headed Bunting	. 129
(Emberiza bruniceps) in Talasskiy Alatau (West Tien Shan)	. 135 . 138
Baidavletov E.R., Salovarov V.O. To the ecology of Karatau Argali (Ovis ammon nigrimontana Severtzov, 1873)	. 141
Kharadov A.V. Social behaviour of Ondatra zibethicus L. muskrats under their natural settlemen	
and protection of family plot from individuals of the same species in Kyrgyzstan	. 150
Short info	rmation
Kazenas V.L Eremochares dives (Brullé, 1833) (Hymenoptera, Sphecidae) is a new candidate	
to the Red Data Book of Kazakhstan	. 157
Kabak I.I., Kadyrbekov R.Kh., Kolov S.V. Materials on the distribution of <i>Carabus (Tomocarabus) marginalis</i> Fabricius, 1794 (Coleoptera, Carabidae) in Kazakhstan Zlatanov B.V., Aytzhanova M.O. Records of <i>Platycheirus barkalovi</i> Mutin, 1999	. 159
(Diptera, Syrphidae) in South-East of Kazakhstan	. 161 . 162

Fedorenko V.A., Toropov S.A. New information on variable wheatear	
(Oenanthe picata Blyth, 1847) in Southern Kazakhstan	. 163
Bayshashov B.U., Aliasova V.N., Kasymbekova U.I. Representatives of Cenozoic fossil	
predators (Carnivora) of Zaisan depression (Eastern Kazakhstan) and Pavlodar	. 165
Bayshashov B.U. Findings of Pantodonta and Dinocerata (Mammalia,	
Pantodonta, Dinocerata) bones in Zaisan depression	. 167
Dvoryanov V.N. Cage as the main link in accidental inhabitation of new habitats by mammals	. 168
	Notes
About unsusual nesting site of flamingo at the Caspian Sea. V.A. Kovshar, F.F. Karpov	20
The first finding of Long-tailed Shrike (<i>Lanius schach erythronotus</i>) at the nesting	116
in Atyrau city (Northern Caspian). Φ.A. Capaes	. 116 . 156
The new commercial object (Astacus leptodactylus Eschholz) in Alakol lake system (Kazakhst	
Danko – Steppe mammoth in Issyk-Kul depression. A.P. Gorbunov About summer records of Pallas's R	
(Carpodacus roseus) in Western Altai. F.F. Karpov – About aggregations of Jack Snipe (Lymn	
minimus) during seasonal migrations in South-Eastern Kazakhstan. F.F. Karpov – About the record of	
Longspur (<i>Calcarius lapponicus</i>) on the territory of Kyrgyzstan <i>S.V. Kulagin</i> – About death of birds fro	
Issyk-Kul. S.V. Kulagin – About records of Black-legged Kittiwake (Rissa tridactyla) and Lesser Black	
Gull (Larus fuscus) in Kazakhstan part of Caspian waters V.P. Mischenko, F.F. Karpov About no	
Eurasian Crimson-winged Finch Rhodopechys sanguinea Gould, 1838 in Karatau mountains. V.A. Fed	_
About food behavior of Common Ringed Plover (Charadrius hiaticula) during autumn migration in	
regions of Kazakhstan V.V. Khrokov - Record of Pied Bushchat in Chimkent city (Southern Kaz	
E.S. Chalikova	. 170
Zoological co	llections
-	
Dzhusupov T.K. Egg collection of E.P. Spangenberg from Kazakhstan	177
History of	zoology
Borkin L.Ya . Peter Simon Pallas (1741–1811), scientist and traveler	. 185
Kovshar A.F. To history of earlier days of Chokpak ornithological station	. 193
Gavrilov A.E., Abayev A.ZH., Zaripova S.Kh. Materials on the dates of migration	. 175
and number of birds on Chokpak pass (West Tien Shan foothills) in 1982-2016	. 201
Kovshar A.F. The history of Kapchagai game reserve's transformation into	. 201
Altyn-Emel national nature park	. 209
	Jubilees
Zoya Karpovna Brushko (85- anniversary). T. Duysebayeva, M. Chirikova, Yu. Zima .	. 217
Valentina Andreevna Smirnova (80- anniversary). Colleagues	. 219
Yuriy Nikolaevich Grachev (80- anniversary). A.F. Kovshar	. 220
Anna Ivanivna Ivaschenko (75- anniversary). A.F. Kovshar	. 221
Valery Vasiljevich Khrokov (80- anniversary). N.N. Berezovikov	. 222
Vladimir Grigorjevich Berezovsky (70- anniversary). A.I. Levina, A.C. Levin Nikolay Nikolayevich Berezovikov (60- anniversary). S.N. Erokhov	. 224 . 225
Nikolay Nikolayevich Berezovikov (60- anniversary). S.N. Eroknov	. 223
Nec	crologies
Ivan Dmitrijevich Mityaev. R.V. Jashenko	. 227
Antonina Ivanovna Goryunova. N.Sh. Mamilov	. 229
Vladimir Alexandrovich Grachev. Yu.A. Grachev, A.V. Grachev, A.A. Grachev	. 230
Chronicle	. 232
Book review	. 237
Nom books	242

ЗНАКОМЬТЕСЬ: РАРИТЕТ

УДК 597.583 (574.52)

Балхашский окунь (Perca schrenkii Kessler, 1874) – эндемик Балхашского бассейна

Названия: казахское – алабұға; на английском языке: Balkhash perch (Froese, Pauly, 2016)

Статус. Балхашский окунь является эндемиком Балхашского бассейна, расположенного в самом центре Евразии. Вместе с обыкновенным, или речным, окунем (*P. fluviatilis* Linnaeus, 1758) и американским жёлтым окунем (*P. flavescens* Mitchill, 1814) он относится к роду окуни, входящему в семейство окуневых и отряд окунеобразных рыб. Максимальная длина 50 см, вес до 2.2 кг (Берг, 1949а; Жадин, 1948).

Открытие этого вида имеет долгую историю. В 1840-1843 гг. натуралисты-ботаники Александр Шренк и Карл Мейнсгаузен по заданию Петербургского Ботанического сада участвовали в экспедициях по сибирской и восточной линиям казачьих укреплений, созданных для защиты территории Казахского ханства от джунгарских вторжений. Рыбы, отловленные в озерах Балхаш и Алаколь, оказались им незнакомыми, поэтому А. Шренк зафиксировал их в спирте и по возвращении из экспедиции передал в Зоологический музей Российской Академии наук. Там привезенные рыбы хранились почти 30 лет, пока академик Александр Александрович Штраух, являвшийся тогда смотрителем музея, не обнаружил неведомых рыб и сразу же передал их выдающемуся ихтиологу – академику Карлу Федоровичу Кесслеру, который составил первое научное описание окуней из Балкашского бассейна, показал их видовую самостоятельность и в честь первооткрывателя дал научное название новому виду окуней *Регса schrenkii* — окунь Шренка (Кесслер, 1874). Невзирая на революции, войны, природные катаклизмы и социальные эксперименты, сотрудники Зоологического института Российской Академии наук в Санкт-Петербурге до настоящего времени бережно сохраняют первые научно описанные экземпляры балхашского окуня, отловленные и доставленные А. Шренком более 150 лет назад (типовой из оз. Балкаш - № 2326 ЗИН РАН и 4 экземпляра из оз. Алаколь - № 2327 ЗИН РАН).

Внешний вид. Балхашский окунь очень сильно похож на обыкновенного и жёлтого окуней. Различия наиболее отчётливо проявляются в окраске взрослых рыб: спина чёрная или серая, от спины по направлению к брюху окраска светлеет; поперечные полосы видны не всегда и, если видны, то не так чётко выражены, как у обыкновенного и жёлтого окуней; чёрного пятна на конце основания первого спинного плавника нет: парные и анальный плавники сероватые или белые: чешуя обычно крупнее, чем у обыкновенного окуня. Балхашский окунь отличается от обыкновенного более удлиненным телом, несколько более крупной чешуёй (в боковой линии 44-54 чешуи), более низким первым спинным плавником и более густыми жаберными тычинками на первой жаберной дуге (Берг, 1949). В отличие от других видов окуней у балхашского часто встречаются особи с выдающейся вперед нижней челюстью. Балхашский окунь из р. Баканас обладает рядом морфологических особенностей: общий тон окраски желтовато-серый с более темной спиной и более светлым брюхом. У большинства рыб на теле отчетливо видны 6-8 темных полос. На голове скопления меланофоров образуют сложный рисунок в виде овальных, лентовидных и неправильной формы пятен. Грудные и брюшные плавники жёлтого цвета. Наличие полос, присутствие желтых тонов в окраске тела и особенно парных плавников характерно для обыкновенного (Perca fluviatilis) и жёлтого (Perca flavescens) окуней, но не встречается у балхашского окуня из большинства других водоемов. Появление такой окраски у балхашского окуня объясняется проявлением известного закона о гомологических рядах наследственной изменчивости (Вавилов, 1920) и свидетельствует о достаточно большой генетической близости с обыкновенным и жёлтым окунем.

Б.Ф. Жадин (1949) выявил ряд особенностей в строении скелета балхашского окуня, хорошо отличающих его от обыкновенного окуня. Для черепа балхашского окуня характерно сильное развитие нижней челюсти, которая заметно выдается вперед, обусловливая тем самым полуверхнее положение рта. Сравнительно небольшие орбиты расположены высоко, а квадратно-артикулярное сочленение находится значительно ниже линии закрытого рта. Другой особенностью черепа балхашского окуня является форма и положение предкрышки: она у него (особенно нижняя часть), в отличие от обыкновенного окуня, более массивна, а расстояние между ней и задним краем орбиты значительно больше. Лобные кости балхашского окуня длиннее, более узкие и сдвинуты назад, что сближает череп

балхашского окуня с черепом судака. Таким образом, по типу строения челюстного аппарата балхашский окунь занимает промежуточное положение между обыкновенным окунем и судаком. По степени развития сейсмосенсорных каналов на голове балхашский окунь значительно отличается и от обыкновенного окуня, и от судака. У балахашского окуня эти каналы развиты очень сильно; особенно выделяются надглазничные и предкрышечно-челюстные каналы, которые резко выступают на поверхности лобных и предкрышечных костей. Эта особенность сближает балхашского окуня с предковой для пресноводных окуней формой.

По совокупности пластических признаков (использовалась схема промеров truss network) Hai S. с коллегами (2008) провели многомерный анализ выборок балхашского, обыкновенного и американского окуней и показали большее сходство обыкновенного окуня с американским, чем с обыкновенным.

Большинство исследователей, занимавшихся изучением балхашского окуня, отмечали его большую морфологическую изменчивость. Для описания внутрипопуляционного разнообразия этого вида применялись такие названия форм: пелагическая, морская, глубинная, прибрежная, камышовая, хищная, быстрорастущая, медленно растущая, карликовая, сазная, озерная, речная, белый окунь (Соколовский, Тимирханов, 2006). В озёрах бассейна р. Или балхашский окунь был представлен рядом локальных стад (Голодов, Митрофанов, 1968). В оз. Алаколь А.С. Стрельников (1970) отмечал существование двух форм, различающихся по скорости роста. В оз. Балхаш и дельте р. Или А.И. Горюнова (1950) различала «камышевую» и «озёрную» формы. Окунь открытого озера имел более светлую окраску, а окунь дельтовых водоёмов окрашен в грязно-серый цвет, но никогда не бывает чёрным. Дельтовый окунь отличается большей, чем у озёрного, высотой тела. Наличие подобных форм отмечали и другие исследователи, но подробного описания никто не сделал. Все ограничилось констатацией факта существования различий внутри выборок, причем часто без указания, по каким именно признакам проводилось различение. Большинство популяций балхашского окуня уже исчезло, поэтому оценить таксономический статус выделенных ранее группировок невозможно. По данным морфологического (Мамилов, Митрофанов, 2002) и молекулярно-генетического (Barmintseva et al., 2015) анализов, в настоящее время в оз. Алаколь балхашский окунь представлен одной формой, но между популяциями из бассейна Алакольских озёр и бассейна собственно озера Балхаш имеются существенные генетические различия.

Происхождение. В течение долго времени существовало две гипотезы о происхождении балхашского окуня. По одной из них он является древним потомком морских окуневых, сохранившимся в Балхашской котловине с палеозоя. По другой версии, окунь проник в бассейн оз. Балхаш в верхнетретичное время из того водоёма, который занимал Зайсанскую котловину (Жадин, 1949). По мнению В.П. Митрофанова (1986), наиболее вероятный путь проникновения предка балхашского окуня – из р. Шерубай-Нура (приток р. Нуры, Иртышский бассейн) в р. Токраун (северный приток оз. Балхаш). Современные данные молекулярно-генетического анализа подтверждают гипотезу о более позднем происхождении балхашского и американского жёлтого окуней. На основании сравнения митохондриального гена цитохрома b Hai S. с коллегами (2008) показали большее родство балхашского окуня с американским, чем с обыкновенным. Подробный молекулярно-генетический анализ ядерных и митохондриальных генов позволил предложить наиболее вероятное филогенетическое дерево окуней (Haponski, Stepien, 2013a,b; Carol et al., 2016). Этот род возник в раннем миоцене – около 19.8 млн. лет назад. Вскоре после этого разошлись родословные линии, ведущие к современным обыкновенному окуню с одной стороны и американскому и балхашскому окуням с другой. В среднем миоцене (около 13.4 млн. лет назад) разошлись родословные линии балхашского и американского окуней, а сам балхашский окунь сформировался около 4 млн. лет назад.

Распространение. Характеристика водоёмов обитания. Естественный ареал балхашского окуня ограничен водоёмами бассейна оз. Балхаш и Алакольской котловины (рис. на обложке). В 1960-х гг. при перевозках молоди карпа из хозяйств Балхашского бассейна балхашский окунь попал в некоторые водоёмы Казахстана и Средней Азии. Его популяции известны из бассейнов рек Нура, Оленты (Мина, 1974; Дукравец, Бирюков, 1976), Чу (Пивнев, 1985; Дукравец, Мамилов, 1992), изолированных озёр Северного Казахстана (Тлеуберды, Сарыоба, Курбет, Майбалык — Гайдученко, 1986) и в бассейне р. Зеравшан в Узбекистане (Нуриев, 1985). Там, где обитает обыкновенный окунь, между двумя видами окуней могут образовываться гибриды.

Под давлением акклиматизированных видов рыб, главным образом судака (Sander lucioperca) и леща (Abramis brama), с начала 60-х гг. происходит постоянное сокращение естественного ареала балхашского окуня (Дукравец, Митрофанов, 1989). Давление со стороны акклиматизантов осуществляется разными путями. Судак потребляет большое количество мелкого балхашского окуня, и этим одновременно конкурирует в питании с крупным балхашским окунем. Взрослый лещ предпочитает бентосные организмы, конкурируя в питании с балхашским окунем, при их недостатке переходит на

потребление планктонных организмов и водных растений (Мамилова, 1982; Баимбетов и др., 1988). Неплановые вселенцы из китайского комплекса — амурский чебачок (*Pseudorasbora parva*), амурский лжепескарь (*Abbottina rivularis*), китайский бычок (*Rhinogobius cheni*), элеотрис (*Micropercops cinctus*), широко распространившиеся в бассейне оз. Балхаш, могут потреблять значительное количество икры и конкурировать в питании с молодью балхашского окуня (Митрофанов, Дукравец, 1992).

Он исчез не только из оз. Балхаш, Сасыкколь и большей части реки Или, но также и из наиболее крупных притоков этих водоемов: в 2009-2016 гг. балхашского окуня не находили в реках Аягуз, Аксу, Лепсы, Каратал, Или ниже Капчагайского вдхр., низовьях рек Каскелен, Иссык, Тургень, Чилик и Чарын. Аборигенная ихтиофауна долгое время сохранялась в Куртинском вдхр. с крутыми скалистыми берегами и слабо развитой растительностью. Глубина в срединной части доходит до 10 м, уровенный режим испытывает сильные сезонные колебания. После неплановой акклиматизации судака, леща и плотвы (Rutilus rutilus) с конца 90-х гг. ХХ ст. в Куртинском вдхр. балхашский окунь не встречается.

На сегодняшний день самым крупным водоемом, где сохранился балхашский окунь, является озеро Алаколь. Вдоль береговой линии имеются участки, обильно поросшие тростником и рогозом, которые в отдельных местах могут на 100 и более метров заходить на акваторию. Основные виды рыб: сазан (*Cyprinus carpio*), судак, карась (*Carassius auratus*), лещ и балхашский окунь. Ведется интенсивный промысловый лов. В остальных водоемах промысловый лов не ведется. По своим условиям эти водоемы можно разделить на несколько групп.

- 1. Река Баканас и низовья реки Тентек обычно немноговодны и только в многоводные годы впадают в конечные водоемы широкой рекой. Течение слабое, имеются плёсы, сильно заросшие тростником и мягкой водной растительностью. По своим гидрологическим условиям с ними сходны расположенные на высоте более 1500 м Текесское вдхр. и река Текес ниже него.
- 2. Озеро Большой Алтай и пруды в окрестностях Алматы (Александровский, на р. Курлеп и хоз-ва им. Кунаева), имеют небольшую (до 4 м, в среднем 1-2 м) глубину, обильно зарастают тростником и мягкой подводной растительностью. К этой же группе относятся Кураксуские озера в низовьях реки Аксу. Балхашский окунь был отмечен в этих озерах С.Р. Тимирхановым и Е.А. Меркуловым (1998).
- 3. Река Шинжилы относится к горному типу, с быстрым течением и перекатами. Балхашский окунь был отловлен в небольшом пруду с хорошо развитой прибрежной и подводной растительностью и соединяющимся с рекой узким рукавом. По своим условиям с этим водоёмом сходно оз. Иссык, расположенное в горах Заилийского Алатау в ущелье Иссык. Площадь озера около 100 га. Впервые за многолетний период наблюдений балхашский окунь был здесь обнаружен Г.М. Дукравцом в 1997 г.
- 4. Озеро Сорбулак является водоёмом-накопителем сточных вод города Алма-Аты. Площадь его 58 км², средняя глубина 14-15 м (Баимбетов и др., 1995). Вода насыщена биогенами и загрязнена фенолами, детергентами, тяжёлыми металлами и нефтепродуктами (Коробкин, 1990). Прибрежная растительность не развита. С 1996 г., с сокращением сброса сточных вод, местами развивается подводная растительность.

Наименьшие изменения аборигенного ихтиокомплекса отмечены в р. Баканас. Здесь балхашский окунь и пятнистый губач (*Triplophysa strauchii*) — безусловные доминанты, кроме них встречается балхашская маринка (*Schizothorax argentatus*). В ихтиофауне других водоёмов балхашский окунь является последним представителем аборигенного ихтиокомплекса.

Анализ водоемов, где ещё обитает балхашский окунь, позволяет выделить несколько особенностей его современного распространения. Во-первых, под давлением вселённых видов окунь распространяется гораздо выше того уровня, где его обнаруживали раньше (600 м над уровнем моря – по Дукравец, Митрофанов, 1989), – например, пруд на р. Шинжилы и оз. Иссык. Во-вторых, балхашский окунь сохраняется в небольших и неглубоких водоёмах с хорошо развитой подводной и надводной растительностью, не имеющих постоянной связи с более крупными. Водная растительность может служить убежищем от судака, а при небольшой глубине и в отсутствие проточности создаётся неблагоприятный кислородный режим. Как известно, судак намного чувствительнее балхашского окуня к недостатку кислорода (Спановская, 1971; Никольский, 1971). Кроме того, в небольших водоёмах часто отсутствуют условия для нереста судака. Видимо, в силу этих причин судак не смог достичь большой численности в оз. Большой Алтай. Из Куртинского же вдхр. судак смог быстро вытеснить балхашского окуня именно из-за отсутствия прибрежной растительности и при благоприятном кислородном режиме. Однако в Саз-Талгарской системе прудов даже развитые заросли тростника не смогли спасти балхашского окуня: в этих прудах судак сначала истребил всю мелкую рыбу, включая собственную молодь, а потом перешёл на питание молодыми речными раками.

БИОЛОГИЯ. **Питание.** Балхашский окунь может существовать в широком диапазоне условий питания — от полного обеспечения за счёт каннибализма до отказа от хищничества (Дукравец, Митрофанов, 1989). Эти данные по питанию балхашского окуня в конце XX века представлены в табл. 1.

,					•			· ·					
П		Водоем*											
Пища	1	2	3	4	5	6	7	8	9	10			
Рыба	6.0	37.5	47.0	37.5	21.4	8.8	37.5	3.8	8.3	0			
Икра	0	12.5	0	0	0	0	25.0	0	0	0			
Личинки комаров	11.1	0	0	25.0	0	0	0	57.7	0	50.0			
Планктон	0	0	2.0	0	0	2.9	0	0	0	16.7			
Имаго насекомых	0	0	8.0	25.0	0	0	0	15.4	0	0			
Другое	0	25.0	2.0	0	0	0	0	0	0	0			
Химус	11.1	0	6.7	0	0	38.2	25.0	15.4	8.3	0			
Пусто	83.3	25.0	42.0	25.0	78.6	55.9	25.0	11.5	83.3	33.3			

Таблица 1. Питание балхашского окуня в исследованных выборках (в % от общего числа исследованных желудков; Мамилов, 2000).

*Цифрами обозначены водоёмы: I - оз. Алаколь, 2 - р. Шынжылы, 3 - р. Баканас, 4 - оз. Б. Алтай, 5 - Куртинское вдхр., 6 - оз. Сорбулак, 7 - пруд хоз-ва им. Кунаева, 8 - пруд на р. Курлеп, 9 - Александровский пруд, 10 - оз. Иссык.

Балхашский окунь потребляет разнообразную пищу. Значительное место в питании занимает рыба; она отсутствовала только в рационе окуня из горного озера Иссык. Список видов-жертв разнообразен и меняется по водоемам. В оз. Алаколь и Куртинском вдхр. это, в основном, собственная молодь: в желудке одного экземпляра из оз. Алаколь обнаружено сразу 7 сеголетков балхашского окуня. В остальных водоёмах случаи каннибализма не были отмечены. В оз. Б. Алтай и р. Баканас основными жертвами балхашского окуня являются гольцы (скорее всего, *Triplophysa strauchii*), причем у окуней из р. Баканас часто в желудках находили по несколько рыб. В других водоёмах жертвами являлись мелкие особи судака, сазана, карася, белого амура (*Ctenopharyngodon idella*) и амурского чебачка (*Pseudorasbora parva*). В желудках представители этих видов всегда встречаются единично (кроме судака).

В озёрах Алаколь, Б. Алтай, Иссык, пруду на р. Курлеп значительное место в питании занимают личинки хирономид. Планктонные организмы представлены в питании окуней из р. Баканас, оз. Сорбулак и оз. Иссык мелкими планктонными ракообразными, у окуня из оз. Иссык — мелкими планктонными ракообразными и бокоплавами. Из имаго насекомых в пище отмечены жуки, двукрылые, подёнки. Из других пищевых объектов были обнаружены: икра рыб (р. Шинжилы и пруд хозяйства имени Кунаева), макрофиты, детрит (реки Шинжилы и Баканас). У окуня из р. Шинжилы в пище отмечена пиявка.

В первые годы жизни балхашский окунь кормится преимущественно зоопланктоном и зообентосом (главным образом личинками хирономид и других насекомых, но также ест мизид и бокоплавов). Подросшие рыбы — хищники. По данным Л.С. Берга (1949), в оз. Балкаш молодь балхашского окуня питалась преимущественно рачками *Cladocera*, меньше *Copepoda*; у взрослых рыб пища на 90% состояла из молоди своего вида, также жертвами являлись молодь маринки, сазана, губача и икра рыб.

В равнинной части р. Или прежде балхашский окунь потреблял в пищу гольцов, мелких маринок и окуней, а в пойменных озёрах — собственную молодь и молодь сазана (Никольский, Евтюхов, 1940). Сравнение с литературными данными (Дукравец, Митрофанов, 1989) выявило изменения в питании балхашского окуня из водоемов бассейна р. Или: до начала 70-х гг. каннибализм встречался чаще. Переход на новые пищевые объекты был обусловлен сильным разрежением этих популяций.

По данным А.С. Малиновской (1959), в Алакольских озерах младшие рыбы тростниковой формы потребляли зоопланктон, рыбы в возрасте 3-4-х лет — бентос. Пелагическая форма в возрасте 3+ поедала в основном личинок насекомых (до 97% от массы всей пищи), а в возрасте 4-5 лет — собственную молодь. После акклиматизации мизид в Алакольских озёрах балхашский окунь первым из рыб начал питаться ими. Мизиды составляли до 80% рациона окуней размером 80-100 мм (Логиновских, Стрельников, 1973). Наблюдения через 54 года показали, что спектр питания молоди состоит из 48 компонентов, и переход на питание бентосными организмами происходит уже в середине первого лета жизни (Трошина, 2014).

Наиболее интенсивно питается осенью, зимою и весной до нереста; со второй половины июня и в течение всего лета балхашский окунь почти не питается.

Упитанность может варьировать от 0.51 до 4.33 по Фультону и от 0.41 до 3.36 по Кларк (Дукравец, Митрофанов, 1989). В начале XXI в. средняя упитанность балхашского окуня в большинстве исследованных водоёмов была несколько выше средних значений, известных для естественного ареала: 1.7-1.9 по Фультону и 1.3-1.6 по Кларк. Снижение упитанности ниже средней отмечено только у окуней из озера Алаколь: в среднем 1.62 по Фультону и 1.34 по Кларк. Однако почти такая же упитанность была здесь у окуня и до массового распространения судака и вселения леща. По данным К.П. Цыба (1965), в

1962 г. средняя упитанность по Кларк балхашского окуня из оз. Алаколь составляла 1.4. В последние годы большие запасы жира отмечены только у балхашского окуня из р. Баканас. У окуней из оз. Алаколь, Александровского пруда, пруда на р. Курлеп, Куртинского вдхр. внутреннего жира очень мало или нет вовсе. У окуней из остальных водоёмов жир в виде более или менее широкой ленты располагался вдоль кишечника.

Размножение. Половой зрелости самцы балхашского окуня достигают в возрасте 1-3 лет, самки — возрасте 2-4 лет. Это зависит от условий обитания и, вероятно, внутрипопуляционной генетической разнородности (Дукравец, Митрофанов, 1989). Данные разных авторов о возрасте наступления половой зрелости у балхашского окуня из оз. Балхаш различаются. По мнению Б.Ф. Жадина (1949), пелагические самцы созревали в 2-3 года при средней длине тела (без хвостового плавника) 9.2 см, а самки — в 2-4 года при средней длине тела 10.3 см; у прибрежной формы самцы созревали в 1-3 года при длине 7.5 см, а самки — в 2-3 года при длине 8 см. По мнению А.И. Горюновой (1950) и В.А. Максунова (1953), в оз. Балхаш и дельте р. Или половое созревание окуня происходит в возрасте 4-5 лет. В Алакольских озерах пелагическая форма созревает в 4-5 лет, прибрежная — в 3-4 года (Стрельников, 1970). По данным Г.М. Дукравца и В.П. Митрофанова (1989), в течение лета и в начале осени трофоплазматического роста овоцитов не происходит, или он идёт очень медленно.

В нормальных условиях в популяциях балхашского окуня количество самок равно или в 2-3 раза больше, чем самцов; при ухудшении условий питания, преобладании на нерестилищах молодых (двухлетних) или, наоборот, старых (старше 6 лет) самок, экстремальных абиотических условиях (например, повышенной солёности) доля самок увеличивается и может превышать долю самцов в 15-24 раза (Митрофанов, 1970; Дукравец, Митрофанов, 1989). В выборке балхашского окуня из пруда хозяйства имени Кунаева соотношение самок и самцов равно 1:1, в оз. Алаколь, Б. Алтай, Сорбулак, Александровском пруду, р. Баканас самок в 2-3 раза больше, в р. Шинжилы, Куртинском вдхр., пруду на р. Курлеп и оз. Иссык самок больше в 5-7 раз.

Абсолютная индивидуальная плодовитость (АИП) зависит от длины тела и варьирует от 1 000 до 200 000-250 000 икринок, с возрастом и увеличением размеров тела плодовитость увеличивается (Дукравец, Митрофанов, 1989). По нашим данным, у 4 самок из Александровского пруда с длиной тела 147-177 мм, АИП колебалась от 17 до 22 тыс. икринок, у двух самок из р. Шинжилы с длиной тела 234 и 251 мм АИП составила около 65 тыс. икринок.

Нерест балхашского окуня начинается ранней весной, вскоре после вскрытия водоемов ото льда. Размножаются как в пресной, так и в солёной (до 9‰) воде. В зависимости от гидрометеорологических условий года в естественном ареале нерест проходит с конца марта до конца мая. Продолжительность нереста конкретной популяции зависит от её плотности и величины нерестилища. По наблюдениям Л.С. Берга (1949), нерест в Балхаше длился около месяца: начинался на западе (в пресной воде) в середине апреля при температуре воды 8-10°С, а на востоке (в солоноватой части) на полмесяца позже. По данным А.И. Горюновой (1950) и В.А. Максунова (1953), нерест в Балхаше начинался при температуре 4-5°С.

По наблюдениям Г.М. Дукравца и В.П. Митрофанова (1989), в одном из пойменных озер р. Или в 1966 г. икрометание началось 18 марта, через 3 дня после схода льда, и закончилось 26 марта, на следующий год это озеро вскрылось ото льда 26 марта, а нерест окуня прошел с 30 марта по 5 апреля при температуре воды 6-7.5 °С. При этом самцы отдавали сперму не всю сразу, а по частям. Они держались на нерестилищах продолжительное время и осеменяли икру от нескольких самок. Длительность икрометания каждой особи невелика, и самки на нерестилищах обычно не задерживаются. Сходную картину мы наблюдали в Алакольских озерах и Куртинском вдхр. Порционное созревание икры, вероятно, вообще присуще самцам окуня, так как при многократном преобладании самок в популяции иначе было бы невозможно оплодотворении всей выметанной икры.

Икра выметывается в виде клейкой ленты на погруженные растения, камни, а в бурную погоду – просто на грунт. Глубина откладки икры варьирует от нескольких сантиметров до 2, редко до 3 м.

До значительного сокращения своей численности окунь шел на нерест плотной стаей, скапливаясь в местах откладки икры до 20 особей на 1 m^2 . Вода в местах нереста «кипела» от движений рыб, окуни теряли осторожность, их легко ловили сачком (Дукравец, Митрофанов, 1989). Сейчас такое можно наблюдать только в отдельные годы на некоторых участках оз. Алаколь. В большинстве других водоемов, где этот вид ещё существует, на нерестовые участки выходит лишь несколько особей. При виде человека окуни быстро отходят на глубину и не повторяют попыток в течение 0.5-1 часа. Нерест проходит в любое время суток.

B зависимости от численности и погодных условий молодь балхашского окуня держится вблизи нерестилищ до конца мая — начала июля, а затем расселяется по водоёму.

Наблюдения, проведенные С.Р. Тимирхановым и А.А. Искакбаевым (1999) на одном из пойменных озёр р. Урджар, позволили определить смертность личинок балхашского окуня в течение первых дней после вылупления. Через стуки после нереста все вылупившиеся личинки концентрируются в поверхностном слое воды в прибрежной зоне. Концентрация их в подобных скоплениях шириной 1 м и протяженностью несколько десятков метров составляла 2000-2500 экз./м². Большое количество личинок окуня было уничтожено личинками стрекоз, жуками-плавунцами и амурским чебачком. Ещё через сутки концентрация личинок резко упала до 5-10 экз/м². Смертность в течение первых двух суток жизни составила 99.5-99.8%.

Рост, возраст. В первое лето жизни в Капчагайском вдхр. в 1971-1973 гг. молодь имела размеры: в апреле-мае 6-22 мм, в июне-июле 24-67 мм (Дукравец, Митрофанов, 1989). В озёрах Балхаш и Алаколь чёткое отличалась скорость роста пелагической и прибрежной форм (Жадин, 1949; Стрельников, 1974).

Линейный рост тела, как и у многих других рыб, более интенсивен в первые годы жизни и быстро замедляется после наступления половой зрелости. Наращивание массы тела в это время наоборот ускоряется. Скорость линейного и весового роста не имеет прямой корреляции с упитанностью и накоплением жира. Основные жировые запасы откладываются в брюшной полости, часто тугорослые формы имеют более значительные жировые накопления, чем быстрорастущие. Скорость роста определяется не столько обеспеченностью пищей, сколько условиями обитания и типом обмена веществ (Дукравец, Митрофанов, 1989). При изменении условий скорость роста меняется быстро.

Важный показатель состояния популяций – максимальная продолжительность жизни. Наибольший известный возраст балхашского окуня – 23 года. В нижней части р. Или в 1944 г. поймана самка в возрасте 21 года с длиной тела без хвостового плавника 45 см и массой тела 2.2 кг (Жадин, 1948). В Алакольских озёрах известен максимальный возраст балхашского окуня 16 лет (Цыба, 1965). Уменьшение максимальной продолжительности жизни окуня в этом водоёме в 90-х гг. связано только с интенсификацией промысла (Мамилов, Митрофанов, 2002). С ослаблением промысла в начале 2000-х гг. продолжительность жизни увеличилась до 13-15 лет в оз. Алаколь и до 18 лет в оз. Сасыкколь (Соколовский, Тимирханов, 2006), а с прекращением промысла в оз. Б. Алтай продолжительность жизни балхашского окуня увеличилась – в сборах 1980 г. наибольший возраст составлял 8 полных лет (Лукравец и др., 1984). В выборке из р. Шинжилы представлены только 5-8 летние особи, из пруда хозяйства имени Кунаева - 4-6 летние особи, из оз. Иссык - 3-6 летние, в остальных выборках присутствуют особи от 2 до 5 лет. Сеголетки и годовики балхашского окуня были отловлены нами или обнаружены в желудках рыб лишь в озерах Алаколь и Б. Алтай, Куртинском вдхр. и реках Тентек и Баканас, однако нормальные условия для воспроизводства сохраняются только в оз. Б. Алтай и р. Баканас. Не известно, как воспроизводятся популяция в озёрах Сорбулак и Иссык. В остальных водоёмах молодь, вероятно, испытывает сильное давление со стороны вселённых видов рыб.

Зараженность гельминтами. Гельминты были отмечены у окуней из четырех водоемов: оз. Алаколь — у одного экземпляра 2 сосальщика в пищеварительной системе, оз. Б. Алтай — у 3 экземпляров большое количество цист в мышцах, пруд хозяйства имени Кунаева — у одного экземпляра сосальщики в пищеварительной системе, оз. Сорбулак — у четырех экземпляров большое количество сосальщиков в желудке и печени. В конце 40-х гг. указывалось на массовое заражение балхашского окуня в большинстве водоёмов, причем многие из гельминтов в бассейнах озер Балхаш и Алаколь являлись характерными только для балхашского окуня (Жадин, 1949). В 1980 г. практически у 100% окуня из оз. Б. Алтай отмечали поражение жабер и мышц (Дукравец и др.,1984). Сильное снижение зараженности к концу 90-х гг. можно объяснить сильным разрежением популяций балхашского окуня и/или уменьшением кормовых объектов, которые могли бы являться промежуточными хозяевами этих паразитов. Д.М. Жатканбаева и С.М. Нысамбаева (2011) выявили очаг клиностомоза в популяции балхашского окуня в оз. Сыскколь.

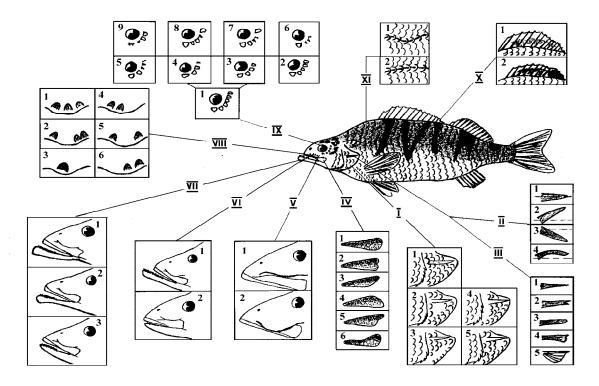
Мониторинг состояния популяций. По характеру изменчивости во времени морфологических показателей организмов можно судить о состоянии их популяций (Филипченко, 1926; Четвериков, 1926). Результаты сравнительного морфо-биологического анализа выборок разных лет из Алаколя представлены в таблице 2. Полученные данные не выявили значительных и достоверных различий между выборками по биологическим показателям, что свидетельствует о стабильности условий существования (Савваитова и др., 1988). Большинство морфометрических показателей остались без изменений. Достоверные различия, достигающие «подвидового» ранга по критерию Э. Майра (1971), выявлены лишь в числе рядов чешуй над боковой линией: сейчас их стало больше.

Максимальные и минимальные значения большинства морфометрических признаков не выходят за известные пределы их изменчивости. Среди пластических признаков минимальные и средние значения ширины головы оказались меньше, а средние и максимальные значения длины верхней и нижней лопастей хвостового плавника больше (оба признака взяты относительно длины тела) известных

по литературным источникам (Дукравец, Митрофанов, 1989). Максимальное количество жаберных тычинок также больше раннее установленного для балхашского окуня предела.

Таблица 2. Сравнительная морфо-биологическая характеристика балхашского окуня из оз. Алаколь

Признак		2015-20	16 гг., июн	Ь		2000	г., июнь		Сравнение			
търизнак	min	max	M	$\pm s$	Min	max	M	$\pm_{\mathbf{S}}$	d	CD	Tst	
1	2	3	4	5	6	7	8	9	10	11	12	
Биологическ	ие показ	атели:										
L	199	330	258.3	31.40	202	342	276.2	35.79	0.00	0.27	2.20	
lst	164	277	214.1	26.68	167	287	235.1	31.24	0.03	0.36	3.01	
Q	85	378	180.2	72.73	98	349	223.7	75.30	0.01	0.29	0.95	
q	77	335	164.7	64.11	73	318	193.2	66.18	0.00	0.22	0.71	
Fulton	1.33	2.14	1.75	0.194	1.27	2.36	1.68	0.261	0.15	0.16	0.49	
Clark	1.26	2.02	1.60	0.180	1.13	2.02	1.44	0.186	0.02	0.45	1.45	
Счетные при	Счетные признаки:											
11	45	59	51.2	2.97	43	54	50.7	2.42	0.09	0.08	0.29	
llca	17	26	19.8	1.89	12	20	15.7	1.52	1.37	1.20	4.03	
sup	7	9	7.9	0.62	5	7	6.0	0.59	0.44	1.62	5.31	
inf	14	18	16.3	1.18	11	17	15.3	1.09	0.08	0.46	1.51	
D1	11	14	13.0	0.59	12	14	12.6	0.61	0.02	0.33	1.08	
D1-D2	0	2	1.1	0.60	0	2	0.8	0.65	0.02	0.32	1.40	
D2r	0	3	1.7	0.63	1	3	1.6	0.54	0.05	0.03	0.15	
Dsoft	11	16	12.5	0.95	11	15	12.3	0.94	0.00	0.06	0.28	
Ar	0	2	1.9	0.53	1	2	2.0	0.15	5.63	0.18	0.65	
Asoft	3	9	7.5	1.43	7	9	7.9	0.66	1.60	0.19	0.73	
P	12	15	13.3	0.66	10	15	12.7	0.95	0.11	0.34	1.54	
Sp.br	25	33	28.2	2.47	25	37	30.7	2.45	0.01	0.50	2.20	
Vert. caud	19	22	20.3	0.73	17	21	19.2	0.91	0.30	0.67	2.99	
Vert.sum	35	39	37.0	1.02	35	39	37.2	0.96	0.01	0.10	0.43	
В % от длин												
aD	31.1	37.6	35.3	1.70	29.5	35.7	33.6	1.39	0.33	0.55	2.37	
aP	29.0	36.7	32.2	1.55	26.9	34.0	31.2	1.40	0.07	0.35	1.53	
aV	35.4	42.0	37.6	1.47	33.3	39.7	37.4	1.43	0.00	0.08	0.34	
aA	69.4	81.0	73.6	2.81	69.6	80.1	73.5	2.09	0.18	0.03	0.12	
pD	14.0	18.9	16.5	1.28	13.2	20.9	17.6	1.62	0.02	0.37	1.64	
PV	8.9	12.1	10.3	0.88	7.8	12.1	9.9	0.86	0.00	0.21	0.91	
VA	32.9	47.1	38.2	3.42	34.4	46.3	39.7	3.18	0.03	0.23	0.99	
ca	18.1	22.3	20.1	1.05	16.5	23.2	20.1	1.48	0.24	0.02	0.07	
hc	30.3 17.8	38.4 21.9	33.3 19.8	1.75	29.4 16.2	35.1 22.8	32.0 20.1	1.37	0.31	0.42	0.55	
	5.4	9.7	8.5	0.80	7.1	9.2	8.1	0.53	0.11			
ao oh	4.7	6.7	5.7	0.80	4.1	5.7	4.9	0.39	0.57	0.35	1.43 4.14	
	16.8	21.7	18.8	1.19	16.0	19.9	18.3	0.39	0.91	0.97	0.93	
op mx	11.8	15.0	13.5	0.84	10.5	14.3	12.6	0.97	0.12	0.22	2.14	
hmx	3.6	5.2	4.2	0.84	2.6	4.4	3.4	0.34	1.19	1.01	4.28	
md	16.0	20.8	18.4	1.14	2.3	19.0	16.6	2.44	0.41	0.51	2.23	
io	5.2	6.7	5.8	0.37	4.6	6.7	5.3	0.42	0.41	0.51	2.32	
Н	23.7	31.4	27.2	2.09	22.6	31.1	26.8	2.09	0.10	0.32	0.51	
hmin	7.4	9.2	8.2	0.51	7.0	11.2	8.2	0.74	0.30	0.12	0.25	
ID1	29.0	38.0	32.3	2.14	25.9	34.2	30.6	1.91	0.11	0.44	1.89	
D1-D2	0.9	5.4	2.6	1.06	1.1	5.9	2.9	1.03	0.11	0.15	0.67	


1	2	3	4	5	6	7	8	9	10	11	12
1D2	14.6	19.4	17.1	1.29	13.6	19.4	17.0	1.29	0.00	0.04	0.16
hD1	11.9	15.9	13.9	1.16	9.2	15.6	12.7	1.37	0.10	0.48	2.13
hD2	10.7	15.0	12.8	1.01	9.2	13.8	12.1	0.88	0.13	0.40	1.74
1A	3.3	11.2	9.4	1.94	7.9	11.6	9.7	0.99	1.09	0.10	0.41
hA	7.6	13.7	11.8	1.50	8.2	13.8	11.2	1.09	0.27	0.23	0.98
1P	15.6	20.8	18.4	1.16	15.7	19.3	17.6	0.93	0.23	0.38	1.64
lV	14.8	18.8	17.5	0.90	14.2	18.0	16.4	0.86	0.05	0.60	2.63
Cs	17.3	20.8	19.0	0.99	15.1	19.9	17.8	1.26	0.19	0.56	2.50
Ci	16.4	20.4	18.5	0.95	15.1	19.9	17.4	1.14	0.16	0.55	2.46
Cm	11.2	14.9	12.8	0.77	10.3	14.4	12.1	0.97	0.03	0.39	1.73
В % от длини	ы головы	:									
hc	55.0	64.7	59.4	2.68	51.7	72.2	62.7	4.14	0.05	0.49	2.18
ao	16.0	28.6	25.6	2.26	21.8	28.7	25.2	1.57	0.30	0.10	0.42
oh	13.8	20.9	17.2	1.58	12.5	19.0	15.3	1.32	0.40	0.68	2.90
op	49.5	60.3	56.3	2.39	51.3	61.3	57.2	1.95	0.11	0.19	0.82
mx	37.0	42.5	40.4	1.52	33.8	43.8	39.5	2.07	0.12	0.24	1.06
hmx	10.7	14.3	12.5	0.95	8.6	13.3	10.7	1.07	0.37	0.94	4.14
md	50.0	58.8	55.4	2.10	7.2	57.8	52.0	7.37	4.02	0.36	1.51
io	15.5	19.6	17.3	0.90	14.1	19.3	16.7	0.99	0.02	0.32	1.41

*Примечание. Для признаков использованы следующие обозначения: aD, pD, aA, aV, aP, V-A – антедорсальное, постдорсальное, антеанальное, антевентральное, антепекторальное, вентроанальное расстояние; l_{ca} – длина хвостового стебля; l_{ca} – длина головы; l_{ca} – высота головы у затылка; ao – длина рыла; o – диаметр глаза; l_{mx} , h_{mx} – длина и ширина верхней челюсти; l_{md} – длина нижней челюсти; op – заглазничное расстояние; oi – межглазничное расстояние (ширина лба); l_{md} – длина и наименьшая высота тела; l_{md} – длина основания 1-го и 2-го спинных плавников; l_{md} – длина грудного и второго спинных плавников; l_{md} – длина основания и высота анального плавника; l_{md} – длина грудного и брюшного плавников; l_{md} – длина лучей верхней и нижней лопастей хвостового плавника; l_{md} – число чешуй в боковой линии; l_{md} – число рядов чешуй над и под боковой линией; l_{md} – учисло лучей в первом и втором спинных плавниках (жестких и мягких, или ветвистых); l_{md} – число мягких (ветвистых) лучей в анальном плавнике; l_{md} – число тычинок на 1-ой жаберной дуге; l_{md} – число позвонков.

Ранее была показана возможность использования для описания разнообразия обыкновенного окуня фенов поперечно-полосатой окраски тела (Яковлев и др., 1988; Шайкин, 1989). Проявление поперечно-полосатой окраски у балхашского окуня зависит от многих причин, в частности, от размеров особей (Дукравец, Митрофанов,1989), поэтому не может быть надежным признаком для длительного мониторинга. В изучавшихся нами выборках отчётливые полосы были видны только у балхашского окуня из оз. Сорбулак, Иссык и пруда на р. Курлеп. Кроме описанных ранее для обыкновенного окуня i, l, v, v-образных полос (Яковлев и др., 1988), в выборке из оз. Сорбулак были отмечены полосы в виде буквы w (предпоследняя полоса у окуня на рис. 1).

Особого внимания заслуживает такой признак как наличие или отсутствие чёрного пятна в задней части первого спинного плавника. Такое пятно было обнаружено нами у двух сеголетков балхашского окуня из р. Тентек, нескольких экземпляров из оз. Сорбулак, пруда хозяйства имени Кунаева и Александровского пруда. Наличие чёрного пятна на первом спинном плавнике характерно для обыкновенного окуня и гибридов обыкновенного и балхашского окуня (Мина, 1974; Дукравец, Бирюков, 1976). Из работ ряда китайских авторов (Туркия, 1997) известно, что китайскими рыбоводами производились неоднократные вселения рыб из р. Иртыш в безрыбные водоёмы Тянь-Шаня и верхнее течение р. Или. Поэтому наличие черного пятна у балхашских окуней из перечисленных нами водоемов может указывать на гибридное происхождение этих рыб. Однако, несмотря на интенсивный промысловый лов в озерах Алакольской котловины и р. Или, ещё не было отмечено ни одного случая поимки здесь обыкновенного окуня. Более вероятным нам кажется, что наличие данного пятна есть проявление гомологической изменчивости наследуемых признаков (Вавилов, 1920). В таком случае появление чёрного пятна у отдельных особей является свидетельством сокращения численности популяций балхашского окуня, поскольку редкие морфы чаще проявляются в условиях инбридинга (Четвериков, 1926; Серебровский, 1970).

Одним из простых, но в то же время эффективных методов оценки состояния популяций рыб является изучение морфологических отклонений от нормального развития (Савваитова и др., 1995).

Рис. 1. Различные фены балхашского окуня. Римскими цифрами обозначены фены, арабскими — их состояния: I — наличие и расположение чешуи на жаберной крышке; II — направление шипа на жаберной крышке; III — форма шипа на жаберной крышке; IV — форма верхнечелюстной кости; V — взаимное расположение слезной и верхнечелюстной костей; VI — положение нижней челюсти; VII — форма нижней челюсти; VIII — количество и расположение слизеотделительных полостей и окружающих их каналов сенсорной системы головы на слезной кости; IX — расположение слизеотделительных полостей вокруг глаза; X — наличие чёрного пятна у заднего края основания первого спинного плавника; XI — форма боковой линии (Мамилов, 2000).

В исследованных выборках балхашского окуня были обнаружены следующие аномалии во внешнем строении: искривление одного или нескольких лучей в плавниках (оз. Б. Алтай, пруд хозяйства имени Кунаева, Александровсий пруд, оз. Сорбулак), редукция последних лучей в первом спинном плавнике (р. Баканас), раздвоение лучей в первом спинном плавнике (оз. Сорбулак), нарушение рядности чешуй (пруд хозяйства имени Кунаева), усечённая форма брюшного плавника (р. Шинжилы), вырезка в верхней губе (Александровский пруд), разросшийся эпителий вокруг глаз образует "веки" (оз. Сорбулак). Внешние аномалии отсутствуют у окуней из оз. Алаколь, Куртинского вдхр. и оз Иссык. В выборках из р. Шинжилы, р. Баканас, оз. Б. Алтай прудов хозяйства имени Кунаева, Александровского и на р. Курлеп особи с перечисленными выше отклонениями во внешнем строении составляют от 4 до 13%, в оз. Сорбулак – 50%.

Среднее число асимметричных признаков на особь позволяет оценить не только состояние популяции, но и состояние окружающей среды на момент формирования этих признаков (Захаров, 1987). Нами были использованы следующие признаки: число прободённых чешуй в боковой линии, число чешуй над и под боковой линией, число лучей в грудных плавниках, число жаберных тычинок на первой жаберной дуге и признаки I-V и VIII, IX и XI (рис. 1). В большинстве исследованных водоемов число асимметричных признаков на особь не превышает 0.20 и соответствует нормальным условиям. Несколько выше этот показатель у окуней из оз. Иссык — 0.38. Выборка балхашского окуня из оз. Алаколь в 1996 г. имела очень высокий показатель асимметрии — 0.47, что говорит о нестабильных условиях существования этой популяции. Наибольшее число асимметричных признаков отмечено у окуней из оз. Сорбулак — 0.81 на одну особь, что свидетельствует о крайне неблагоприятных условиях развития в данном водоеме.

Строение всех внутренних органов соответствует норме только у окуней из оз. Б. Алтай и р. Баканас. В остальных водоёмах были обнаружены отклонения в строении одного или нескольких

органов. У окуня из оз. Алаколь печень окрашена неравномерно – светло и тёмно окрашенные участки. В р. Шинжилы у всех исследованных рыб печень бледно-серая с зеленоватым или коричневым оттенком.

При внешнем осмотре два экземпляра балхашского окуня из Куртинского вдхр. имели втянутое брюхо, хотя при вскрытии аномалий в строении пищеварительного тракта не обнаружилось. Вскрытие показало, что у этих и всех других особей из этой выборки лопасти печени уменьшены, окраска их неравномерная, полостной жир отсутствует. Эти факты, как и большое количество пустых желудков, указывают на недостаток пищи у окуня из Куртинского вдхр. в 1993 г. У окуней из прудов, расположенных вблизи Алматы, печень и почки неравномерно окрашены, на почках встречаются перетяжки. Вероятно, это обусловлено расположением данных прудов в зоне интенсивного земледелия и других видах негативного антропогенного воздействия, что приводит к попаданию в воду большого количества удобрений и пестицидов (Митрофанов, 1991). В озере Иссык у одной самки яичник по внешнему виду находился на стадии IV, что вполне соответствовало данному времени года. Однако икринки были обнаружены только у выхода, вся остальная часть гонады была поделена утолщенными перегородками на многочисленные полые камеры. Озеро Иссык расположено в зоне Алма-Атинского заповедника. Вокруг озера отсутствуют видимые источники загрязнения. Скорее всего, обнаруженные аномалии, как и несколько увеличенное число асимметричных признаков в расчете на одну особь, указывают на то, что условия горного водоёма являются стрессовыми для балхашского окуня.

Численность и хозяйственное значение. До 60-х гг. балхашский окунь был основным по численности видом в озёрах и равнинном течении рек и являлся одним из основных объектов промыслового и любительского лова на большинстве водоёмов Балхашского бассейна. Мясо балхашского окуня белое, малокостистое, нежирное, но вкусное, напоминает судачье. Заготавливается в мороженом, солёном и вяленом виде. В 1930-1933 гг. уловы балхашского окуня в оз. Балхаш составляли 3.5-7.4 тыс. ц., в 1936-1939 гг. -23.9-53.9 тыс. ц. (Берг, 1949а). Ловили окуня неводами и ставными сетями преимущественно в зимнее и весеннее время. Так в 1962 г. в пойменном оз. Караколь в сеть длинной 25 м за ночь попадало от 100 до 250 особей. В апреле 1972 г. в р. Иссык сачком диаметром 35 см ловили от 10 до 15 взрослых рыб за проводку в 2-2.5 м (Дукравец, Митрофанов, 1989). Chusainova et al. (1970) определяли численность балхашского окуня в оз. Караколь методом мечения. По полученным ими данным, численность балхашского окуня составляла 32 половозрелых рыбы на 1 га площади, которые производили 3.3 кг продукции. Численность неполовозрелой части популяции, полученная путем расчётов от плодовитости, рационов и процентного соотношения возрастных групп составила более 1 тыс. экз. на 1 га. По оценкам Дукравец, Митрофанов (1989), численность промыслового стада окуня в дельтовых водоемах р. Или была не менее 3 млн. экз., по бассейнам Балхаша и Алаколя численность могла составлять сотни миллионов половозрелых рыб. Промыслом изымалось не более 5%. По Алакольским озерам Н.Г. Некрашевич (1965) определил ежегодный вылов окуня в 1.5-2 млн. экз., а общую численность – не менее 40 млн. половозрелых рыб.

Численность балхашского окуня начала быстро снижаться после вселения в оз. Балхаш и р. Или в 1957-1959 гг. судака, жереха и сома. К настоящему времени балхашский окунь крайне редко встречается в крупных водоёмах. Обычно это молодь, которую во время половодий выносит из небольших

придаточных водоемов. Сейчас в Балхашском бассейне ещё существуют небольшие разрозненные популяции в среднем течении левобережных притоков р. Или (Дукравец, 2005), а также в бассейнах рек Аксу, Аягоз, Каратал, Токраун, Баскан. Единично окунь встречается в оз. Балхаш.

В настоящее время промышленный вылов балхашского окуня где ведётся только на оз. Алаколь. После вселения в бассейн Алакольских озёр судака окунь исчез с открытых участков Сасыкколя и Кошкарколя (Соколовский, Галущак, 2000.). После снижения численности судака в начале 2000-х, окунь стал встречаться на открытых участках (Соколовский, Тимирханов, 2006) и с 2013 г. вновь вошёл в промысел на этих озерах (Елшибекова и др., 2015). Количество и общая масса вылавливаемого окуня сейчас значительно меньше, чем до акклиматизации судака и леща: в

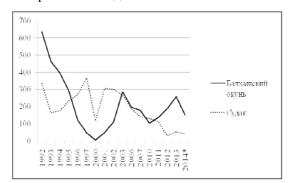


Рис. 2. Динамика уловов балхашского окуня и судака в Алакольских озерах: по оси абсцисс годы, по оси ординат – улов, т (по: Елшибекова и др., 2015)

период с 2000 по 2013 г. годовой улов балхашского окуня составлял от 3.9 т в 2000 г. до 286 т в 2003 г. (Елшибекова и др., 2015). Построенная по этим данным кривая (рис. 2), показывает динамику уловов балахашского окуня и судака в Алакольских озёрах за 20-летний период. В общем виде эта кривая

соответствует классическим уравнениям Лотки-Вольтерра для динамики численности хищника (судака) и жертвы (балхашского окуня).

В местах акклиматизации — бассейнах рек Чу, Нура и некоторых изолированных водоёмах Северного Казахстана балхашский окунь достигал промысловой численности (Скакун и др., 1986; Гайдученко, 1986; Дукравец, Митрофанов, 1989; Дукравец, Мамилов, 1992; Горюнова, Данько, 2011). Однако устойчивых популяций в большинстве мест вселения не сформировалось — к настоящему времени балхашский окунь исчез из Ташуткольского вдхр. и некоторых озер Центрального Казахстана (Горюнова, Данько, 2011).

К.Б. Исбеков и С.Р. Тимирханов (2009), основываясь на результатах исследований Г.М. Дукравца (1998 а, б) и собственных данных, оценили статус балхашской популяции балхашского окуня как «находящийся в критическом состоянии — CR» (с. 118). В.Р. Соколовский и С.Р. Тимирханов (2006) считали низкой вероятность исчезновения алакольской популяции балхашского окуня (категория Least Concern, LC, 2007) в ближайшие годы. Однако там же они указали, что «в случае усиления коммерческого интереса к окуню численность его может быть подорвана очень быстро...» (с. 186). В последние годы в европейских странах возник повышенный спрос на мясо обыкновенного окуня (Кеstemont et al., 2015), поэтому не исключено, что будущее алакольской популяции может развиваться по наихудшему сценарию. Международные эксперты оценили балхашского окуня как очень уязвимый вид (Cheung et al., 2005).

Охрана. Балхаш-илийская популяция балхашского окуня занесена в Красную книгу Республики Казахстан по II категории — численность ещё относительно высока, но сокращается катастрофически быстро, что в недалёком будущем может привести к исчезновению (Дукравец, Митрофанов, 2010). Поэтому любой отлов балхашского окуня в этом бассейне запрещен. Однако в связи с постоянными реорганизациями природоохранной службы и низкой численностью штата инспекторов, запрет касается в основном рыбаков-любителей и научно-исследовательские организации, но не мешает браконьерам и арендаторам небольших водоёмов местного значения истреблять этот эндемичный вид рыб.

С нашей точки зрения, все сохранившиеся в естественном ареале популяции балхашского окуня нуждаются в тщательно продуманной долговременной политике охраны. Вопросы охраны редких видов рыб в Казахстане являются предметом отдельного и подробного анализа. В данном сообщении мы лишь отметим, что существующая практика полного запрета на изъятие (возможен только в виде исключения по специальному разрешению Правительства) показала свою низкую эффективность — внесение балхашского окуня в очередные Красные книги никак не способствовало увеличению его численности.

Реальной мерой по защите алакольской популяции балхашского окуня является включение озера Жаланашколь в состав Алакольского заповедника. Необходимыми мерами для охраны балхаш-илийской популяции являются создание ООПТ на реках Токраун (Исбеков и др., 2006), Баканас, в низовье р. Баскан и, возможно, в части дельты р. Или (Дукравец, Митрофанов, 2010).

Опыты по содержанию и искусственному разведению балхашского окуня в условиях любительских аквариумов объемом 60-100 л (Галущак 2004) дали положительные результаты, однако до сих пор не получили практического применения.

Заключение. Результаты проведенного исследования показали дальнейшее сокращение ареала балхашского окуня по сравнению с серединой 80-х гг. Его алакольской популяции угрожает гибель в ближайшие годы от промыслового лова и давления со стороны судака и леща. Для окуня из непромысловых водоемов велика вероятность вымирания от случайных причин. Для сохранения балхашского окуня необходимо принятие срочных мер — контроль вылова в оз. Алаколь и организация заповедников в Восточном Прибалхашье и бассейне р. Или.

Работа первого автора выполнена при финансовой поддержке гранта № 1380 ГФ4 МОН РК. Работа второго автора выполнялась в 1996-1997 гг. при поддержке Фонда Макартуров, а в 2000-2005 гг. – по Республиканским грантам фундаментальных исследований.

Литература

Баимбетов А.А., Мельников В.А., Митрофанов В.П. *Abramis brama* Linnaeus – лещ/Рыбы Казахстана. Т. 3. Алма-Ата, 1988. С. 127-159. **Баимбетов А.А., Шарапова Л.И., Мамилова Р.Х, Митрофанов В.П., Пичкилы Л.О.** Характристика гидробиоценоза водоема-накопителя Сорбулак в начале 90-х гт.//Вестник КазГУ, серия биологическая. 1995. Вып. 2. С. 38-48.

Берг Л.С. Рыбы пресных вод СССР и сопредельных стран. М.-Л.: Изд-во АН СССР, 1949. Ч.З. С. 926-1382. **Берг Л.С.** Балхашский окунь – *Perca schrenki* //Промысловые рыбы СССР. М.: Пищепромиздат, 1949а. С. 575-576.

Вавилов Н.И. Закон гомологических рядов в наследственной изменчивости. Линнеевский вид как система. 1920. [Цит. по Л.: Наука. 1967. С.1-97].

Гайдученко Л.Л. Краткие сообщения о балхашском окуне//Редкие животные Казахстана. Алма-Ата: Наука, 1986. С. 193-194.

Галущак С.С. Опыт содержания и искусственного разведения балхашского окуня (*Perca schrenki Kessler*) в лабораторных условиях//Фауна Казахстана и сопред. стран на рубеже веков. Алматы: КазНУ, 2004. С. 83-85.

Голодов Ю.Ф., Митрофанов В.П. Морфология и биология балхашского окуня из поймы реки Или//Биология и география (Сб. работ аспирантов и соискателей). Алма-Ата: КазГУ. 1968. Вып. 4. С. 105-114.

Горюнова А.И. К биологии балхашского окуня//Изв. АН КазССР. Серия зоол. 1950. №84. Вып. 9. С. 78-86. Горюнова А.И., Данько Е.К. Озёрный фонд Казахстана. Раздел IV. Озёра Акмолинской области (в пределах 1961-1999 гг.). Алматы: Учебно-методический центр «Тіл», 2011. 108 с.

Дукравец Г.М. Современное состояние популяции балхашского окуня *Perca schrenki* в бассейне р. Или. Сообщ. 1. Распространение//Изв. МН-АН РК. Сер. биоло. 1998а. №3. С.29-39. Дукравец Г.М. Современное состояние популяции балхашского окуня *Perca schrenki* в бассейне р. Или. Сообщ. 2. Численность и биологическая характеристика//Изв. МН-АН РК. Сер. биол. 1998б. №4. С. 8-15. Дукравец Г.М. Биологическое состояние некоторых локальных популяций балхашского окуня *Perca schrenki* Kessler в бассейне р. Или//Рыбохозяйств. исследования в Республике Казахстан: история и современное состояние. Алматы, 2005. С. 93-109. Дукравец Г.М., Бирюков Ю.А. Ихтиофауна р. Нуры в Цетральном Казахстане//Вопросы ихтиологии. 1976. Т. 16. Вып. 2. С. 309-314. Дукравец Г.М., Мамилова Р.Х., Минсаринова Б.К., Меркулов Е.А. Характеристика гидрофауны оз. Большой Алтай в низовье реки Баскан Талды-Курганской области. Деп. в КазНИИНТИ 10.05.846 №652-Ка. 1984. 25 с. Дукравец Г.М., Митрофанов В.П. *Регса schrenki* Kessler — балхашский окунь//Рыбы Казахстана. Алма-Ата: Наука, 1989. Т. 4. С. 157-190. Дукравец Г.М., Митрофанов В.П. Балхашский окунь (Балхаш-илийская популяция)//Красная книга Республики Казахстан. Том 1. Животные. Часть 1. Позвоночные. Алматы, 2010. С. 50-51. Дукравец Г.М., Мамилов Н.Ш. Материалы по морфометрии и биологии окуневых рыб из бассейна р. Чу//Вопросы ихтиологии. 1992, т. 32, вып. 6. С. 49-56.

Елшибекова А.М., Данько Е.К., Дукравец Г.М., Жаркенов Д.К. К истории формирования и освоения ихтиофауны бассейна Алакольских озер//Selevinia. 2015. Т. 23. С. 235-240.

Жадин Б.Ф. Балхашский окунь. Автореф. канд. дисс. Л., 1948. 3 с. **Жадин Б.Ф.** О происхождении балхашского окуня (*Perca schrenki* Kessler)//Доклады АН СССР. Новая серия. 1949.Т. 66. №3. С. 499-502.

Жатканбаева Д.**М., Нысамбаева** С.**М.** О функционировании очага клиностомоза в популяции балхашского окуня (*Perca schrenki*) озера Сыскколь//Zoological Researches of the 20 years of independence of Republic of Kazakhstan: Almaty, 2011. P.97-98.

Захаров В.М. Асимметрия животных: популяционно-феногенетический анализ. М.: Наука, 1987. С. 1-215.

Зеленецкий Н.М. Методические основы изучения криптической окраски тела окуня *Perca fluviatilis* L. в ареале// Научные доклады высшей школы. Биологические науки. 1992. № 11-12. С. 63-74.

Исбеков К.Б., Асылбекова С.Ж., Тимирханов С.Р. Перспективы сохранения генофонда редких и исчезающих видов рыб озера Балхаш//Вестник КазНУ. Сер. биол. 2006. №3(29). С. 226-232. **Исбеков К.Б., Тимирханов С.Р.** Редкие рыбы озера Балхаш. Алматы, 2009. 182 с.

Кесслер К.Ф. Путешествие А.П. Федченко в Туркестан. Рыбы//Изв. об-ва любит. естествознания, антропологии и этнографии. 1874. Т. 2. Вып. 3. С. 1-63.

Коробкин В.А. Некоторые результаты изыскательских работ по обоснованию проектов использования сточных вод г. Алма-Аты в сельском хозяйстве//Вестник АН КазССР. 1990. № 12. С. 36-48.

Логиновских Э.В., Стрельников А.С. Питание и пищевые взаимоотношения рыб в Алакольской системе озер// Краткое содержание докл. конф. «Круговорот веществ и энергии в озёрах и водохр.». Сб. 1. 1973. С. 160-163.

Майр Э. Принципы зоологической систематики. М.: Мир, 1971. 454 с.

Малиновская А.С. Кормовая база Алакульских озер и её использование рыбами//Сборник работ по ихтиологии и гидробиологии. Алма-Ата: АН КазССР. 1959. Вып. 2. С. 116-144.

Максунов В.А. Сезонные скопления окуня в оз. Балхаш//Вопросы ихтиологии. 1953. Вып. 1. С. 104-108.

Мамилова Р.Х. Динамика питания леща Капчагайского водохранилища (1976-1979 гг.)//Изучение зоопродуцентов в водоёмах бассейна реки Или. Алма-Ата: КазГУ, 1982. С. 124-133.

Мамилов Н.Ш. К оценке современного состояния популяций балхашского окуня *Perca schrenki* (Peciformes, Percidae)//Зоол. журнал. 2000, т. 79, №5. С.572-584. **Мамилов Н.Ш., Митрофанов И.В.** Состояние популяции балхашского окуня (*Perca schrenki* Kessler) в озере Алаколь//Вестник КазНУ, серия экол., №2(11), 2002. С. 91-98.

Мина М.В. Некоторые наблюдения, касающиеся распространения балхашского окуня *Perca schrenki* и его взаимоотношений с обыкновенным окунем *Perca fluviatilis* //Вопросы ихтиологии. 1974.Т. 14. Вып. 2. С. 332-334.

Митрофанов В.П. Соотношение полов в популяциях рыб//Биология водоёмов Казахстана. Сборник работ Казахст. филиала ВГБО. Алма-Ата. 1970. С. 96-104. Митрофанов В.П. Формирование современной ихтиофауны Казахстана и ихтиогеографическое районирование//Рыбы Казахстана. Алма-Ата: Наука, 1986. Т. 1. С. 20-40. Митрофанов В.П. Экологические особенности воспроизводства рыб в дельте р. Или в современных условиях// Актуальные проблемы современной биологии. Алма-Ата: изд. КазГУ, 1991. С. 48. Митрофанов В.П., Дукравец Г.М. Некоторые теоретические и практические аспекты акклиматизации рыб в Казахстане//Рыбы Казахстана. Алма-Ата: Ғылым, 1992. Т. 5. С. 329-371.

Никольский Г.В. Частная ихтиология. М.: Высшая школа. 1971. 471 с. **Никольский Г.В., Евтюхов Н.А.** Рыбы равнинного течения р. Или//Бюлл. МОИП. Отд. биол. 1940. Т. 49. Вып. 5/6. С. 57-70.

Нуриев Х.Н. Акклиматизированные рыбы водоемов бассейна реки Зеравшана. Ташкент: «Фан», 1985. 104 с. **Пивнев И.А.** Рыбы бассейнов рек Талас и Чу. Фрунзе: Илим, 1985. 190 с.

Савваитова К.А., Максимов В.А., Груздева М.А. Динамика морфо-биологических показателей микижи Salmo mykiss из реки Кишимшина (Камчатка) во временном аспекте//Вопросы ихтиологии. 1988. Т. 28. Вып. 2. С. 213-221. Савваитова К.А., Чеботарева Ю.В., Пичугин М.Ю., Максимов С.В. Аномалии в строении рыб как показатель состояния природной среды//Вопросы ихтиологии. 1995. Т. 35. № 2. С. 182-188.

Серебровский А.С. Генетический анализ. М.: Наука. 1970. 342 с.

Скакун В.А., Шустов А.И., Губанова В.Я., Распопин А.А., Алеева Н.З., Аймуканова Ш.М. Влияние ненаправленной акклиматизации на ихтиофауну нагульного озера Сары-Оба//Биол. основы рыбн. хоз-ва водоёмов Средней Азии и Казахстана: Тезисы докладов 19 конф. Ашхабад: Ылым, 1986. С. 293-295.

Соколовский В.Р., Галущак С.С. Современное состояние балхашского окуня *Perca schrenki* (Percidae) в озёрах Алакольской ситсемы//Вопросы ихтиологии. 2000. Т. 40. № 2. С. 228-234. Соколовский В.Р., Тимирханов С.Р. *Perca schrenkii* Kessler, 1874 — окунь балхашский//Ихтиофауна и экология Алакольской сист. озёр. Алматы, 2006. С. 161-188.

Спановская В.Д. Семейство Окуневые//Жизнь животных. М.: Просвещение, 1971. Т. 4. Ч. 1. С. 438-445.

Стрельников А.С. Морфо-биологическая характеристика промысловых рыб Алакольских озер//Биология водоёмов Казахстана. Алма-Ата, 1970. С. 113-119. Стрельников А.С. Рыбы и биологические основы рыбного хозяйства Алакольских озер. Автореф. канд.дис. Томск, 1974. 20 с.

Тимирханов С.Р., Меркулов Е.А. Ихтиофауна Кураксуских озер (р. Аксу, басс. оз. Балхаш)//Вестник КазГУ. Серия биол. 1998. № 5. С. 67-72. Тимирханов С.Р., Искакбаев А.А. К экологии нереста и естественной смертности балхашского окуня//Пробл. охраны и устойч. использ. животного мира Казахстана. Адматы, 1999. С. 108.

Трошина Т.Т. Питание молоди балхашского окуня (*Perca schrenki* Kessler, 1874) в озере Алаколь (июль 2013 г.)// Аграрная наука — сельскохоз. производству Сибири, Монголии, Казахстана и Болгарии. Сб. трудов 17 международной научно-практической конференции. Ч. 1. Новосибирск, 2014. С. 171-173.

Туркия А. Ихтиофауна водоёмов Синцзяня и её изменения в результате акклиматизации. Автореф. канд. дис. Алматы: ИЗГЖ МН-АН РК. 1997. С. 1-23.

Филипченко Ю.А. Изменчивость и методы её изучения. Ленинград: ГИЗ, 1926. 272 с.

Цыба К.П. К биологии белого окуня *Perca schrenki* Kessler из Алакольских озер//Алакольская впадина и её озера: Вопросы географии Казахстана. Алма-Ата: Наука, 1965. С. 280-287.

Четвериков С.С. О некоторых моментах эволюционного процесса с точки зрения современной генетики// Журнал экспериментальной биологии, серия А. 1926. Вып. 2. С. 3-54.

Шайкин А.В. Выделение внутрипопуляционных группировок у рыб с помощью окраски тела//Журнал общей биологии. 1989. Т. 40. № 4. С. 491-503.

Яковлев В.Н., Кожара А.В., Изюмов Ю.Г., Касьянов А.Н., Зеленецкий Н.М. Фены карповых рыб и обыкновенного окуня//Фенетика природных популяций. М.: Наука, 1988. С. 53-64.

Barmintseva A. E., Shalgimbayeva G. M., Asylbekova S. Z., Isbekov K. B., Danko E. K., Mugue N.S. Genetic differentiation of Balkhash perch *Perca schrenki* Kessler, 1874 from Lake Balkhash and Alakol Lake system of Kazakhstan//Russian Journal of Genetics. 2015. V. 51: 9. P. 871–876.

Carol A., Stepien C.A., Behrmann-Godel J., Bernatchez L. Evolutionary relationships, population genetics, and ecological and genomic adaptations of perch (Perca)//Biology of perch. Eds. Couture P., Pyle G. CRC Press, Taylor and Francis group, Boca Raton – London – New York, 2016. P. 7-46.

Cheung W.W.L., Pitcher T.J., Pauly D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing//Biol. Conserv. 2005. V.124. P. 97-111.

Chusainova N.Z., Sharapova L.I., Mamilova R.Kh., Kriusenko T.G., Mitrofanov V.P. On biological productivity of the Karakl Lake//Preliminary papers for UNESCOIBP Symposium on Productivity Problems of Freshwaters. Warszawa. 1970. V. 1. P. 209-215.

Froese R., Pauly D. Editors. 2016. FishBase. World Wide Web electronic publication. www.fishbase.org, version 06/2016.

Hai S., Li J., Feng J., Mulati. Systematics of Perca species based on multivariate morphometrics and mitochondrial cytochrome b gene variation analysis//Zoological research – 2008. V. 28(2). P. 113-120 (на китайском).

Haponski A.E., Stepien C.A. Genetic connectivity and diversity of walleye (*Sander vitreus*) spawning groups in the Huron-Erie Corridor//J. Great Lakes Res. 2013a. V.49. P. 89–100. **Haponski A.E., Stepien C.A.** Phylogenetic and biogeographic relationships of the Sander pikeperches (Perciformes: Percidae): Patterns across North America and Eurasia//Biol. J. Linn. Soc. 2013b. V.110. P. 156–179.

Kestemont P., Dabrowski P., Summerfelt R.C. Eds. Biology and culture of Percid fishes. Principles and practices. – Springer 2012. 368 p.

Н.Ш. Мамилов, Г.М. Дукравец Алматы, КазНУ имени Аль-Фараби

Summary

Nadir Sh. Mamilov, Gennadiy M. Doukravets. Balkhash perch (Perca schrenkii Kessler, 1874) is an endemic fish species of the Balkhash watershed.

The review is based on the analysis of the main published data and results of authors' investigations during last 25 years of one of endemic fish species – Balkhash perch. Morphological description and different features of biology of the Balkhash perch were considered as well as history of the species discovery, phylogeny and problems of conservation. The list of references includes 70 sources, mostly in Russian.

3AMETKA

О необычном месте гнездования фламинго на Каспийском море

Гнездовые колонии розового фламинго (*Phoenicopterus roseus*) чаще всего располагаются в одних и тех же местах, и только масштабные изменения природных условий, связанные главным образом с колебанием уровня водоёмов, могут заставить этих птиц сместиться или вовсе покинуть их. Так, ряд колоний, существовавших относительно недавно в Северном Прикаспии (Карелин,1875; Динесман,1960) и в заливе Кара-Богаз (Исаков,1949), исчезли из этих мест (Долгушин, 1960; Ковшарь, 2012). В два последних десятилетия XX в. гнездование фламинго на Каспии было известно только в заливе Мёртвый Култук (Пославский и др., 1977; Ланкин, 1981, 1983; Русанов, Кривоносов, 1988; Гаврилов, 1999), но в новом тысячелетии достоверно гнездовых колоний в этом районе никто не видел, хотя результаты наших наблюдений говорят о регулярном гнездовании фламинго здесь в труднодоступных местах. Такой вывод мы делаем на основе встреч молодых, лишённых розового пигмента и плохо летающих птиц среди взрослых во время сентябрьских авиаучетов. Доля молодых от общего числа колебалась от 5 до 30%, очевидно в зависимости от успешности размножения в данном сезоне.

Во время авиаучета, проводимого в рамках ежегодного (с 2009 г.) мониторинга, 19 июня 2016 г. на одном из Тюленьих островов, расположенных на северо-востоке Каспия, мы обнаружили небольшую гнездовую колонию фламинго. В ней находилось 25-30 гнёзд с кладками (см. фото на вклейке). При приближении вертолёта птицы встали с гнезд, в которых хорошо видны яйца. Здесь же, во внутреннем плёсе, кормилась крупная, более 500 особей, стая фламинго, большинство их них были молодыми птицами.

Обнаруженная колония располагалась на периферии крупной (3 тыс. пар) колонии больших бакланов, у которых в это время были крупные оперённые птенцы. Гнёзда птиц обоих видов размещались на островках и по береговой линии внутри островного мелководного плёса. Такое совместное гнездование для фламинго не характерно, так как обычно, этот вид образует строго моновидовые колонии.

Дальнейшая судьба этой необычной колонии, нам не известна.

Следует отметить, что в последние годы, в связи с обмелением Каспийского моря, береговая линия претерпевает сильные изменения, осущаются огромные просторы прогреваемых мелководий. Обычно наиболее благоприятные акватории залива Комсомолец превратились в мокрую грязь. Если в 2009-2012 гг. основные массы фламинго мы отмечали здесь, то в последние годы они всё чаще держатся среди Тюленьих островов и севернее, вдоль побережья — практически до устья Эмбы.

Гаврилов Э.И. Фауна и распространение птиц Казахстана. Алматы, 1999. 198 с. Динесман Л.Г. Изменение природы северо-запада Прикаспийской низменности. М., 1960. 160 с. Долгушин И.А. Птицы Казахстана. Т.1. Алма-Ата, 1960. 470 с. Карелин Г.С. Разбор статьи А. Рябинина "Естественные произведения земель Уральского казачьего войска", извлеченные из книги его: Материалы для географии и статистики России. Уральское казачье войско. СПб. Ч. 2. 1866//Тр. СПб общества естествоиспыт., 1875. Т. 6. Ковшарь А.Ф. Семейство Фламинговые — Phoenicopteridae//Фауна Казахстана, Птицы — Aves. Т. 2. Вып. 1. Алматы, 2012. С. 162-169. Ланкин П. Фламинго в Восточном Прикаспии//Охота и охотн. хоз-во, 1981, № 12. С. 14-15. Ланкин П.М. Фламинго в антропогенных ландшафтах Магышлака//Бюлл. МОИП. отд. биол., 1983. Т. 88, № 5. С. 35-38. Пославский А.Н., Сабиневский Б.В., Лури В.Н. Фламинго в Северо-Восточном Прикаспии//Редкие и исчезающие звери и птицы Казахстана. Алма-Ата, 1977. С. 209-214. Русанов Г.М., Кривоносов Г.А. Фламинго (*Phoenicopterus roseus* Pall.) на Северном и Северо-Восточном Каспии в условиях современного повышения уровня моря//Бюлл. МОИП. отд. биол., 1988. Т. 93, вып. 3. С. 13-20.

В.А. Ковшарь, Ф.Ф. Карпов

СИСТЕМАТИКА, МОРФОЛОГИЯ

УДК 595.752. 2.-19 (574)

A new genus and species of the aphids of Macrosiphina subtribe (Hemiptera, Aphididae) from Kazakhstan

Kadyrbekov Rustem Khasenovitch

Institute of Zoology, Ministry of Education and Sciences, Kazakhstan, Almaty E-mail: rustem aijan@mail.ru

Introduction. Campanulaphis gen. nov. is described with Campanulaphis radicivora new species by specimens from North Kazakhstan (Akmola region) and South Kazakhstan (West Tien Shan, Ugam ridge) on Campanula glomerata L., C. sibirica L. Descriptions of new genus and species are provided below. All measurements (in millimeters), number of setae, rhinariae, indices are given by extreme variants and arithmetical means. Holotype and paratypes of described species are deposited in Institute of Zoology, Ministry of Education and Sciences, Republic of Kazakhstan (Almaty).

Campanulaphis gen. n. **Type species.** Campanulaphis radicivora sp. nov.

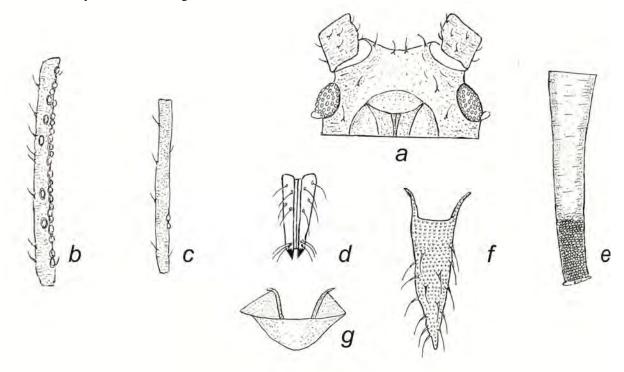
Description. Body egg-shaped, blackish. Antesiphuncular sclerites are absent, but postsiphuncular sclerites are developped. Dorsal sclerites developed in base of some dorsal hairs on 3–6th tergites. Separate interrupted sclerotized strips could be developing on 7–8th tergites. Cuticle is smooth. Frontal groove broad, 0.05–0.15 of distance between apices of antennal tubercles. Antennal tubercles are low and diverged. Middle frontal tubercle is absent. Antennae are six-segmented, shorter of the body by alate and shorter or longer of the body by apterous viviparous females. Processus terminalis long, 5.6–7.9 of the base of 6th segment. Base of 6th segment very short. Secondary rhinariae develop on the 3rd (28–45) and 4th (0–6) segments in apterous and 3–5th segments (46–56) (4–9) (0–1) in alate viviparous females. Rostrum very long, reaches behind of hind coxae. Its ultimate rostral segment longitudes, 1.20–1.45 of second segment of hind tarsus, with 6–10 accessory hairs apart of 6 apical ones. Siphunculi subcylindrical with distinct flanges, 1.8–2.6 of cauda length. Reticulated zone developed on the 0.28–0.35 of their length. Cauda conic-shaped with pointed apex. Dorsal hairs pointed. Spiracles not large, oval on thoracic segments and haricot-shaped on abdominal segments. Subgenital plate broad oval with 4–7 hairs on the disk. Single distinct process develops on anal plate. First tarsal segment with 5, 5, 5 hairs.

Etymology. The name of the new genus is derived from the generic name of host plant and new Latin word «aphis» (= plant louse).

Diagnosis. The new genus belongs to the subtribe Macrosiphina. *Campanulaphis* **gen. nov.** is close to *Uroleucon* Mordvilko, 1914 by the form of ultimate rostral segment, shape and size of reticulated zone of siphunculi with distinct flanges, quantity of hairs on the first tarsal segments (5, 5, 5). It differs from *Uroleucon* by the presence of secondary rhinarhiae in apterous viviparous females on 3–4th antennal segments, broad and low frontal groove and presence of single process on anal plate. It resembles *Metopeurum* Mordvilko, 1914, *Microsiphum* Cholodkovsky, 1902, *Paczoskia* Mordvilko, 1919, *Ramitrichophorus* Hille Ris Lambers, 1947, *Turanoleucon* Kadyrbekov, 2002 by the presence of a single process in the anal plate. New genus differs from *Paczoskia*, *Ramitrichophorus*, *Turanoleucon* by length and shape of ultimate rostral segment. It differs from *Metopeurum*, *Microsiphum* by shape of siphunculi with distinct flanges.

Campanulaphis radicivora Kadyrbekov sp. nov. Fig. (a, b, c, d, e, f, g)

Type material. *Holotype*: apterous viviparous female, slide No 4682, South Kazakhstan region, West Tien Shan, Ugam ridge, Sairam-Ugam Natural Park, Sairamsu ravine, H ~ 2500 m l. s., 20 km to North-West from Kaskasu small village, *Campanula glomerata* L., 4.VII.2013, collected by Rustem Kh. Kadyrbekov.


Paratypes: 13 apterous viviparous females together with holotype; 1 apterous viviparous female, slide No 81k (397), South Kazakhstan region, West Tien Shan, Talas Alatau ridge, Aksu-Zhabagly Nature Reserve, Kshi-Kaindy ravine, H ~ 1700 m l. s., Campanula glomerata L., 1.VI.1992, collected by Rustem Kh. Kadyrbekov; 3 apterous viviparous females, № 2567, North Kazakhstan, Akmola region, Ermentau mountains, 8 km to north from Algabas small town, Campanula sibirica L., 25.VII.1997, collected by Rustem Kh. Kadyrbekov; 7 apterous viviparous females, 1 alate viviparous female, № 2982, North Kazakhstan, Akmola region, Stepnjak town environs, Campanula sibirica L., 21.VII.2002, Rustem Kh. Kadyrbekov; allotype: 1 alate viviparous female, North Kazakhstan, Akmola region, Ermentau mountains, 15 km to north-east from Algabas small town, Campanula sibirica L., 25.VII.1997, R.Kh. Kadyrbekov. Deposited in Institute of Zoology, Ministry of Education and Sciences, Republic of Kazakhstan.

Etymology. The name of the new species is derived from the place of localization on the host plant.

Description. Apterous viviparous female (by 25 specimens). Body egg-shaped, 2.06-4.08. Head, clypeus, rostrum, antennae (except base of 3rd segment), coxae, trochanters, femora (except base), tibiae, tarsi, siphunculi, cauda dark brownish in life. Body in life blackish or dark-brownish without slim. Cleared specimens with dark brownish head, clypeus, rostrum, antennae, coxae, trochanters, apical half of femora, tibiae, tarsi, siphunculi, cauda, subgenital and anal plate's. Basal half of femora pale. Antesiphuncular sclerites are absent, but postsiphuncular sclerites are developped. Dorsal sclerites developed in base of some dorsal hairs on 3-6th tergites. Separate interrupted sclerotized strips could be developing on the 7-8th tergites. Frontal groove almost not visible, 0.05-0.15 of the distance between apices of antennal tubercles. Antennal tubercles weakly noticeable and strongly diverge (fig. a). Frontal hairs (0.034-0.056) pointed, 1.2-1.6 of basal diameter of 3rd antennal segment. Antennae normal, six-segmented, 0.93-1.16 of body length. Third segment 1.52-1.95 of 4th one, 0.73-0.90 6th segment, 0.80-1.05 of the processus terminalis, 0.9-1.4 of siphunculi length (fig. b). Processus terminalis 5.6-7.9 of the base of 6th segment. Secondary rhinariae in number 28-45 develop on 3rd and in number 0-6 on 4th antennal segments too (fig. c). Hairs on the 3rd segment (0.028-0.039) pointed, 0.9-1.1 of its basal diameter. Rostrum reaches behind of hind coxae. Its ultimate rostral segment longitude (fig. d) 1.20-1.45 of second segment of hind tarsus, 1.75–2.20 of the base of 6th segment with 6–10 accessory hairs apart of 6 apical ones. Siphunculi subcylindrical with distinct flanges, 0.24–0.31 of body length, 1.9–2.6 of cauda length (fig. e). Reticulated zone develops on 0.28-0.35 of their length. Cauda conic-shaped with or without constriction, 1.7-2.0 of second segment of hind tarsus, with 11-18 long hairs (fig. f). Second segment of hind tarsus 1.20-1.55 (1.85) of the base of 6th segment. Dorsal hairs (0.045–0.056) pointed, 1.3–1.6 of basal diameter of 3rd antennal segment. There are 12 hairs on 3rd tergite, 6 between siphunculi and 6–8 ones on 8th tergite. Spiracles not large, oval on thoracic segments and haricot-shaped on abdominal segments. Subgenital plate broad oval with 3-7 hairs on disk and 12-17 ones along its posterior margin. Single distinct process developed on anal plate (fig. g). Legs are normal developed. First tarsal segment with 5, 5, 5 hairs.

Measurements of holotype. Body 3.39; antennae 3.60—3.61: III 1.00—1.02, IV 0.65, V 0.40—0.41, VI 1.22—1.29 (0.13—0.16+1.06—1.16); siphunculi 0.97—1.00; cauda 0.41; ultimate rostral segment 0.28; second segment of hind tarsus 0.24.

Description. Alate viviparous female (by 2 specimens). Body egg-shaped, 3.39-3.83. Head, thorax, clypeus, rostrum, antennae (except base of 3rd segment), coxae, trochanters, femora (except base), tibiae, tarsi, siphunculi, cauda dark brownish in life. Body dark brownish without slim in life. Cleared specimens with dark brownish head, thorax, clypeus, rostrum, antennae, coxae, trochanters, apical half of femora, tibiae, tarsi, siphunculi, cauda, subgenital and anal plate's. Basal half of femora pale. Antesiphuncular sclerites are absent, but postsiphuncular sclerites developed. Dorsal sclerites developed in base of some dorsal hairs on 3–6th tergites. Marginal sclerites have on 1-6th tergites. Separate interrupted sclerotized strips could be developing on 7-8th tergites. Frontal groove almost not visible, 0.05-0.10 of the distance between apices of antennal tubercles. Antennal tubercles weakly noticeable and strongly diverge. Frontal hairs (0.032–0.045) pointed, approximately equal to basal diameter of 3rd antennal segment. Antennae normal, six-segmented, 0.86–0.89 of body length. Third segment 1.67–1.77 of 4th one, 0.79–0.83 of 6th segment, 0.81–0.98 of processus terminalis, 1.07–1.26 of siphunculi length. Processus terminalis 5.6–6.7 of the base of 6th segment. Secondary rhinariae in number 46–56 developed on 3rd, 4–9 on 4th, 0–1 on 5th antennal segments too. Hairs on 3rd segment (0.028–0.039) pointed, 0.9– 1.1 of its basal diameter. Rostrum reaches behind of hind coxae. Its ultimate rostral segment longitude, 1.17-1.32 of second segment of hind tarsus, 1.64–1.85 of the base of 6th segment with 8–10 accessory hairs apart of 6 apical ones. Siphunculi are subcylindrical, with distinct flanges, 0.19-0.23 of body length, 1.94-2.20 of cauda length. Reticulated zone developed on 0.31-0.35 of their length. Cauda conic-shaped with or without constriction, 1.74 of second segment of hind tarsus, with 11-15 long hairs. Second segment of hind tarsus 1.27-1.53 of the base of 6th segment. Dorsal hairs (0.035–0.045) pointed, 1.0–1.2 of basal diameter of 3rd antennal segment. There are 12 hairs on 3rd tergite, 6 between siphunculi and 6–8 ones on 8th tergite. Spiracles not large, oval on thoracic segments and haricot-shaped on abdominal segments. Subgenital plate broad oval with 3-4 hairs on disk and 10–13 ones along its posterior margin. Single distinct process developed on anal plate. Legs are normal developed. First tarsal segment with 5, 5, 5 hairs.

Figure. Campanulaphis radicivora sp. nov., apterous viviparous female: a - head; b - third antennal segment; c - forth antennal segment; d - ultimate rostral segment; e - siphunculus; f - cauda; g - single distinct process on anal plate.

Measurements of allotype. Body 3.39; antennae 2.91—2.96: III 0.80—0.82, IV 0.47, V 0.39—0.40, VI 0.97—0.99 (0.14—0.15+0.84); siphunculi 0.64—0.65; cauda 0.33; ultimate rostral segment 0.25; second segment of hind tarsus 0.19.

Distribution. Known from the steppe zone of the North Kazakhstan and in mountain system of West Tien Shan (South Kazakhstan).

Biology. Host plants are *Campanula glomerata* L., *C. sibirica* L. (Campanulaceae). Locality on host plant is roots. Aphids visited by ants.

Article is partially implemented at the expense of the grant project № 1838 / GF4 of the Committee of Science, Ministry of Education and Science of Kazakhstan Republic.

References

Cholodkovsky N. Second catalog of aphid collection (Aphididae) of zoological room of the Forestry Institute (St. Peterburg)//Proceedings of the Forestry Institute. 1902. 8. P. 49–59 (in Russian).

Hille Ris Lambers D. Contributions to monograph of the Aphididae of Europe. III//Temminckia. 1947. 7. P. 179–319.

Kadyrbekov R. A new genus and new aphids species of subtribe Macrosiphina (Homoptera, Aphididae) from Kazakhstan//Tethys Entomological Research. 2002. Vol. 6. P. 33–38.

Mordvilko A. Hemiptera insects (Insecta, Hemiptera, Aphidoidea). Fauna of Russia and adjacent countries. St. Peterburg, 1914. Vol. 1. Is. 1. 236 p. (in Russian). **Mordvilko A.** Hemiptera insects (Insecta, Hemiptera, Aphidoidea). Fauna of Russia and adjacent countries. St. Peterburg. 1919. Vol. 1. Is. 2. P. 237–508 (in Russian).

Academgorodok, Al-Farabi avenue, 93, Almaty, 050060, Kazakhstan. E-mail: rustem_aijan@mail.ru

Резюме

Кадырбеков Р.Х. Новый род и вид тлей подтрибы Macrosiphina (Hemiptera, Aphididae) из Казахстана.

Campanulaphis radicivora gen. nov. sp. nov. описан по сборам из Северного и Южного Казахстана с Campanula glomerata L., C. sibirica L. В описании приведены биометрические данные для бескрылой и крылатой живородящих самок. Campanulaphis gen. nov. близок к роду Uroleucon Mordvilko, 1914 по форме последнего членика хоботка, по площади ячеистой зоны на трубочках, по количеству волосков на первом членике лапок (5, 5, 5). Новый род отличается от Uroleucon наличием вторичных ринарий на 3-4-м члениках усиков бескрылых живородящих самок, широким и низким лобным желобком и наличием одиночного выроста на анальной пластинке.

УДК 595.789 (574)

Новый вид голубянки Plebejus sarydzhazi sp. n. [Lycaenidae (Lepidoptera)] из восточной Киргизии

Жданко Александр Борисович

Институт зоологии МОН РК, Казахстан, Алматы

Проверка коллекционных материалов Зоологического Института РАН (Санкт-Петербург), Института зоологии НАН Казахстана (Алматы) и публикаций (Zhdanko, 2002; Zhdanko, Churkin, 2001; Тогороv, Zhdanko, 2009), показала, что, серия бабочек голубянок из рода *Plebejus* Kluk., собранная в долине реки Каинды (бассейн реки Сарыджаз, Центральный Тянь-Шань) относятся к новому таксону, который описывается в данной статье.

Plebejus sarydzhazi Zhdanko, sp. n.

Материал. Голотип. Самец — восточная Киргизия 15 км юго-вост. пос. Энильчек, река Каинды 2650 м 10.07.2016 (Жданко); паратипы: 13 самцов, 3 самки — с такой же этикеткой, 9-11.07 2016 (Жданко). Материал хранится в коллекции Зоологического института РАН (Санкт-Петербург).

Дифференциальный диагноз. От всех видов облепиховых голубянок (группы *Pl. murza-samudra*) отличается широким маргинальным краем (2 мм) сверху на крыльях, на исподе крыльев имеет самый крупный и яркий контрастный рисунок (как у *idas*); на заднем крыле маргинальные глазки с блестящими чешуйками крупнее (исключение *Pl. churkini*); от наиболее близкого вида *arina* отличается почти прямыми ветвями юксты (у *arina* они изогнуты серповидно), ветви юксты шире; ветви гнатоса короче и толще, чем у *arina*; эдеагус на проксимальном конце снизу имеет заметное утолщение.

Описание. Самец, голотип (см. фото на обороте обложки: 1 – сверху, 2 – снизу). Длина переднего крыла 13.2 мм (в серии 12.8-14.3 мм). Сверху крылья сине-фиолетовые с относительно широкой чёрной каймой (2 мм). Бахромка у основания чёрная, примерно 1/3 её часть, кнаружи белая. На переднем крыле между костальным краем и дискальной ячейкой имеется налёт из белых чешуек. Дискальное чёрное пятно, слабо выражено в виде тонкого штриха. От базальной до постдискальной области имеются редкие белые волоски. Снизу фон крыльев равномерно серый. На переднем крыле ряд постдискальных точек полный, слабо изогнутый, срединная точка есть. Все точки в белых колечках. Краевой рисунок размытый, в виде полного ряда глазков со слабо заметной оранжевой серединой. На исподе заднего крыла рисунок характерный для видов группы idas-argivus. Чёрные точки контрастные, в белых колечках. Между постдискальными точками и субмаргинальными пятнами имеются белые треугольновидные осветления. Базальное напыление из голубых чешуек хорошо развито и доходит до срединной точки, а в анальной области – до постдискальных чёрных точек. Краевой рисунок состоит из полного ряда относительно крупных контрастных глазков. Субмаргинальные оранжевые пятна соприкасаются между собой. Они мельче, чем у idas и равны таковым у churkini. Ядра глазков с блестящими чешуйками крупнее, чем у любого вида из группы облепиховых голубянок (Pl. murzasamudra).

Гениталии самца (рис. 1) довольно изменчивы и наиболее схожи с таковыми у *arina* (рис. 2), только в среднем крупнее. Ветви юксты почти прямые (у *arina* они изогнуты серповидно) и шире чем у *arina*. Ветви гнатоса короче и толще, чем у *arina*. Эдеагус на проксимальном конце снизу имеет заметное утолщение (у *arina* оно слабо выражено). Верхний отросток на дистальном конце вальвы полукруглый, сильно склеротизован, загнут вовнутрь и имеет мелкие зубчики по краю. Нижний отросток на дистальном конце вальвы продолговатый, сильно склеротизован. Для сравнения – рисунок гениталий *Pl. idas* (рис. 3).

Рис. 1-3. Строение гениталий самцов рода *Plebejus* (вид сбоку): $1-Pl.\ sarydzhazi$, sp. n. (paratypus); $2-Pl.\ arina$ (paratypus); $3-Pl.\ idas$ (topotypus)

Самка. Аллотип (3-я стр. обложки, фото 3 – сверху, фото 4 – снизу). Длина переднего крыла 14.4 мм (в серии 14.2-14.4 мм). Сверху крылья тёмно-коричневые. Сине-фиолетовое напыление на переднем крыле доходит до половины длины дискальной ячейки, а на заднем достигает субмаргинальных оранжеватых пятен, которые слабо заметны. На переднем крыле у двух экземпляров слабо заметны маргинальные оранжевые пятна, в количестве 3. Снизу рисунок как у самца, только фон коричневосерый, оранжевые пятна на передних и на задних крыльях крупнее и ярче. На заднем крыле базальное напыление слабее развито, оно с золотисто-зеленоватым оттенком. Гениталии самки не исследовались.

Распространение. Достоверно известен только из долины реки Каинды, притока р. Сарыджаз. Возможно его обитание на соседних речках, впадающих в реку Сарыджаз.

Места обитания и биология. Северный склон с уклоном в 10-25 градусов, у верхней границы березового леса (3-я стр. обложки, фото 5). Бабочки (фото 6) встречаются исключительно среди облепиховых зарослей на осыпях. Здесь также растут шиповник, два вида жимолости, кизильник. Биологически вид связан с облепихой (*Hippophae ramnoides*). Лёт имаго наблюдается в июле. Бабочки обычно кормятся нектаром на астре (*Rhinactinidia limoniifolia*) и сабельнике Залесова (*Comarum salesovianum*). Летают вместе с *Paralasa jordana helios* (O.Bang-Haas,1927), *Metaporia leucodice* (Eversmann, 1843) и *Parnassius loxias* Pungeler, 1901.

Этимология. Название топонимическое.

Выражаю свою признательность Ирине Отрадных за определение растений.

Литература

Toropov S., Zhdanko A. 2009. The Butterflies of Dhungar, Tien Shan, Alai and Eastern Pamirs. Bishkek, Vol. 2. 396 p.

Zhdanko A.B. 2002. New taxa of blue butterflies (Lepidoptera, Lycaenidae) from Tien Shan//Tethys Entomol. Res. Vol. IV. P. 115-116. **Zhdanko A., Churkin S.** 2001. A review *Plebejus christophi* complex (Lepidoptera, Lycaenidae) from the Central Asia with the descriptions of new taxa//Helios. Collection of entomological articles. Vol II. P. 50-74.

Summary

Alexandr B. Zhdanko. New species of blue butterfly Plebejus sarydzhazi sp.n. (Rhopalocera (Lepidoptera, Lycaenidae) from Eastern Kyrgyzstan.

The article presents the description of *Plebejus sarydzhazi* sp.n. found in East Kyrgyzstan on Kaindy river (orographic left tributary of Sarydzhaz river). Data on morphology, biology and distribution of the species is summarized. Diagnosis: from all species of blue butterflies, which live on *Hippophae ramnoides* (group *Pl. murza-samudra*) it is distinguished by following features: wide marginal edge (2 mm) on upperside of the wings, on underside wings it has the largest and most vivid contrast drawing (than in *idas*); on the hindwing of marginal eyespots with shiny scales are larger (*Pl. churkini*); from the nearest type of arina differs by almost straight branches juxta (in *arina* they are curved as sickle), branches of the juxta is broader; gnatos branches shorter and thicker than that of *arina*. Aedaeagus on the proximal end of the bottom has a marked thickening.

УДК 595.77 (574.52)

Новый подвид *Chrysotoxum bicinctum* (Linnaeus, 1758) (Diptera, Syrphidae) из Джунгарского Алатау (Казахстан)

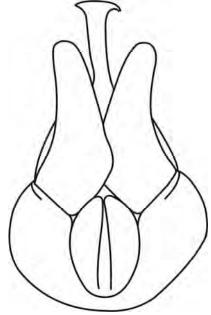
Златанов Борис Васильевич

Институт зоологии МОН РК, Казахстан, Алматы

В 2015 г. в окрестностях с. Лепсинск (хребет Джунгарский Алатау, горы Уч-Каинды) отловлены 10 особей (3 🔗 и 7 ♀) *Сhrysоtoxит bicinctum* (Linnaeus, 1758). При их идентификации было обнаружено некоторое несоответствие признакам, приведенным в определителях. Эти отличия послужили основанием для описания нового подвида *Ch. bicinctum*, которое приводится ниже.

Chrysotoxum bicinctum bakhtijarovi Zlatanov, ssp. n.

Материал. Голотип: \Diamond , 19.07.2015. Паратипы: 2 $\Diamond \Diamond$, 7 $\Diamond \Diamond$, 15.07-22.08.2015; Юго-Восточный Казахстан, хр. Джунгарский Алатау, окр. с. Лепсинск, кордон «Чёрная речка».


Описание. З. Лоб чёрный, блестящий, в желтовато-сером опылении у края глаз и длинных бурых торчащих волосках, не заходящих на лицо. Высота лба примерно равна линии соприкосновения глаз. Глазковый треугольник выпуклый, чёрный, слабо блестящий, в задней части в сером опылении и в длинных черных (кпереди) и бурых (кзади) волосках. Затылочная часть головы матово-чёрная, серо-опыленная за глазами, в верхней части в длинных темно-бурых волосках, сменяющихся ниже вдоль глаз более короткими густыми серебристыми волосками. Лицо желтое слабо блестящее, широкой продольной черной полосой, доходящей до основания усиков, её ширина равна ⅓ ширины лица; нижняя часть лица и щёки блестящие, тёмно-бурые, почти чёрные. Жёлтые поверхности лица покрыты желтыми торчащими волосками, чёрные — голые. Щеки в длинных беловатых торчащих волосках. Усики чёрные; два первых членика слабо блестящие с серебристым отблеском, третий матовый в жёлтоватом опушении. Членики примерно одинаковой длины, третий несколько длиннее. Ариста коричневая или бурая, голая.

Среднеспинка чёрная, слабо блестящая, с двумя продольными серо-опыленными полосами, заходящими за её середину, и желтыми пятнами на боках: перед поперечным швом, перед закрыловыми бугорками и на них. Щиток чёрный с узким тускло-желтым, иногда почти неразличимым, пятном по заднему краю. Переднеспинка в длинных и густых желтых и бурых волосках: в передней части полуприлегающих, в задней — торчащих. Щиток в бурых, более длинных по сравнению с переднеспинкой, а также в коротких чёрных торчащих волосках. Бочки груди чёрные, в бурых волосках, в том числе жёлтое пятно на мезоплеврах.

Крыло прозрачное, с буроватым полем вдоль переднего края, ограниченным сзади жилкой M, и постепенно светлеющим к вершине крыла. Бурое длинное пятно с размытыми краями начинается с развилка R_{2+3} и R_{4+5} , доходит до точки слияния R_1 и C. Закрыловые пластинки тёмно-буровато-серые, с более темным, почти чёрным краем и тёмно-бурыми ресничками. Жужжальца жёлтые, с темноватым стебельком. Ноги жёлтые; бёдра всех пар ног чёрные с буровато-жёлтыми вершинами; голени жёлтые, постепенно темнеющие и приобретающие бурый цвет к вершинам; лапки передних и средних ног бурые, задних — тёмно-бурые, членики одноцветные.

Брюшко чёрное, слабо блестящее, с желтыми или беловатыми пятнами на II (широкие, трапециевидные) и на IV тергитах (более узкими, лентовидными) и не заходящими на боковой край тергитов. На III тергите пятна имеют вид очень узкой изогнутой полоски, широко прерванной посередине, или штриха, или отсутствуют. Пятна IV тергита дугообразные, идущие от задних углов тергитов, к их переднему краю в средней части. На V тергите у задних углов жёлтые или беловатые узкие клиновидные или каплеобразные пятна. Задние края всех тергитов чёрные.

Снизу брюшко черное, блестящее, II стернит в основной половине бурый; с жёлтым с размытыми краями поперечным пятном у переднего края II стернита и жёлтой перевязью по переднему краю III стернита. Перевязь с вырезкой сзади посередине и заужена по бокам. Задние углы II стернита жёлтые,

Рис. Гипопигий Chrysotoxum bicinctum bakhtijarovi ssp. n. Вид снизу.

задние края — узко жёлтые почти до середины. Таким образом, визуально перевязь по бокам изогнута вперед. Брюшко покрыто короткими чёрными волосками, с примесью бурых волосков у передних краёв тергитов, значительно более длинных у основания брюшка. Гипопигий чёрный, блестящий, в чёрных волосках. Сурстили как на рисунке. Длина 9-11 мм.

♀. Срединная лицевая полоса несколько у́же, чем у самца; лицо в очень коротких жёлтых волосках. Щёки блестящие, бурые, светлее нижней части лица. Ширина лба на уровне основания усиков чуть меньше ⅓ ширины головы. Соотношение длины члеников усиков: 1½:1:2. Лоб с двумя светлозолотисто опыленными треугольными пятнами у края глаз. Лоб и темя в коротких торчащих чёрных и бурых волосках. Боковые пятна на среднеспинке более развиты, чем у самца. Среднеспинка и щиток в коротких жёлто-бурых полуприлегающих волосках. Бочки груди в таких же волосках, но торчащих и относительно редких. Задние углы ІІ тергита жёлтые, у некоторых экземпляров сливаются с перевязью. Пятна на ІІІ-V тергитах более развиты, чем у самца (на ІІІ тергите могут отсутствовать). ІV стернит у переднего края с поперечными линзовидными пятнами, или без них. Остальное — как у самца. Длина 8-11 мм.

Основные признаки самцов *Ch. bicinctum* (L.) (по Виолович, 1956, 1983 и Мутин, Баркалов, 1999) и *Ch. bicinctum bakhtijarovi* ssp. n.:

Ch. bicinctum (L.)	Ch. bicinctum bakhtijarovi ssp. n.
Лоб, среднеспинка и щиток в коричневато-рыжих волосках	Лоб, среднеспинка и щиток в бурых волосках; щиток также в коротких чёрных волосках
Тёмно-бурое пятно на крыле не достигает его вершины	Тёмно-бурое пятно на крыле не достигает его вершины
Вершинные половины бёдер передних и средних пар ног жёлтые, или бедра большей частью жёлтые	Бёдра всех пар ног чёрные с буровато-жёлтыми вершинами
Голени всех пар ног жёлтые.	Голени всех пар ног жёлтые, бурые у вершин
Лапки всех пар ног жёлтые	Лапки передних и средних пар ног бурые, задних – тёмно-бурые
II тергит брюшка с широкими трапециевидными пятнами (перевязью)	II тергит брюшка с широкими трапециевидными пятнами (перевязью)
III тергит с узкими пятнами посередине, или без них	III тергит с узкими пятнами посередине, или без них
IV тергит с более узкой, чем на II тергите перевязью	IV тергит с более узкой, чем на II тергите перевязью
V тергит с узкой прерванной посередине перевязью, или с узкими жёлтыми пятнами, или без них	V тергит с узкими клиновидными пятнами

Из сравнения признаков видно, что описанный подвид почти полностью соответствует *Ch. bicinctum*, за исключением окраски ног (особенно бёдер), которая является ясно различимым устойчивым признаком данного подвида.

Типы хранятся в коллекции Института зоологии КН МОН Республики Казахстан.

Подвид назван именем директора Лепсинского филиала Жонгар-Алатауского ГНПП Т.А. Бахтиярова.

Литература

Виолович Н.А. Новые виды мух-журчалок (Diptera, Syrphidae) из Сахалинской области//Энтомологическое обозрение. 1956. Т. 35. Вып. 2. С. 462-472. **Виолович Н.А.** Обзор палеарктических видов мух-журчалок рода *Chrysotoxum* Mg. (Diptera, Syrphidae)//Энтомологическое обозрение. 1974. Т. 53. Вып. 1. С. 196-217. **Виолович Н.А.** Сирфиды Сибири//Новосибирск: «Наука». 1983. 241 с.

Мутин В.А., Баркалов А.В. Сем. Syrphidae – журчалки//Определитель насекомых Дальнего Востока России. Двукрылые и блохи. Владивосток: Дальнаука. 1999. Т. 6. Ч. 1. С. 342-500.

Штакельберг А.А. 49. Сем. Syrphidae – журчалки//Определитель насекомых Европейской части СССР. Л.: «Наука». 1970. Т. 5. Ч. 2. С. 11-96.

 $http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=170594$

Summary

Boris V. Zlatanov. New subspecies of Chrysotoxum bicinctum (Linnaeus, 1758) (Diptera, Syrphidae) from Zhungarskiy Alatau (Kazakhstan).

New subspecies of *Chrysotoxum bicinctum bakhtijarovi* ssp. n. (Diptera, Syrphidae) from Lepsinsk village environs (Zhungarskiy Alatau ridge) is described.

УДК 595.762 (574)

Микродаккус Глазунова (Microdaccus glasunovi Emetz, 1979) – эндемик Южного Казахстана

Кабак Илья Игоревич

Всероссийский НИИ защиты растений РАН, Санкт-Петербург, Россия, ilkabak@yandex.ru

В работе дано подробное *переописание* эндемичного для Казахстана малоизвестного вида на основании изучения как голотипа, так и дополнительного недавно собранного материала.

При описании были использованы следующие измерения: длина тела – от переднего края верхней губы до вершины надкрылий; ширина головы (HW) – включая глаза; длина переднеспинки (PL) – вдоль медиальной линии; длина надкрылий (EL) – от вершины щитка до вершины длинного надкрылья; ширина переднеспинки (PW) и надкрылий (EW) – в наиболее широких частях, ширина основания переднеспинки (PB) – между вершинами задних углов, длина усиков (AL) – от основания скапуса до вершины последнего членика. Средние арифметические даны в скобках после диапазона значений соответствующего коэффициента (в случае пропорций округление проводилось до сотых). Количество изученных препаратов гениталий приведено в скобках после числа экземпляров.

Microdaccus glasunovi Emetz, 1979.

Рис. 1-3.

Microdaccus glasunovi Emetz, 1979: 65, рис. а, б, в. (типовое местонахождение: "Казахстан, Байгакум близ Чиили").

Microdaccus glasunovi: Крыжановский, 1983: 283; Kryzhanovskij et al., 1995: 165; Kabak, 2003: 422; Кабак и др., 2012: 165; Кабак, 2015: 14; Кабак, Найзабекова, 2015: 157.

Типовой материал. Голотип, 1 (1) \Diamond (хранится в коллекции Зоологического инстирута РАН в городе Санкт-Петербург, далее − 3ИН), с этикетками: «Сыр-дар. обл. Пер. у. Байгакум бл. Джулека, Д. Глазунов, 5.VI.07» (In English: Syr-Darya Area, Perovsk uyezd, Baygakum near Dzhulek, 5.06.1907, D. Glasunov leg.) (примерные координаты $-44^{\circ}18^{\circ}N / 66^{\circ}28^{\circ}E$, см. рис. 4: 1); «*Ammoglycia glasunovi* Em. et Kryzh., 1972, Emetz det.»; «Holotypus det. Emetz».

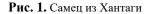


Рис. 2. Самка, в 32 км западнее Шолаккургана.

 Reservation, kordon Khantagi, H=570 m, 43°33'32,4"N / 68°40'52,7"E, at light, 18.05.2012, R.Kh. Kadyrbekov leg. (puc. 3).

Степень изученности. Редкий вид, описанный из долины р. Сырдарья по двум экземплярам, собранным известным русским энтомологом и путешественником Д.К. Глазуновым больше ста лет назад (Емец, 1979). В 2012 г. один экземпляр был собран на хр. Каратау в окрестностях кордона Хантаги (Кабак и др., 2012; Кабак, Найзабекова, 2015), в 2015 г. ещё один экземпляр был обнаружен на том же хребте к юго-западу от пос. Абай. Всего к настоящему времени *М. glasunovi* известен

Рис. 3. Эдеагус голотипа

всего по 4 экземплярам, собранным в трех локалитетах (рис. 4).

Рис. 4. Распространение *M. glasunovi*.

Описание. Таксон мелкого в пределах рода размера, длина тела 3.9-4.3 (4.2) мм, крылатый. Верх уплощенный, ноги и усики короткие по сравнению с другими видами *Microdaccus* Schaum, 1864. Окраска тела и конечностей жёлтая, надкрылья без тёмного рисунка, вершины мандибул тёмно-бурые (рис. 1-2).

Голова большая, PW/HW = 1.10-1.13 (1.11). Глаза крупные, сильно выпуклые. Виски очень короткие. Лоб плоский или слегка выпуклый, посередине гладкий, по бокам с нежными косыми складками и редкой пунктировкой, точки которой едва глубже, чем бороздки микроскульптуры. Лобные вдавления короткие, округлые. Надглазничных пор две пары. Клипеофронтальный шов прямой на большем протяжении, по бокам угловидно загнут вперед. Мандибулы короткие, резко изогнутые, их дистальная часть тонкая, каждая мандибула с зубцом на внутреннем крае у середины. Передний край верхней губы прямой или со слабой дуговидной вырезкой посередине, сильно округлен по бокам. Щупики в коротком опушении; предпоследний членик губных шупиков с двумя хетами на передней поверхности; последний членик губных шупиков у самок веретеновидный, у самцов умеренно расширен дистально, на вершине срезан. Усики короткие, по длине примерно равны длине надкрылий, AL/EL = 0.99-1.01 (1.00), заходят за основание переднеспинки 3.5-4 дистальными члениками. Подбородок с одной парой хет у основания зубца, последний очень широкий, короткий, тупоугольный, притуплен или округлен на вершине, немного короче или слегка длиннее боковых лопастей.

Переднеспинка короткая, PW/PL = 1.29-1.32 (1.31), PW/PB = 1.33-1.42 (1.37), резко сердцевидная, её максимальная ширина в передней четверти. Боковые края от уровня передней латеральной поры плавно округлены к передним углам и почти прямолинейно сужены к длинной и глубокой выемке в базальной трети. Задние углы большие, слегка оттянуты в стороны в виде почти прямоугольных

лопастей, их вершины острые или слегка притупленные. Передний край равномерно и неглубоко вогнут, передние углы слабо или умеренно выступают, округлены на вершинах. Окантовка переднего края цельная или прервана посередине. Базальный край в центральной части слабо дуговидно выемчатый, по бокам ступенчато скошен вперед, далее к задним углам прямой или едва выемчатый, его окантовка посередине выпуклая и широкая, но нечёткая, у задних углов узкая и резкая. Боковые края переднеспинки впереди задних углов узко и неравномерно распластаны и слабо отогнуты. Диск переднеспинки слабовыпуклый, отчётливо морщинистый (по периметру — радиально, у серединной линии — поперечно), пунктировка не выражена. Базальное поперечное вдавление резкое, дуговидное, базальная поверхность вдавлена. Базальные ямки глубокие, большие, поперечные. Серединная линия углублена, спереди слегка укорочена, сзади почти достигает базального края. Переднее поперечное вдавление широкое и неглубокое. Одна пара краевых щетинконосных пор у середины и одна — в задних углах. Отросток переднегруди на вершине не окантован, без хет.

Надкрылья умеренной ширины, их стороны почти параллельные, у середины едва выемчатые, очень слабо расширенные в дистальной трети, EL/EW = 1.44-1.52 (1.48), EL/PL = 2.94-2.97 (2.95), EW/PW = 1.48-1.58 (1.53). Вершины надкрылий косо срезаны, апикальный край довольно слабо скошен, едва выемчатый, пришовный угол умеренно широко округлен. Базальный кант сильно и равномерно S-образно изогнут. Плечи отчетливо выступают хотя и округлены. Боковая канавка узкая на всём протяжении, лишь у середины слегка расширена, боковые края надкрылий слабо отогнуты. Диск слабовыпуклый, посередине уплощен. Бороздки надкрылий резкие и глубокие, их точки явственные. Промежутки равномерно выпуклые, шов в базальной трети слабо вдавлен, на большем протяжении слегка приподнят. Прищитковая пора нормально развита. Две небольшие дискальные поры в третьей бороздке, 14 умбиликальных пор.

Микроскульптура верха отчетливая, её ячейки на голове и переднеспинке изодиаметрические, на надкрыльях — слегка продольные. Поверхность тела, включая глаза, в рассеянном тонком и очень коротком опушении.

Заднегрудь в грубой поперечно-ячеистой микроскульптуре; эпистерны заднегруди очень длинные. Второй и третий видимые стерниты брюшка посередине слиты, по бокам разделены отчетливым швом. Парамедиальных хет на 3-5 видимых стернитах одна пара. Задние тазики с двумя хетами вдоль наружного края, задние трохантеры с одной хетой у середины заднего края. Поверхность видимых стернитов брюшка в тонком и коротком рассеянном опушении, с более нежной, чем на заднегруди, микроскульптурой, состоящей из поперечных штрихов.

Ноги умеренно длинные, но короче, чем у других видов рода. Лапки сверху опушены, в изодиаметрической микроскульптуре, их 4-й членик простой, коготки не зазубренные. Задние лапки заметно короче задних голеней. Три базальных членика передних лапок самца едва утолщены. Эдеагус (рис. 3) утолщен в дистальной половине, его апикальная ламелла отогнута вентрально. Эндофаллус с небольшой склеротизированной структурой, расположенной слегка за серединой тубуса эдеагуса.

Систематическое положение, диагноз. Microdaccus glasunovi наиболее близок, в том числе географически, к M. sugonjaevi Kabak, 2015 из Афганистана. Оба вида характеризуются светлой окраской и наличием зубца на внутреннем крае каждой мандибулы. Однако M. glasunovi легко отличается более мелким размером, отсутствием тёмного пятна на надкрыльях, пропорционально более широкой переднеспинкой и короткими надкрыльями, более короткими конечностями, более резко изогнутыми мандибулами со слабее развитым зубцом на их внутреннем крае, слабо расширенным последним члеником губных шупиков самцов, слабее выпуклыми глазами, не такими большими и остроугольными лопастями задних углов переднеспинки. Кроме того, надкрылья у M. glasunovi с сильно изогнутым базальным кантом, резкими, отчетливо пунктированными бороздками и равномерно выпуклыми промежутками.

От *М. opacicolor* (Reitter, 1897), распространенного в восточном Средиземноморье от Турции и Кипра на западе до Ирана на востоке (Каbak, 2003), и его географических форм (Маteu, 1981) рассматриваемый вид отличается мелким размером, одноцветной жёлтой окраской, менее резкой микроскульптурой покровов, пропорционально более короткими переднеспинкой и надкрыльями, короткими ногами и усиками, более узкими и длинными в дистальной половине мандибулами с зубцом на внутреннем крае, сильнее расширенным последним члеником губных щупиков самцов, более мелкими глазами, слабее вырезанным передним краем верхней губы. Переднеспинка у *М. glasunovi* со слабее выступающими передними и задними углами, короткими базальными ямками, слабее выраженной скульптурой и узким боковым кантом. Надкрылья слабее расширены за серединой, их бороздки резкие, с отчетливой пунктировкой, шов не приподнят крышевидно.

Интересно отметить, что по набору габитуальных признаков, таких как форма тела, окраска, строение мандибул, характер микроскульптуры и опушения покровов, скульптура переднеспинки и надкрылий, *М. glasunovi* очень похож на *Psammodromius zajtzewi* (Eichler, 1924), который распространён в Азербайджане, Армении, северном Иране и в западной Туркмении (Яблоков-Хнзорян, 1964, Кавак, 2016). Однако последний таксон отличается, помимо более мелкого размера, сильнее развитым вооружением эндофаллуса, что характерно для представителей рода *Psammodromius* Peyerimhoff, 1927. Можно предположить, что сходство *М. glasunovi* и *P. zajtzewi* окажется аргументом в пользу придания *Psammodromius* статуса подрода *Microdaccus*, но для решения этого вопроса потребуется изучение дополнительного материала.

Распространение. Рассматриваемый вид является самым северо-восточным представителем рода *Microdaccus*. Известные пункты находок *M. glasunovi* существенно удалены от границ совокупного ареала остальных таксонов, относящихся к этому роду. *M. glasunovi* встречается на северо-восточных и юго-западных макросклонах западной части хр. Каратау, а также в долине р. Сырдарья в её нижнем течении. Интересно отметить, что в сравнительно неплохо изученных районах Приаралья и в восточной части хр. Каратау вид до сих пор не обнаружен, хотя способность к полёту подразумевает его более широкое распространение.

Особенности экологии. Данных нет. Единственный экземпляр, известный с территории Каратауского заповедника, был собран на свет. Отсутствие вида в сборах из пустынь Приаралья, Кызылкумов и Муюнкумов позволяют предположить, что вид связан с ксерофитными биотопами на плотных незасоленных почвах.

Благодарности. Искренне благодарю Р.Х. Кадырбекова (Алматы) и А.М. Шаповалова (Санкт-Петербург) за предоставленный материал по виду, а также Б.М. Катаева (Санкт-Петербург) за возможность изучить голотип из коллекции ЗИН.

Литература

Емец В.М. Новый вид жужелицы рода *Microdaccus* Schaum (Coleoptera, Carabidae) из Казахстана//Труды Всесоюзного энтомологического общества. 1979. Т. 61. С. 64-65.

Кабак И.И. Новые и малоизвестные таксоны жужелиц (Coleoptera Carabidae) из Афганистана и Северо-Западного Китая//Кавказский энтомологический бюллетень. 2015. Т. 11, вып. 1. С. 9-14. Кабак И.И., Кадырбеков Р.Х., Колов С.В. Материалы к распространению некоторых видов жужелиц (Coleoptera, Carabidae) в Южном и Юго-Восточном Казахстане//Selevinia. 2012. Т. 20. С. 164-166. Кабак И.И., Найзабекова Э.Ш. в статье: Кадырбеков Р.Х., Митяев И.Д., Чильдебаев М.К., Жданко А.Б., Тлеппаева А.М., Кабак И.И., Федотова З.А., Абдурасулова Л.С., Найзабекова Э.Ш. Узко эндемичные виды насекомых (Insecta) Каратауского государственного природного заповедника (Южный Казахстан). Научные труды государственного природного заповедника «Присурский» / Под общ. ред. Л.В. Егорова. Чебоксары, 2015. Т. 30. Вып. 1. (Материалы IV Международной конференции «Роль особо охраняемых природных территорий в сохранении биоразнообразия» (г. Чебоксары, 21–24 октября 2015 г.)). С. 153-158.

Крыжановский О.Л. Жесткокрылые, Т. І, вып. 2. Жуки подотряда Adephaga: семейства Rhysodidae, Trachypachidae; семейство Carabidae (вводная часть, обзор фауны СССР)/Фауна СССР. 1983. Л.: Наука. 341 с.

Яблоков-Хнзорян С. М. Новые роды и виды жесткокрылых из Закавказья и Средней Азии. Академия наук Армянской ССР, Зоологический институт. Зоологический сборник. 1964. № 13. С. 151-186.

Kabak I. Lebiini, pp. 408-439 – In: I. Löbl & A. Smetana (editors): Catalogue of Palaearctic Coleoptera. Vol. 1: Archostemata – Myxophaga – Adephaga. 2003. Stenstup: Apollo Books. 819 p. **Kabak** I.I. New data on the taxonomy of ground-beetles (Coleoptera, Carabidae) from Palaearctic Asia//Entomological Review. 2016. Vol. 96, Issue 6. P. 796-809.

Kryzhanovskij O.L., Belousov I.A., Kabak I.I., Kataev B.M., Makarov K.V., Shilenkov V.G. A checklist of the ground-beetles of Russia and adjacent lands (Insecta, Coleoptera, Carabidae)//Series faunistica. 1995. Pensoft, Sofia-Moscow. No. 3. 271 p.

Mateu J. Resultats de l'expédition entonologique Tchécoslovaque-Iranienne à l'Iran. Coleoptera: Carabidae, Lebiinae. Remarques sur le genres *Microdaccus* Schaum et *Psammodromius* Peyerimhoff//Acta entomologica Musei Nationalis Pragae. 1981. Vol. 40. P. 341-353.

Summary

Ilya I. Kabak. Microdaccus glasunovi Emetz, 1979 is an endemic species from Southern Kazakhstan Microdaccus glasunovi Emetz, 1979 is redescribed based on study of the holotype and newly collected material. The data on systematic position and distribution of this poorly known species is given.

УДК 597.82: 591.431 (574.52)

Об аномалиях в строении ротового аппарата головастиков озёрной лягушки Pelophilax ridibundus в природных популяциях юго-востока Казахстана

Арифулова Ирина Исмаиловна¹, Чирикова Марина Александровна² ¹Институт сейсмологии, ²Институт зоологии, Алматы, Казахстан arif irina@mail.ru; m.chirikova@mail.ru

Строение ротового аппарата головастиков озёрной лягушки Pelophilax ridibundus и его изменение согласно стадиям нормального развития изучены хорошо (Терентьев, 1950; Guenther, 1978; Заброда и др., 1989; Гниденко, 2002). Однако в ходе развития личинок земноводных встречаются различные отклонения от нормы, в том числе и в строении ротового аппарата, данные о которых крайне скудны. Так, например, в ряде работ представлены сведения по изменчивости ротовых аппаратов головастиков лягушек комплекса Pelophylax esculentus (Афоничева и др., 2010; Бибик, 2010; Бибик и др., 2010) и жаб комплекса Bufo viridis (Dujsebayeva et al., 2004) как из природных водоёмов, так и выращенных в лабораторных условиях. Особый интерес, на наш взгляд, представляет анализ отклонений от нормы в строении ротового аппарата у головастиков из природных популяций. Составление каталога аномалий представляется перспективным для дальнейшего изучения факторов, которые являются причинами их появления. Известно, что изучение природных популяций или среды их обитания может проводиться на основе анализа морфологической изменчивости особей (Захаров, Яблоков, 1995). В последнее время амфибии стали очень популярными объектами для биоиндикационных исследований, особенно в случае оценки состояния урбанизированных территорий (Спирина, 2007; Вершинин, 2008). Это напрямую связано с особенностями жизнедеятельности и физиологии амфибий, поскольку различные антропогенные загрязнители (например, тяжёлые металлы) концентрируются главным образом в почве, иле, водной и прибрежной растительности, а проницаемый кожный покров делает амфибий чувствительными к загрязнителям. Икра и личинки наиболее подвержены их воздействию. Озёрная лягушка является одним из перспективных видов в плане изучения внутривидовой изменчивости и биоиндикационных исследований в Казахстане, поскольку широко распространена, населяет разнообразные места обитания и весьма многочисленна (Дуйсебаева и др., 2005).

В настоящей работе приведены результаты анализа морфологической вариабельности ротового аппарата головастиков озёрной лягушки *Pelophilax ridibundus* из различных природных популяций.

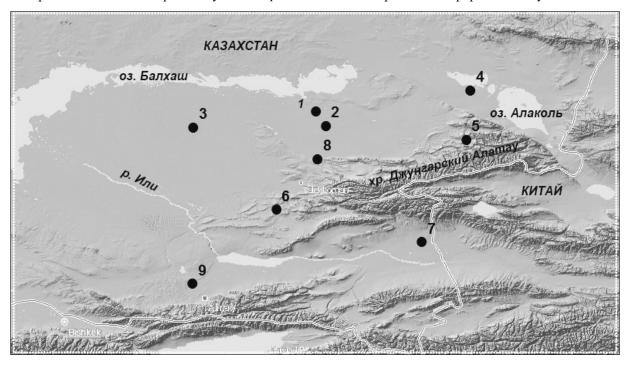


Рис. 1. Расположение исследованных выборок (пояснения к номерам выборок в тексте ниже)

Материал и методы. Сбор головастиков проводился в 9 пунктах (рис. 1): I. низовья р. Аксу, 14 августа 2014 г. – 37 головастиков на стадиях развития 34-41, 2 — на стадии 42; I. среднее течение

р. Аксу, окр. ст. Матай, 20 мая 2014 г. – 31 головастик на стадиях развития 32, 35-40; **3**. безымянная река западнее р. Аксу, 21 июня 2014 г. – 31 головастик на стадиях развития 35-41, 3 – на стадии 42; **4**. низовья р. Тентек, 3 июля 2014 г. – 26 головастиков на стадиях развития 31-36; **5**. пойма р. Тентек, верховья р. Красная речка, 29 июня 2014 г. – 41 головастик на стадиях 38-41, 1 – на стадии 42; **6**. р. Малая Биже, конец апреля 2013 г. – 30 головастиков на стадиях 33-36 и май 2014 г. – 30 головастиков на стадиях развития 38-41 и 5 – на стадии 42; **7**. вдхр. Акешке, 30 апреля 2013 г. – 41 головастик на стадиях развития 32-35, 38; **8**. оз. Линьковое, 1-3 мая 2013 г. – 32 головастика на стадиях развития 34-39; **9**. р. Каскеленка, 25 июня 2013 г. – 31 головастик на стадиях развития 30-35, 37-38.

Для анализа были взяты головастики на стадиях развития 30-41 с личиночным ротовым аппаратом. Поскольку на стадии 42 начинается исчезновение личиночного и формирование дефинитивного рта, эти особи были исключены из общего количества при расчете процента аномалий.

Описание биотопов с мест отлова головастиков. Река Аксу — одна из крупных рек Семиречья. Биотопы вдоль реки большей частью однообразны. Берега покрыты осокой (*Carex* sp.), местами с лохом (*Elaeagnus oxycapra*) и ивняком (*Salix sp.*), на некоторых участках обрывистые. Сбор головастиков проводился в местах разливов, среди затопленной осоки. Схожие биотопы были и в месте сбора материала с реки Тентек. Озеро Линьковое расположено в песчаном массиве Каракум среди барханов, закреплённых осочкой песчаной (*Carex arenaria*), эфедрой (*Ephedra* sp.), разными видами полыней, джузгунами (*Calligonum* sp.) и тамариксом (*Tamarix* sp.). Озеро заросло тростником (*Phragmites australis*), который вдоль берега выеден скотом. Водохранилище Акешке расположено в западных предгорьях Джунгарского Алатау, берега покрыты преимущественно осокой, а восточный зарос ивняком; дальше простираются полынные глинисто-щебнистые холмы. Головастики были собраны в местах разлива среди затопленной растительности. В среднем течении реки Каскеленки головастиков отлавливали севернее Каскелена — крупного города-спутника Алматы; вода здесь используется на поливное земледелие, берега подвержены рекреационной нагрузке и выпасу скота. В месте отлова берега закреплены осокой, растёт лох, ива. На реке Малая Биже головастиков брали из небольшого разлива этой реки, берега которой поросли осокой.

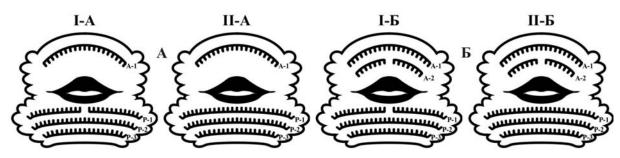
Головастики озёрной лягушки, собранные во время полевых работ, фиксировались в 10%-ном растворе формалина. Для описания внешней морфологии и стадирования личинок использовали бинокуляр МБС-9. Стадии развития головастиков определяли согласно схеме, приведенной в работе Гниденко Е.Н. (2002). Измерение размеров головастиков проводилось электронным штангенциркулем с погрешностью 0.1 мм. В тексте используются следующие обозначения: L – длина тела, Lcd – длина хвоста. Обозначение зубных рядов приведено согласно McDiarmid, Altig (1999): A – anterior, P – posterior.

Под аномалиями (отклонениями) в строении ротового аппарата мы понимали любые отклонения от ротового аппарата, описанного в таблице нормального развития (Гниденко, 2002) на соответствующей стадии. Встречаемость особей с аномалиями рассчитывали по формуле $P_{as}=N_{as}/N*100\%$ (Боркин и др., 2012).

Результаты и обсуждение. Размерные характеристики головастиков *P. ridibundus* из разных выборок в соответствии со стадией развития представлены в таблицах 1-3.

Анализ размерных характеристик показал, что размеры головастиков озёрной лягушки на соответствующих стадиях заметно различались в исследованных выборках. Наименьшие размеры были показаны для головастиков из вдхр. Акешке, наибольшие — для головастиков из р. Каскеленка. Отметим, что длина тела (L) головастиков из всех исследованных нами природных популяций оказалась значительно меньше приведенной в таблице нормального развития для головастиков на соответствующих стадиях (Гниденко, 2002). Можно предположить, что более крупные размеры головастиков, приведенные автором, связаны с их содержанием в лабораторных условиях, при постоянной температуре, поскольку размеры развивающихся головастиков могут зависеть от внешних факторов, в частности от температуры окружающей среды.

Ротовой аппарат головастиков *P. ridibundus* согласно таблице нормального развития (Гниденко, 2002) представлен на рисунке 2 (I-A, I-Б). Следует отметить, что в таблице развития Е.Н. Гниденко первый нижний зубной ряд P-1 был приведен, как состоящий из двух приблизительно одинаковой длины участков, расположенных на одной линии. Однако для ротовых аппаратов головастиков из исследованных нами выборок более характерным был сплошной P-1 без разрыва (рис. 2 – II-A, II-Б, табл. 4). Ю.С. Бибик (2010), описывая изменчивость ротового аппарата головастиков озёрной лягушки в двух выборках (96 экз.) из природных популяций Донецкой области, отмечает оба типа ротовых аппаратов, соответствующих рисункам I-Б и II-Б (рис. 2). Учитывая эти данные, разрыв в зубном ряду Р-1 и сплошной P-1 мы будем считать вариантами нормы.


Таблица 1. Размерные характеристики головастиков из вдхр. Акешке, оз. Линькового, р. Каскеленки

Стадия	Вдх	кр. Акешке (4	41 экз.)	Оз.	Линьковое (32 экз.)	Р. Каскеленка (31 экз.)			
развития	Кол-во экз.	L (мм)	Lcd (мм)	Кол-во экз.	L (мм)	Lcd (мм)	Кол-во экз.	L (мм)	Lcd (мм)	
30	_	_	-	-	_	_	1	8.8	11.2	
31	_	_	-	-	_	_	5	12.1-14.1 13.0±0.34	13.6-17.8 15.7±0.67	
32	4	6.9-8.1 7.7±0.25	9.2-10.2 9.7±0.24	-	_	-	4	12.0-14.7 13.7±0.59	15.6-18.4 16.8±0.58	
33	4	7.6-8.1 7.9±0.13	9.1-10.8 10.0±0.45	-	_	=	3	14.6-16.5 15.8±0.6	18.0-21.5 19.5±1.05	
34	23	7.9-10.2 8.8±0.11	9.8-13.5 11.8±0.19	1	9.1	-	6	14.3-18.7 16.7±0.65	17.4-24.7 21.0±1.16	
35	9	8.4-9.6 9.1±0.14	11.5-13.8 12.9±0.25	6	10-11.9 10.9±0.52	12.2-14.9 13.9±0.53	9	16.1-20.6 18.2±0.69	19.6-45.6 25.1±2.72	
36	_	_	-	5	11.4-13.2 12.2±0.33	12.8-16.5 15.0±0.7	-	-	_	
37	_	_	-	7	11.1-13.3 12.4-0.25	14.1-16.2 15.3±0.28	3	16.4-28.1 21.3±3.53	20.0-33.7 26.1±4.0	
38	1	13.7	19.5	11	11.4-14.7 13.3±0.34	12.8-18.4 16.2±0.61	1	8.8	11.2	
39	_	-	-	2	13.4-14.8 14.1±0.7	17.8-19.0 18.4±0.57	-	=	-	

Таблица 2. Размерные характеристики головастиков с р. Аксу и безымянной реки

Стадия	Низ	овья р. Аксу	(39 экз.)		цнее течение т. Матай (30		Безымянная река западнее р. Аксу (34 экз.)			
развития	число	L	Lcd	Кол-	L	Lcd	число	L	Lcd	
_	экз.	(мм)	(мм)	во экз.	(мм)	(мм)	экз.	(мм)	(мм)	
32	-	_	_	7	7.8-10.2 9.1±0.3	9.0-12.8 11.6±0.5	-	_	_	
33	-	-	-	-	-	-	_	-	_	
34	2	11.8-12.8 12.3±0.5	16.2-17.7 17.0±0.8	_	-	_	_	-	-	
35	2	13.0-13.7 13.4±0.4	18.2-18.7 18.5±0.3	3	9.3-9.7 9.4±0.1	11.7-15.2 13.5±1.0	3	11.3-13.4 12.7±0.7	16.1-20.4 18.5±1.3	
36	4	14.1-15.3 14.7±0.2	18.8-22.4 20.2±0.8	1	12.3	16.1	5	13.5-15.2 14.4±0.3	19.4-22.5 20.8±0.6	
37	9	14.1-18.7 15.5±0.5	19.1-23.4 20.7±0.5	1	11.74	16.73	6	13.4-17.6 15.5±0.6	18.4-23.3 20.8±0.7	
38	10	15.0-18.1 16.6±0.3	20.1-24.8 22.8±0.5	11	12.7-16.9 14.3±0.4	17.7-23.7 19.9±0.5	12	14.6-18.7 16.9±0.4	19.2-25.7 23.4±0.5	
39	5	16.7-18.7 17.9±0.4	23.1-26.1 24.5±0.5	4	13.4-16.3 15.2±0.6	19.4-22.8 20.5±0.8	1	18.9	24.8	
40	4	17.5-18.2 17.9±0.2	21.3-26.5 24.4±1.1	4	16.6-17.9 17.4±0.3	22.3-30.9 25.8±2.0	2	17.0-18.2 17.6±0.6	23.0-24.5 23.7±0.7	
41	1	16.46	23.77	-	-	-	2	17.6-18.7 18.1±0.5	27.9-28.5 28.2±0.3	
42	2	18.2-18.3 18.2±0.1	27.8-28.3 28.0±0.2	-	-	-	3	16.4-18.0 17.2±0.4	24.8-26.4 25.8±0.5	

Стадия	р. М	Малая Биже ((65 экз.)	Низовья р. Тентек (26 экз.)			Пойма р. Тентек, Красная речка (42 экз.)			
развития	число экз.	L (MM)	Lcd (мм)	Кол-во экз.	L (MM)	Lcd (MM)	число экз.	L (MM)	Lcd (MM)	
31	_		-	1	9.88	11.07	_		_	
32	_	-	-	9	10.4-14.8 12.1±0.4	13.9-18.2 16.2±0.6	_	-	-	
33	5	11.8-12.7 12.0±0.2	11.6-18.3 15.5±1.1	7	12.1-15.3 13.4±0.5	12.7-21.4 16.0±1.4	_	_	_	
34	1	11.4	16.2	2	12.4-14.1 13.3±0.9	17.9-18.8 18.3±0.5	_	_	_	
35	15	10.8-13.0 12.3±0.2	16.1-18.9 17.2±0.2	5	14.3-15.7 14.8±0.2	18.2-21.2 19.4±0.5	_	-	_	
36	9	12.3-14.2 13.2±0.2	16.0-19.7 18.2±0.4	2	16.5-18.9 17.7±1.2	22.1-25.7 23.9±1.8	_	_	-	
37	_	_	=	-	_	_	_	_	_	
38	9	12.5-18.6 16.0±0.6	15.5-25.7 20.3±1.2	_	-	_	11	14.9-17.1 16.1±0.2	15.6-23.3 19.7±0.7	
39	4	17.0-19.0 17.8±0.5	21.5-23.4 22.3±0.4	-	_	_	7	16.2-18.8 16.9±0.3	20.1-22.9 21.2±0.5	
40	13	16.2-20.0 17.6±0.3	20.4-24.3 22.5±0.4	_	_	-	10	16.3-18.9 17.5±0.3	18.3-24.6 21.5±0.7	
41	4	16.8-17.9 17.4±0.3	16.6-23.1 21.2±1.5	_	_	=	13	16.3-18.9 17.3±0.2	18.4-24.3 21.6±0.6	
42	5	15.4-18.3 16.6±0.5	20.9-26.3 22.5±1.3	_	-	_	1	15.7	18.5	

Рис. 2. Нормальный ротовой аппарат головастика *P. ridibundus* A – стадии 31-33; Б – стадии 34-41; I – зубной ряд P-1 с разрывом; II – зубной ряд P-1 без разрыва, сплошной

Таблица 4. Вариабельность первого нижнего зубного ряда у головастиков *P. ridibundus*

№	Водоём	Зубной ряд Р-1 состоит из двух частей, имеет разрыв в центральной части	Зубной ряд Р-1 сплошной, без разрыва
1	Низовья р. Аксу (37 экз.)	16.2% (6 экз.)	83.8% (31 экз.)
2	Ст. Матай, пойма р. Аксу (32 экз.)	9.7% (3 экз.)	90.3% (28 экз.)
3	Безымянная река, пойма р. Аксу (31 экз.)	3.2% (1 экз.)	96.7% (30 экз.)
4	Р. Тентек (26 экз.)	34.6% (9 экз.)	64.5% (17 экз.)
5	Красная речка (пойма р. Тентек) (41 экз.)	2.4% (1 экз.)	97.6% (40 экз.)
6	Р. Малая Биже (60 экз.)	1.7% (1 экз.)	98.3% (59 экз.)
7	Вдхр. Акешке (41 экз.)	4.9% (2 экз.)	95.1% (39 экз.)
8	Оз. Линьковое (32 экз.)	3.1% (1 экз)	96.9% (31 экз.)
9	Р. Каскеленка (31 экз.)	48.4% (15 экз.)	51.6% (16 экз.)

Анализ исследованного материала показал, что строение ротового аппарата головастиков P. ridibundus не всегда соответствовало норме. Как правило, вариации затрагивали зубные ряды, однако в единичных случаях наблюдалась деформация других частей ротового аппарата, например, рогового

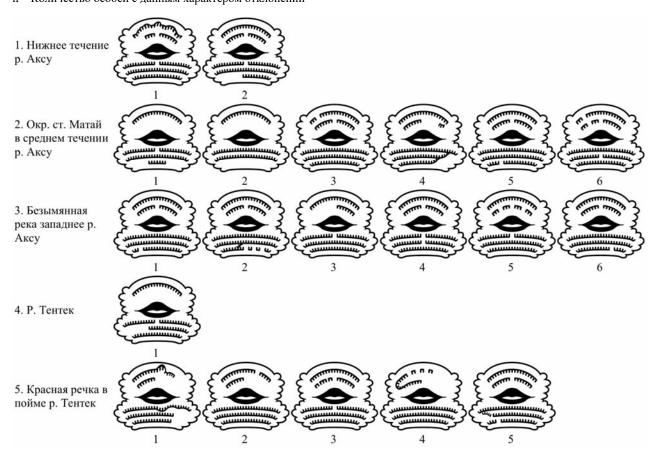
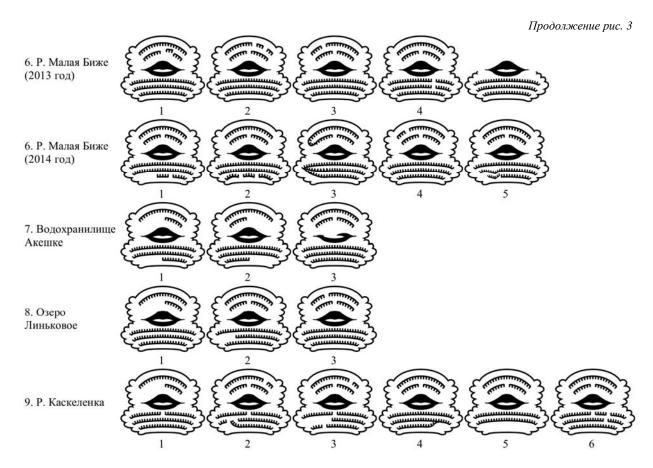

клювика. В таблице 5 приведены отклонения в строении ротового аппарата головастиков озёрной лягушки для 9 выборок из юго-востока Казахстана, а на рисунке 3 схематически изображены описанные отклонения.

Таблица 5. Аномалии в строении ротового аппарата головастиков *P. ridibundus* из исследованных выборок


Выборка	Nº*	Характер отклонений	Распол	ожение	n	Стадия развития
			справа	слева		
	1	Деформация и искривление А-1;	+	-	1	37
р. Аксу		Частичная редукция А-2	+	_		27
	2	Частичная редукция Р-3	+	_	1	37
	1	Двухстороннее укорочение Р-3	·	+	2	32
	2	Полная редукция Р-3		-	1	32
	3	Разрыв в А-1	+	=	2	36
ст. Матай (пойма р. Аксу)	4	А2 слева редуцирован до небольшого искривлённого пенька P-2 и P-3 укорочены и соединены косой перемычкой с P-1	_	+ +	1	38
r	5	Разрыв в Р-3	+	_	1	39
	6	Разрыв в A1 Разрыв в A2	+ +	- -	1	39
		Разрыв в Р-2	+	+		
	1	Разрыв в Р-3	+	I	1	36
Безымянная	2	Разрывы и частичная редукция зубчиков в Р-3; Р-2 и Р-3 соединены косой перемычкой	- +	+ -	1	36
река	3	Частичная редукция А-2	+	-	1	36
западнее р. Аксу	4	Разрыв в Р-2	-	<u> </u>	1	37
p. rikey	5	Разрывы в А-2	+	+	1	37
	6	Разрыв в Р-3	-	+	1	39
		Частичная редукция Р-2	+	-	1	32
•	1	Искривление и частичная редукция А-1; Частичная редукция А-2; Искривление Р-1; Частичная редукция Р-2; Частичная редукция Р-3	- - - -	+ + + + + +	1	38
Красная	2	Разрыв в A-1; Частичная редукция A-2	= -	+ +	2	39
речка (пойма р. Тентек)	3	Двойной разрыв в А-2	+	=	1	39
p. renien	4	Практически полная редукция А-1, остались только небольшие островки; Частичная редукция А-2	+	+ +	1	39
	5	Искривление A-2 и срастание с A-1 Разрыв в P-2 со смещением вверх; Разрыв в P-3	+ + + +		1	41
	1	Разрыв со смещением в А-2	_	+	1	35
	2	Двойной разрыв в А-1	-	+	1	35
р. Малая	3	Разрыв в А-1	+	=	1	35
Биже 2013 год	4	Разрыв в Р-1 Разрыв в Р-2	<u>-</u> -	+ +	1	35
	5	Нет верхней губы (вероятно, механическая травма)	-	F	1	35
р. Малая Биже	1	Разрыв в Р-3; Частичная редукция Р-3	- +	+ -	1	38
2014 год	2	Разрывы в Р-3; Искривление Р-3	+ +	+ +	1	38

		Срастание А-1 и А-2;	+	_		
	3	Срастание Р-1, Р-2 и Р-3	+	_	1	38
	4 Разрыв в А-1		+	-	1	38
	5	Искривление Р-2;	+	_	1	39
	,	Искривление и разрыв Р-3	+	_	1	39
	1	Частичная редукция А-2	+	_	1	32
	1	Частичная редукция Р-3	+	_	1	32
вдхр. Акешке	2	Частичная редукция А-2	_	+	1	36
•	2	Частичная редукция Р-3		+	1	30
	3	Деформация рогового клювика	+		1	34
	1	Частичная редукция А-2	+	-	1	36
оз. Линьковое	2	Частичная редукция Р-2	+	_	1	36
	3	Разрыв в А-1	+	=	2	38
	1	Частичная редукция А-2	+	=	1	32
		Разрыв в А-1;	-	+		
	2.	Разрыв в Р-2;	+	_	1	33
	2	Р-3 деформирован и врастает в место разрыва	+	_	1	33
		P-2				
р Касколошка		Разрыв в А-1;	_	+		
р. Каскеленка	3	Частичная редукция Р-2;	+	_	1	34
		Разрыв в Р-3	+	_		
	4	Р-3 деформирован и врастает в Р-2	_	+	1	35
	5	Полная редукция Р-3	-	+	2	35, 36
	6	Разрыв в Р-1;	-	+	1	38
		Разрыв в Р-2	_	+	1	50

Примечания: №* – соответствует номеру схематичного изображения на рисунке 3; n – Количество особей с данным характером отклонений

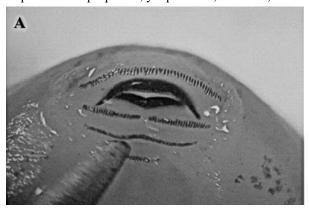
Рис. 3. Аномалии в строении ротового аппарата головастиков *P. ridibundus* из исследованных выборок. Номер под каждым рисунком соответствует порядковому номеру внутри выборки в таблице 5.

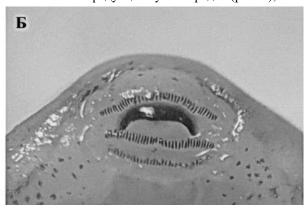
Анализируя строение ротового аппарата головастиков озёрной лягушки *P. ridibundus* на различных стадиях развития, мы выявили четыре типа отклонений от строения, описанного в таблице нормального развития для данного вида (Гниденко, 2002):

- 1. Разрывы (иногда с частичным смещением) зубных рядов (39.1% от общего количества аномалий);
 - 2. Полная или частичная редукция зубных рядов (26.1%);
 - 3. Срастание зубных рядов (4.3%);
 - 4. Искривление и деформация зубных рядов (2.2%).

Таблица 6. Соотношение различных типов отклонений в строении ротового аппарата головастиков *P. ridibundus* в исследованных выборках

№	Выборка	Разрывы	Редукция	Срастание	Искривление	Сочетание разных типов
1	Низовья р. Аксу	50%			1	50%
2	Ср. теч. р. Аксу, окр. ст. Матай	50%	37.5%	-	-	12.5%
3	Безымянная река западнее р. Аксу	66.7%	16.65%	-	-	16.65%
4	Низовья р. Тентек		100%		1	_
5	Красная речка, пойма р. Тентек	16.7%	-	-	-	83.3%
6	Р. Малая Биже	55.6%	_	11.1%	_	33.3%
7	Вдхр. Акешке	=	66.7%	=	33.3%	-
8	Оз. Линьковое	50%	50%	=	-	-
9	Р. Каскеленка	14.3%	42.8%	14.3%	_	28.6%
	Итого (по всем выборкам)	39.1%	26.1%	4.3%	2.2%	28.3%


Наиболее часто встречались однократные или многократные разрывы зубных рядов, реже – редукция зубных рядов, срастание и деформация отмечены единично. В ряде случаев (28.3%) ротовой аппарат имел не один тип отклонений, а комбинацию двух и более. Наименее значимым в данном случае можно считать первый тип отклонений, поскольку разрывы зубных рядов могут быть следствием механических повреждений в процессе питания. Прочие три типа с большой вероятностью свидетельствуют о нарушениях в процессе формирования данных структур.


Встречаемость выделенных типов отклонений оказалась различной в исследованных выборках (табл. 6, рис. 3). Полная редукция Р-3 была отмечена у единичных экземпляров лишь в двух выборках: окр. ст. Матай и р. Каскеленка, частичная редукция наблюдалась практически во всех выборках. Деформация и искривление зубных рядов были отмечены в трёх выборках: р. Аксу, Красная речка и р. Малая Биже. Срастание зубных рядов или врастание одного ряда в другой было отмечено в пяти выборках: окрестности ст. Матай, Безымянная река, Красная речка, р. Малая Биже, р. Каскеленка.

При наблюдении нескольких нарушений зубной формулы у одного экземпляра (всего 22 экз.), в большинстве случаев (50% - 11 экз.) они имели одностороннее расположение, в 23% (5 экз.) случаев отмечено симметричное укорочение или полная редукция зубного ряда, в 27% (6 экз.) случаев нарушения располагались бессистемно. У остальных головастиков отклонения были единичными.

Встречаемость особей с аномалиями (табл. 5, рис. 3) в исследованных выборках составила:


- с низовий р. Аксу 5.4% (2 особи из 37), отклонения выражались в искривлении и частичной редукции зубных рядов;
- из окрестностей ст. Матай (ср. течение р. Аксу) 25.8% (8 особей из 31), отклонения выражались в разрывах, укорочении, слиянии, частичной или полной редукции зубных рядов (рис. 4);

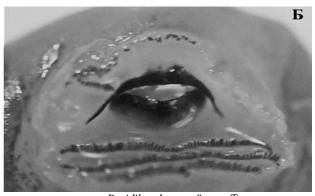
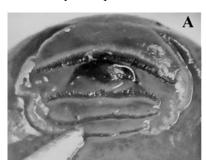
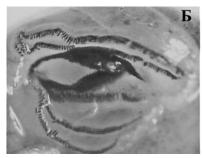


Рис. 4. Частичная и полная редукция зубного ряда P-3 у головастиков *P. ridibundus* из окрестн. ст. Матай в среднем течении р. Аксу: **A** – частичная двухсторонняя редукция P-3; **Б** – полная редукция P-3.


- с безымянной реки западнее р. Аксу 19.4 % (6 особей из 31), отклонения выражались в разрывах, частичной редукции и слиянии зубных рядов;
- \bullet с низовий р. Тентек -3.8% (1 особь из 26), отклонение выражалось в частичной редукции второго нижнего зубного ряда;
- с верховий р. Красная речка (пойма р. Тентек) 14.6% (6 особей из 41), отклонения выражались в разрывах, смещении, искривлении, частичной редукции зубных рядов (рис. 5);



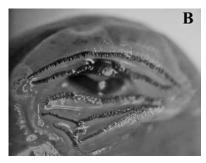


Рис. 5. Искривление, срастание и редукция зубных рядов у головастиков *P. ridibundus* в пойме р. Тентек: А – Искривление А-1 и Р-1, частичная редукция А-1, А-2, Р-2 и Р-3; Б –Практически полная редукция А-1 и частичная редукция А-2, Искривление А-2 и срастание с А-1

- с р. Малая Биже -16.7% как в 2013, так и в 2014 гг. (5 из 30 особей в обоих случаях), отклонения выражались в разрывах искривлении, частичной редукции и слиянии зубных рядов (рис. 6);
- \bullet из вдхр. Акешке -7.3% (3 особи из 41) отклонения выражались в частичной редукции зубных рядов, у одной особи на стадии 34 отмечена деформация верхней части рогового клювика;
- с оз. Линьковое 12.5% (4 особи из 32), отклонения выражались в редукции и разрывах зубных рядов;
- с р. Каскеленка 22.6% (7 особей из 31) отклонения выражались в разрывах, редукции, слиянии зубных рядов.

Рис. 6. Укорочение и редукция, срастание и искривление зубных рядов у головастиков *P.ridibundus* с р. Биже: **A** – Разрыв и частичная редукция Р-3; **Б** – Срастание А-1 и А-2; срастание Р-1, Р-2 и Р-3; **В** – Искривление Р-2, искривление и разрыв Р-3

Таким образом, встречаемость особей с отклонениями в строении ротового аппарата варьировала в разных водоёмах. Л.Я. Боркин и коллеги (2012) предложили порог встречаемости аномалий в 5%, однако при выборке не менее 100 особей. В связи с недостаточным объемом нашего материала, для удобства оценки различий между выборками в данной работе мы предлагаем считать низким уровнем вариабельности встречаемость отклонений менее чем у 10% особей, средним – от 10% до 20% и высоким – более 20%.

Низкий уровень вариабельности был отмечен у головастиков из низовий рек Тентек и Аксу и вдхр. Акешке; средний – у головастиков из оз. Линьковое, Красная речка, р. Малая Биже, безымянная река западнее р. Аксу; высокий – у головастиков с р. Каскеленки и ст. Матай в среднем течении р. Аксу.

Если оценивать соотношение различных типов отклонений и встречаемость особей с отклонениями в исследованных выборках, то можно предположить, что состояние озёрной лягушки наиболее благополучно в низовьях рек Тентек и Аксу и в вдхр. Акешке. Несколько менее благоприятными оказались оз. Линьковое, Красная речка, р. Малая Биже и безымянная река в пойме р. Аксу. Наименее благоприятными для жизни условиями характеризовались р. Каскеленка и окрестности ст. Матай.

Заключение. В результате анализа изменчивости ротовых аппаратов головастиков *P. ridibundus* из природных популяций Юго-Восточного Казахстана доказано, что для строения нормального ротового аппарата головастиков характерна изменчивость первого нижнего зубного ряда P-1, выраженная в наличии или отсутствии разрыва в центральной части. Показана высокая степень изменчивости строения ротового аппарата головастиков озёрной лягушки, на основании которой выделено 4 основных типа отклонений от нормального строения. По нашему мнению, такие типы, как редукция, срастание, искривление и деформация зубных рядов свидетельствуют о нарушениях в процессе формирования ротового аппарата с большей вероятностью, нежели разрывы. При наличии у одного экземпляра нескольких нарушений зубной формулы преобладало их одностороннее расположение. Наибольшее количество особей с отклонениями наблюдалось в выборках из р. Каскеленка, а также из окрестностей железнодорожной станции Матай. Поскольку в данных местах отлова наблюдается наиболее выраженное антропогенное воздействие, мы предполагаем, что данный фактор мог повлиять на морфологию личинок в целом и ротовой аппарат в частности. Однако это предположение требует специального исследования.

Исходя из выше изложенных данных, такой внешний морфологический признак, как строение ротового аппарата у головастиков, может являться удобной характеристикой состояния популяций озёрной лягушки. Для подобных работ лучше всего использовать личинок до 39-й стадии развития, с хорошо развитым личиночным ртом.

Литература

Афоничева Я.В., Бондарева А.А., Баланюк Е.В., Бибик Ю.С. Изучение соответствий между стадиями развития задних конечностей и ротовых аппаратов в ходе нормального развития головастиков зеленых лягушек//«Біологія: від молекули до біосфери». Матеріали V Міжнародної конференції молодих науковців. Харків: Оперативна поліграфія, 2010. С. 337-338.

Бибик Ю.С., Коваленко М.С., Кучкова А.Г. Влияние эффекта группы на развитие головастиков зелёных лягушек//«Біологія: від молекули до біосфери». Матеріали V Міжнародної конференції молодих науковців. Харків: Оперативна поліграфія, 2010. С. 338-339.

Бибик Ю.С. Какие факторы определяют тип ротового аппарата головастиков зеленых лягушек?//«Біологія: від молекули до біосфери». Матеріали V Міжнародної конференції молодих науковців. Харків: Оперативна поліграфія, 2010. С. 339-340.

Боркин Л.Я., Безман-Мосейко О.С., Литвинчук С.Н. Оценка встречаемости аномалий в природных популяциях (на примере амфибий)//Труды Зоологического института РАН, 2012. Т. 316. №4. С. 324-343.

Вершинин В.Л. Амфибии как индикаторы состояния урбанизированных экосистем//Урбоэкосистемы. Проблемы и перспективы развития. Материалы III международной научно-практической конференции. Ишим: Издательство ИГПИ им.Ершова, 2008. С. 171-173.

Гниденко Е.Н. Некоторые аспекты развития и формирования личиночных органов озёрной лягушки (Amphibia: Ranidae) Юго-Восточного Казахстана//Selevinia. №1-4. 2002. С. 48-59.

Дуйсебаева Т.Н., Березовиков Н.Н., Брушко З.К., Кубыкин Р.А., Хромов В.А. Озёрная лягушка (*Rana ridibunda* Pallas 1771) в Казахстане: изменение ареала в XX столетии и современное распространение вида//Современная герпетология. Т. 3/4. 2005. С. 29–59.

Заброда С.Н., Кадалаева В.А., Лебеденко С.В., Петров Ю.А. Размножение и развитие озёрной лягушки в условиях Северо-Западного Приазовья//VI Всесоюзн. герпетолог. конф. Киев, 1989. С. 89.

Захаров А.В. Яблоков А.В. Новые методы изучения почвенных животных в радиоэкологических исследованиях. М.: Наука, 1985. С. 176-185.

Спирина Е.В. Амфибии как биоиндикационная тест-система для экологической оценки водной среды обитания. Автореф. канд. дис. Ульяновск, 2007. 23 с.

Терентьев П.В. Лягушка. М., 1950. 345 с.

Dujsebayeva T., Arifulova I., Gnidenko E., C. Giacoma. The Study of the Development of Middle Asiatic Tetraploid Green Toad (Amphibia: Bufonidae) with Notes on Some Infraspecific Differences within *Bufo viridis* Complex//Rus. J. Herp. Vol. 11. №3. 2004. Pp. 230-246.

Guenther R. Zur Larvenmorphologie von *Rana ridibunda* Pall., *R. lessone* Cam. und deren bastard *R. esculenta* L. (Anura, Ranidae)//Mitteilungen aus dem zoologischen Museum in Berlin, 1978. 54 (1). 161-179.

McDiarmid R.W., Altig R. Tadpoles. The Biology of Anuran Larvae. The University of Chicago, 1999. 458 p.

Summary

Irina I. Arifulova, Marina A. Chirikova. About anomalies of larval mouthpart structure of the marsh frog Pelophylax ridibundus in natural populations of South-Eastern Kazakhstan.

Variability of larval mouthpart of the marsh frog is presented in this report. Anomalies of larval mouthparts of the marsh frog were described. Four types of deviations were isolated in normal labial teeth row formula. Differences in the occurrence of species with anomalies between various populations were detected. Larval mouthparts of the marsh frog in natural populations demonstrated high degree of variability.

УДК 599.32: 591.41+616.15 (575.2)

Морфометрическая изменчивость эритроцитов крови у ондатры Ondatra zibethicus (Rodentia, Cricetidae)

Харадов Александр Владимирович, Кадырова Бубуайым Кадыровна Биолого-почвенный институт НАН КР, Бишкек, Кыргызстан

Артерии и вены у ондатры относительно тонкостенные с большим просветом, следовательно, они хорошо растягиваются и вмещают большой объём крови, что обеспечивает при нырянии стабильную циркуляцию кровеносной системы (Осинский, 1987). По содержанию эритроцитов кровь ондатры напоминает таковую нутрии и бобра. Сходны формы и размеры эритроцитов (диаметр ~ 7 мкм). На картину крови влияют время года, характер питания и состояние животного. Сезонность сказывается на красной крови, а способ лова и связанные с ним травмирования — на белой крови. Установлено, что у самцов в 1 мл. крови содержится 6632 тыс. эритроцитов, а у самок 4952 тыс. мл. (Салганская, 1962). В крови у ондатры зимой эритроцитов больше. Повышение сродства крови к О2 зимой коррелирует с уменьшением концентрации в эритроцитах дисфосфоглицерата (Mactrthur, 1984).

Показатели числа эритроцитов имеют половые, возрастные и сезонные изменения (Седалищев и др., 1977). В условиях патологии диаметр эритроцитов может возрастать до 16 мкм. Климат, возраст, пол, образ жизни, болезни и другие внутренние и внешние факторы могут оказывать влияние на величину среднего диаметра эритроцита (Гольберг, Лебина, 1969). В настоящее время наблюдаются, случаи тяжёлых заболеваний системы крови различными формами лейкозов, злокачественными видами анемии и другими расстройствами функциональной деятельности кроветворных органов, нередко заканчивающиеся летальными исходами (Иванова, 1983). Изучение изменения крови, вызываемое болезнями животных и под воздействием изменений внешней среды, является важной задачей современной гематологии.

Одной из основных функций крови считается дыхательная — транспорт кислорода от лёгких к органам и тканям и углекислоты в обратном направлении. Исходя из дыхательной задачи крови, необходимы исследования клеток крови у животных испытывающих повышенную потребность в кислороде. Из грызунов к ним относится ондатра. Большое значение имеют размеры эритроцитов. Чем они мельче, тем больше их суммарная поверхность, следовательно, и скорость насыщения гемоглобина кислородом.

Количество крови в организме ондатры составляет 8% (7-11%) от веса тела. Относительный объем эритроцитов определен в 40%, от всей массы крови. Число эритроцитов в среднем равно 5.7 млн./мм³. Объем одного эритроцита составляет 71 мкм³ (Коржуев и др., 1979). Эволюция эритроцитов у ондатры происходила в направлении снижения размера клеток и повышении их численности с целью обеспечения подъема гемоглобина без повышения вязкости крови (Promislow, 1991). Эритроциты – это клетки крови, содержащие кровяной пигмент – гемоглобин. Клетки постоянно образуются в красном костном мозге, поскольку они систематически разрушаются в печени и селезенке. Эритроциты живут 3-4 месяца.

Кыргызстан горная страна, и с увеличением высоты местности над уровнем моря возрастает кислородная недостаточность, обусловленная понижением атмосферного давления. По мере снижения барометрического давления снижается парциальное давление кислорода и скорость насыщения им гемоглобина. Усиливается чувствительность организма к недостатку кислорода в горных условиях, что вынуждает производить большие затраты энергии при передвижении в этих условиях (Щварц и др., 1968).

Наблюдающееся уменьшение диаметра клетки эритроцита у горных животных наряду с увеличением количества эритроцитов приводит к относительному увеличению поверхности эритроцита, что имеет особое значение в условиях дыхания разреженным горным воздухом. В то же время у животных низменных местностей эритроциты относительно крупнее по величине, но количество их меньше, чем у животных горных районов. В горах воздух сильно разрежен. Чем ниже парциальное давление в воздухе кислорода, тем меньше его поглощается в лёгких гемоглобином. Параллельно с увеличением числа эритроцитов у горных животных повышается содержание гемоглобина, и изменяются размеры эритроцитов, благодаря чему возрастает суммарная их поверхность (Кудрявцев, Кудрявцева, 1974).

Продолжительность пребывания животного под водой определяется содержащимся в организме запасом кислорода и темпами его расходования. При этом большое значение играет различие в интенсивности обмена у разных групп водных животных. У бобра и ондатры содержание гемоглобина по Сали равно 128%, у водной полевки 88%, что является результатом разной степени приспособленности к нырянию. Количество эритроцитов и гемоглобина стоит в прямой зависимости от общей активности

животного. Более подвижные формы имеют и более высокие гематологические показатели. 100% соответствует 16-17 г гемоглобина в 100 мл крови (Щварц и др., 1968).

Материал. Собран в 2009-2010 гг. в Чуйской долине (700 м над ур. моря) -17 экз. и в Иссык-Кульской котловине (1700 м) -3 экз. Пробы взяты ежемесячно, с февраля по ноябрь (кроме апреля). Всего исследовано 20 ондатр, из них 13 самцов и 7 самок. Грызуны отнесены к 6 возрастным группам (2, 3, 5, 6, 7, 8), их возраст от 1.5 до 9-12 месяцев, вес от 205 до 1070 грамм.

Методика. Морфологический анализ крови — важный и объективный метод контроля за физиологическим состоянием организма. Основной приёмом этого метода — промеры эритроцитов (Иванова, 1983). Нормальные величины среднего диаметра эритроцитов (СДЭ) 7.55 ± 0.009 мкм (Тодоров, 1961). Существуют различные методы эритроцитомерии: галометрический, прямые микроскопические, электронные, во влажных и сухих препаратах (Гольберг, Лебина, 1969; Циркина, 1975). Нами использован прямой микроскопический метод, при котором измерение диаметра эритроцитов производилось под микроскопом МБИ — 6, с помощью окуляра х7 объектива х90 и тубуса х2.5, что составило 1575-кратное увеличение эритроцитов. Для забора крови использовали шприцы с иглами, подготовленные предметные и шлифовальные стекла. Кровь забирали из сердца с помощью шприца, под углом в 45°. Для изготовления мазков крови использовались предметные стекла размером 1.2 х 26.1 х 75.6 мм, которые мыли обезжиренным мылом, щелочью или моющим порошком. Затем тщательно полоскали в слабом растворе соляной кислоты, промывали в проточной воде в течение суток и высушивали спиртом. Высушенные предметные стекла перед использованием протирали чистой марлей. Чистые стекла хранили в смеси спирта и эфира (в равных частях) в банке с притертой пробкой.

Участок кожи, где предполагалось брать кровь, освобождали от волос и обезжиривали спиртом. Мазок делали из второй капли крови. К капле крови на предметом стекле под углом в 45° подводили шлифовальное стекло и проводили им справа налево. Кровь покрывала предметное стекло тонким слоем. Качественный мазок должен быть совершенно ровным и иметь желтоватый цвет. Мазки сушили на воздухе и писали этикетку. Мазки фиксировали в абсолютном метиловом спирте в течение 3-5 минут. Предметные стекла помещали в плоскодонные ёмкости и заливали одним из фиксаторов так, чтобы они погрузились в него полностью. После окрашивания препарат споласкивали струей дистиллированной воды. Наиболее часто использовали 3 метода окраски: двухмоментная окраска по Паппенгейму; окраска эозиновокислой метиленовой синькой по Май-Грюнвальду; комбинированный метод (Кудрявцев, Кудрявцева, 1974).

Перед началом измерения находили поле с эритроцитами, которые не соприкасались друг с другом. Во избежание повторного измерения эритроцитов, работу проводили в каждом из четырех делений окуляр-микрометра. Затем столик передвигали на новое поле. Для получения более точных результатов промеряли клетки только правильной округлой формы.

Результаты исследования и обсуждение. Сравнительный анализ цифрового материала среднего диаметра эритроцитов (СДЭ) у ондатр (17) из Чуйской долины (пруды: «Манас», «Стеклозавод», «РЦ») и Иссык-Кульской котловины (3) (побережье окрестностей г. Балыкчи), показал, что у особей из Чуйской долины СДЭ = 6.64 мкм, а Иссык-Кульской 6.74 мкм. Разница СДЭ между этими двумя популяциями составила 0.10 мкм, в пользу иссык-кульских особей (они растут на 1000 м выше). Наши данные несколько разнятся от утверждений Л.О. Салганськой (1962) о том, что у горных животных размер эритроцитов как правило, меньше, чем у равнинных. Вероятно, это связанно с тем, что в Иссык-Кульской котловине обследовано всего три экземпляра животных. Кроме того, в Чуйской долине водоёмы пресные, а в Иссык-Кульской котловине вода солоноватая, что может влиять на диаметр эритроцитов.

В Украине у самцов ондатры диаметр эритроцитов составлял 7.19 мкм, у самок 7.40 мкм (Салганська, 1962). Наши исследования показали, что средний диаметр эритроцитов у 13 самцов определен в 6.63 (6.62 – 7.28) мкм. (табл.). У самок этот показатель был несколько выше – 6.76 (6.19 – 7.07) мкм. Несмотря на то, что минимальные и максимальные значения диаметра эритроцитов у самцов были выше, чем у самок, однако средний показатель оказался большим всё-таки у самок за счет двух показателей >7.0 мкм. Разница между міп. и тах. у самцов составила 1.02 мкм, у самок 0.88 мкм, а между полами – 0.13 мкм в пользу самок, как и в Украине, где этот показатель не превышал 0.21 мкм, в пользу самок (Салганська, 1962).

Возраст животного влияет на величину среднего диаметра эритроцита (Гольберг, Лебина, 1969; Седалищев, 1977). 20 обследованных зверьков отнесены к 7 возрастным группам: $\mathbf{1}$ -я – 1.5 мес.; $\mathbf{2}$ -я – 2.0 мес.; $\mathbf{3}$ -я – 3.0 мес.; $\mathbf{5}$ -я – 5.6 мес.; $\mathbf{6}$ -я – 7.0 мес.; $\mathbf{7}$ -я. – 8.0 мес.; $\mathbf{8}$ -я – 9-12 месяцев (Харадов, 2012). Группы 1, 2 и 3, поскольку их возраст был в пределах 1,5 – 3,0 месяцев нами были объединены. Средний диаметр эритроцитов в этих группах определен в 6.53 (6.26 – 6.92) мкм (рис.1). Установлено, что с возрастом СДЭ увеличивался от 6.53 мкм (1,2,3 группы) до 7.05 мкм (8 группа). Диапазон разброса в 1,5

2,3 группах между тах. и т

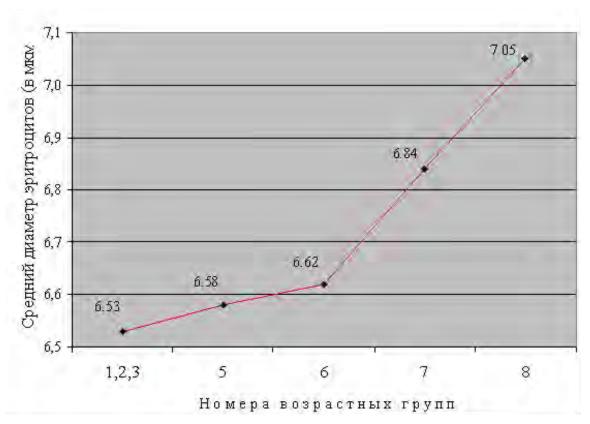
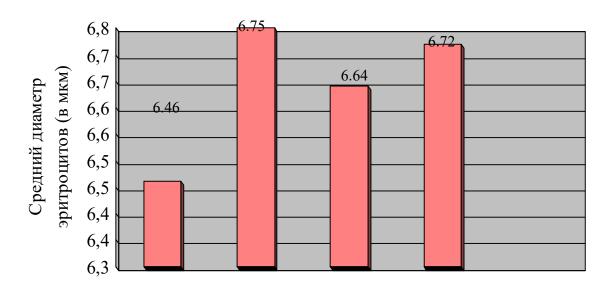

Сезонные изменения влияют на показатели эритроцитов (Гольберг, Лебина, 1969; Седалищев, 1977; Салганская, 1962; Масtrthur, 1984). Нами 20 ондатр отловлены во все сезоны года; зима — 1 экз.; весна — 6 экз.; лето — 10 экз.; и осень — 3 экз. Отмечено, что наименьшие показатели среднего диаметра эритроцитов у ондатры было в зимний период — 6.46 мкм, а наибольший весной — 6.75 мкм (рис. 2). Затем летом произошло уменьшение СДЭ до 6.64 мкм, а осенью, вновь обозначился подъём этого показателя до 6.72 мкм. Наибольший разброс СДЭ выявлен между зимним и весенним периодами — 0.29 мкм в пользу весны. Наименьший разброс установлен между весной и осенью — 0.03 мкм также в пользу весеннего сезона.

Таблица. Средний диаметр эритроцитов у самцов и самок ондатр Кыргызстана


№	Дата	· ·		Номер возрастной	сдэ	Место сбора (водоемы)	
		Вес (в г)	общая длина (в см)	группы			
			Самцы				
1.	28.02.09	710	531	5	6.46	«Манас»	
2.	28.03.09	940	528	7	6.90	«РЦ»	
3.	11.05.09	840	474	6	6.77	- // -	
4.	та же	1030	532	8	7.28	- // -	
5.	21.05.09	880	509	6	6.57	- // -	
6.	28.06.09	960	551	7	6.69	- // -	
7.	та же	205	318	1	6.55	- // -	
8.	15.08.09	470	452	2	6.26	- // -	
9.	та же	310	392	2	6.36	- // -	
10.	23.11.09	817	527	6	6.54	«Стеклозавод»	
11.	25.06.10	500	490	3	6.56	«РЦ»	
12.	25.07.10	455	547	7	6.72	«Балыкчы»	
13.	08.08.10	765	535	5	6.59	«РЦ»	
Всего	28.06.09 23.11.09	205- 1030	318- 551	1-3 5-6	6.26- 7.28	«Манас», «РЦ», «Стеклозавод», «Балыкчы».	
			Самки		l .		
1.	28.03.09	835	500	6	6.19	«РЦ»	
2.	11.05.09	1070	517	8	6.82	- // -	
3.	15.08.09	780	547	5	6.70	- // -	
4.	27.10.09	915	549	7	7.05	- // -	
5.	25.06.10	820	565	6	7.07	- // -	
6.	27.07.10	525	456	3	6.92	«Балыкчы»	
7.	07.09.10	890	535	6	6.57	- // -	
всего	28.03.09 07.09.10	525- 1070	456- 549	3,5-8	6.19- 7.07	«РЦ», «Балыкчы»	
итого	28.02.09- 23.11.09	205- 1070	318- 551	1-3, 5-8	6.19- 7.28	«Манас», «РЦ», «Стеклозавод», «Балыкчы»	

Установлено 7 диаметров эритроцитов: 4.32; 5.04; 5.76; 6.48; 7.20; 7.92; 8.64 мкм. Мы выделили три группы среднего диаметра эритроцитов: 6.19-6.46 мкм; 6.54-6.82 мкм и 6.90-7.28 мкм. Диапазон (разброс) СДЭ в первой группе составил 0.27 мкм, во второй -0.28 мкм и в третьей -0.38 мкм.

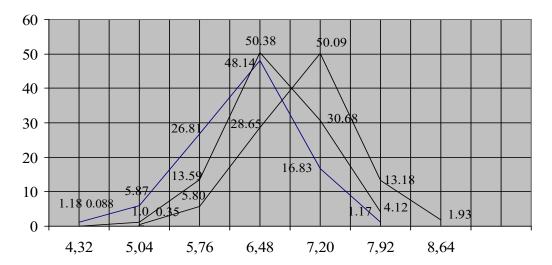

Исследование трех групп (по возрастающей их диаметра) клеток эритроцитов показало, что у первой (48.14 %) и второй (50.38 %) групп клеток наиболее часто встречались диаметры 6.48 мкм (рис. 3). В третьей группе (более крупные клетки) больше половины (50.09 %) имели диаметр 7.20 мкм. Наименьшее количество клеток имели диаметры 4.32 мкм (0.08 %), 5.04 мкм (0.35 %), а также 7.92 мкм (1.17 %) и 8.64 мкм (1.93 %), в зависимости от группы клеток. Диаметр 4.32 мкм отмечен в двух группах (1.2) диаметр, а 8.64 мкм только в одной (3).

Рис 1. Изменчивость среднего диаметра эритроцитов у ондатр разного возраста (n = 20).

Рис 2. Размер эритроцитов у ондатр в зависимости от сезона года (n = 20).

Рис. 3. Три группы клеток с различным средним диаметром эритроцитов и их соотношение: **1.** 6.19 - 6.46 (n=4); **2.** 6.54 - 6.82 (n=11); **3.** 6.90 - 7.28 (n=5

выводы

У самок ондатры СДЭ больше, чем у самцов -6.76 мкм против 6.26 мкм. С возрастом СДЭ повышается от 6.53 мкм у молодых до 7.05 мкм у взрослых.

Увеличение диаметра эритроцитов у грызунов имеет два пика –весенний (6.75 мкм) и осенний (6.72 мкм).

Самыми малочисленными оказались клетки эритроцитов с диаметром 4.32 мкм, 5.04 мкм и 8.64 мкм, 0.08 %, 0.35 % и 1.93 %, в зависимости от группы клеток.

Литература

Гольберг И. Д., Лебина Г. Д. Диаметр эритроцитов в норме и патологии. Томск. 1969.

Иванова Н. Т. Атлас клеток крови рыб. М. 1983.

Коржуев П. А., Балобанова Л. В., Модератова З. М. Количество дыхательных белков в организме ондатры. Дыхательные белки некоторых групп соврем. животных. М. 16 - 20. 1979.

Кудрявцев А. А., Кудрявцева Л. А. Клиническая гематология животных. М. 1974.

Осинский Л. П. Структурно-функциональные показатели кровеносной системы у ондатры//Тр. Ин-та зоол. АН УССР. 4:6-10.1987.

Салганская Л. А. Изучение картины крови как один из дополнительных методов экологических исследований// Вопросы экологии. Киев. 4: 142–143.1962.

Салганська Л. О. Про морфологію крові ондатры. Доповіді АН УРСР. 6. Києв, 1962. С. 809-811.

Седалищев В. Т., Довгоброд Н. К., Кондакова З. И. Гематологические показатели ондатры Центральной Якутии// Экол.- физиол. адаптации животных и человека к условиям Севера. Якутск, 1977. С. 131–136.

Тодоров Й. Клинические лабораторные исследования в педиатрии. София. 1961.

Циркина А. С. Справочник по клиническим лабораторным методам исследования. М. 1975.

Шварц С. С., Смирнов В. С., Добринский Л. Н. Метод морфо-физиологических индикаторов в экологии наземных позвоночных. Свердловск. 1968.

Харадов А. В. Возрастные группы и корреляция их с морфометрий тела ондатры//Selevinia. 20. 2012. C. 31–36.

Mactrthur R. A. Seasonal changes in hematological and respiratory properties of muskrat (*Ondatra zibethicus*) blood.//Can. J. Zool. 62(4). 1984. P. 537–545.

Promislov D. E. L. The evolution of mammalian blood parameters: patterns and their interpretation//Physiol. zool. 64(2). 1991. P. 393–431.

Summary

A. V. Kharadov, B. K. Kadyrova. Morphometric variation of erythrocytes of muskrat Ondatra zibethicus

The problems of morphological variability of erythrocyte sizes, as well as the variability of various diameters of cells in certain blood samples are presented in the article.

ФАУНА, ЗООГЕОГРАФИЯ

УДК 597.08: 591.9 (574)

Рыбы Казахстана: аннотированный список, исправленный и дополненный (по состоянию на 31 декабря 2016 г.)

Дукравец Геннадий Михайлович*, Мамилов Надир Шамильевич**, Митрофанов Игорь Валерьевич***

*Институт проблем биологии и биотехнологии КазНУ им. аль-Фараби, Алматы, biogend@mail.ru
**Казахский национальный университет им. аль-Фараби, Алматы, Kasaxcraн, mamilov@gmail.com
***Department of Biology, McGill University, Montreal, Canada, igor.mitrofanov@mcgill.ca

Впервые список рыбообразных и рыб Казахстана опубликовали В.П. Митрофанов и Г.М. Дукравец в «Книге генетического фонда фауны Казахской ССР» (1989). Тот список включал 104 вида и не был исчерпывающим в связи с тем, что работа над фундаментальной сводкой «Рыбы Казахстана», обобщающей соответствующие сведения, ещё не была завершена. В 1992 г. в 5-м томе указанной сводки авторы представили более полный список из 120 видов. Однако и в нём отсутствовали некоторые морские рыбы Каспия, не заходящие в пресные воды, и ряд интродуцентов, о которых достоверных сведений ещё не было.

Следующий список был опубликован через 7 лет в виде «Четырехъязычного словаря названий рыб Казахстана» (И. Митрофанов и др., 1999). В нём был уже 151 вид, но и он был не безупречен. В него попали более 10 видов, не встречающиеся в республике. Это, в частности, кета, горбуша, чёрный амур, туркестанский сомик, некоторые каспийские бычки. В то же время в этом списке нет ряда видов, например, верховки и головешки-ротана, а таксономический статус отдельных видов дискуссионен.

Четвёртый список рыб Казахстана, включающий 147 видов (Карпов, 2005), тоже не избежал недостатков. Так, до сих пор не получило достоверного подтверждения включение в этот список многочешуйного анабарилиуса (*Anabarilius polylepis*), якобы обнаруженного в р. Сырдарье в 2002 г. Есть в списке таксономические неточности и пробелы, связанные с уточнением в дальнейшем положения ряда видов в системе, в частности, каспийских бычков, и обнаружением некоторых из них, ранее не отмечавшихся в казахстанских водах.

Видовые аннотации в двух последних списках отсутствуют или же ограничены кратким указанием местообитания и хозяйственного значения. Кроме того, они опубликованы в малодоступных изданиях мизерным тиражом и практически не доходят до широкого круга специалистов.

Опубликованный нами в 2010 г. уточнённый аннотированный список рыбообразных и рыб Республики Казахстан (Дукравец и др., 2010 а, б) основан на вышеуказанных списках и на новых оригинальных и литературных данных, полученных к тому времени. В него вошли все виды, обитающие в Казахстане, в том числе и те, которые хотя бы однажды или единично отмечались в естественных водоемах республики и были достоверно идентифицированы.

По состоянию на 2010 г. список рыбообразных и рыб Казахстана включал, по нашим данным, 147 видов, из которых наличие 8 видов нуждалось в подтверждении. К последним относились 5 видов бычков рода *Benthophilus*, которые, судя по указанным в литературе их ареалам, могли встречаться в казахстанском секторе Каспия, но достоверных данных об этом не было, а также речной угорь (*A. anguilla*), буффало (*Ictiobus cyprinellus*) и вьюн (*M. fossilis*). Все они были выделены в списке курсивом.

Настоящий, исправленный и дополненный список насчитывает уже 156 видов, главным образом за счет казахстанской части бассейна Каспия, где благодаря комплексным мониторинговым исследованиям последних лет выявлено 8 ранее не отмечавшихся видов: белопёрый пескарь (Romanogobio albipinnatus), рыбец (Vimba vimba), щиповка хвалынская (Cobitis amphilekta), трехиглая колюшка (Gasterosteus aculeatus) и пять видов бычков – пуголовки туркменская (Benthophiloides turcomanus), Абдурахманова

(Benthophilus abdurachmanovi), Берга (Benthophilus leobergius), Световидова (Benthophilus svetovidovi), бычок Ильина (Knipowitschia iljini Berg). При этом пуголовка Абдурахманова заменила в списке азовскую пуголовку (В. magistri), а пуголовка Берга — звездчатую пуголовку (В. stellatus), каспийскими подвидами которых они соответственно прежде считались. Кроме того, добавлена пропущенная в предыдущем списке аквариумная рыбка гуппи (Poecilia reticulata), дикие самовоспроизводящиеся популяции которой отмечались в бассейнах рек Малая и Большая Алматинки, и обнаруженный в 2015 г. в верховье р. Эмель чужеродный для Казахстана восьмиусый голец (Lefua costata).

Курсивом в настоящем списке выделены также 8 видов, наличие которых в казахстанских водах возможно, но требует подтверждения. Это те же 6 видов, что и в предыдущем нашем списке (угорь, буффало, вьюн и пуголовки шипоголовая, узкоголовая, узкорылая), а также трехиглая колюшка, глубоководный бычок и голец рода *Dzhikhunia*, описанный по единственному экземпляру из коллекции, собранной в бассейне р. Терс. Кроме того, по ряду видов семейства Бычковые внесены исправления и уточнения таксономии в соответствие с современными данными. Некоторые видовые аннотации дополнены вновь открывшимися сведениями.

Порядок отрядов, семейств и видов, их таксономический статус, латинские и русские названия приводятся, в основном, по Ю.С. Решетникову и др. (1997) с изменениями по Н.Г. Богуцкой и А.М. Насека (2004). Также были учтены рекомендации специализированных ихтиологических баз данных (Eschmeyer 2016; Froese, Pauly, 2016). Кроме того, таксономический статус китайского бычка (Gobiidae) дан по Е.Д. Васильевой (2007), а статус чаткальского подкаменщика (Cottidae) подвергнут сомнению по последним исследованиям (Дукравец и др., 2002). Казахские названия даны преимущественно по «Четырехязычному словарю названий рыб Казахстана» (И. Митрофанов, Баимбетов, Мур, 1999).

Материалы о распределении, биологии и численности видов взяты из капитальных сводок Л.С. Берга (1948, 1949), Е.Н. Казанчеева (1981), В.П. Митрофанова с соавторами (1986-1992) и дополнены оригинальными, литературными и фондовыми данными последних лет (Богуцкая, Насека, 2004; Васильева, 2007; Васильева, Васильев, 2012; Дукравец, Мамилов, 2012; Дукравец, 2011, 2013, 2015; Карпов, Калдаев, 2005; Мамилов и др., 2013, 2015; Чернова, Орлова, 2012; Чибилёв, Дебело, 2009 и др.).

Распространение видов указано, как правило, только по Казахстану, а не по всему их ареалу. При характеристике редких и исчезающих видов, занесенных в Красные книги Казахстана (2008), Алматинской области (2006) и сопредельных стран — Таджикистана (1997), Китая (1998), Туркмении (1999), России (2001), Узбекистана (2003) и Кыргызстана (2006), этот факт отмечается. Для рыб бассейна Каспия приводится их природоохранный статус по критериям МСОП (IUCN, 2001) (Богуцкая и др., 2013).

Изменения в настоящий список внесли Г. М. Дукравец и Н.Ш. Мамилов.

Тип Chordata – Хордовые Подтип Vertebrata (Craniata) – Позвоночные (Черепные) Надкласс Agnatha – Бесчелюстные Класс – Petromyzontes (Cephalaspidomorphi) – Миноги Отряд Petromyzontiformes – Миногообразные

Семейство Petromyzontidae Bonaparte, 1832 – Миноговые; миногалар

1. Caspiomyzon wagneri (Kessler, 1870) — каспийская минога; каспий миногасы. Встречается в Каспии, в реках Волга и Урал. Эндемичный проходной вид. Размножается в мае-июне в реках, откладывая икру на песчаный и галечниковый грунт. Плодовитость до 38 тыс. икринок. Развитие с метаморфозом, после которого скатывается в море Питание предположительно не паразитическое. Длина до 55 см. В прошлом была объектом промысла, сейчас встречается очень редко.

В Казахстане в новейшей истории (с 1992 г.) известны лишь единичные случайные поимки. Так, в июне 2015 г. на заиленном участке р. Жайык (Урал) в 5 км от моря был выловлен 1 экз. только что завершившей метаморфоз личинки (пескоройки) длиной 12.5 см и массой 2.0 г (Бокова и др., 2015). Занесена в Красные книги Казахстана (2008), России (2001) и Туркменистана (1999). По критериям МСОП (IUCN, 2001) её статус оценён как близкий к угрожаемому (Near Threatened – NT).

- **2.** Lethenteron japonicum (Martens, 1868) [= Lethenteron camtschaticum (Tilesius, 1811)] **тихоокеанская минога**; тыныкмұхит миногасы. Изредка встречается в реках Иртыш и Тобол. Проходной вид. Развитие с метаморфозом. Преимущественно паразитический тип питания. Длина до 43 см. Малоценный промысловый вид.
- 3. Lethenteron kessleri (Anikin, 1905) **сибирская минога**; сібір миногасы. Обитает в р. Иртыш и её притоках. Мелкий пресноводный вид. Размножается в мае-июне, при температуре воды 13-15°C.

Развитие с метаморфозом на 5-6-ом году жизни. Личинки питаются детритом и водорослями, взрослые практически не питаются. Длина личинок до 25 см, взрослых – на 2-3 см меньше. Непромысловый вид. Численность сокращается.

Надкласс Gnathostomata – Челюстноротые Класс Osteichthyes – Костные рыбы Отряд Acipenseriformes – Осетрообразные

Семейство Acipenseridae Bonaparte, 1832 – Осетровые; бекірелер

- **4.** Acipenser baerii Brandt, 1869 **сибирский осётр**; сібір бекіресі. Водится в р. Иртыш на всём протяжении, включая водохранилища и оз. Зайсан. Известны полупроходная и туводная формы. Нерестится не ежегодно в мае-июле на песчано-галечниковых грунтах. Средняя плодовитость около 300 тыс. икринок. Растёт медленно. Половозрелым становится в 11-14 лет. Питается преимущественно зообентосом, реже рыбой. Максимальная длина 3 м, масса тела до 200 кг. Ценный промысловый вид, численность которого сильно сократилась. Занесён в Красную книгу Казахстана (2008). Выращивается в частных рыбоводных хозяйствах на территории большей части Республики, откуда может попадать в естественные водоёмы. Натурализации в новых водоёмах не отмечалось.
- 5. Acipenser gueldenstaedtii (Brandt et Ratzeburg, 1833) русский осётр; орыс бекіресі. Проходная рыба. Обитает в Каспийском море, в реках Волга и Урал. В последней прежде поднимался выше Оренбурга. Нерестится в реках в мае при температуре 12-20°С на песчано-галечниковых грунтах. Половозрелости достигает в возрасте 8-10 лет. Плодовитость до 1 млн. икринок, средняя около 400 тыс. Питается ракообразными, моллюсками, рыбой. Известный максимальный возраст 35 лет, длина 210 см, масса тела более 60 кг. Ценная промысловая рыба. Численность сокращается. По критериям МСОП вид находится в критическом состоянии (Critically Endangered CR): A2bcde.
- В качестве подвида выделяется эндемичный малочисленный персидский осетр *A. gueldenstaedtii* persicus Borodin, 1897, обитающий в основном на юге моря, но заходящий на нерест также в реки Волга и Урал (Берг, 1911; Песериди, 1986). Одно время он номинировался как отдельный вид согласно описанию Н.А. Бородина, что нашло отражение в предыдущем нашем списке (Дукравец и др., 2010 а). Однако согласно последней ревизии (Ruban et al., 2008, 2011) персидский осетр не является валидным видом.
- 6. Acipenser nudiventris Lovetsky, 1828 шип; кәдімгі бекіре, пілмай. Описан из бассейна Аральского моря, где впоследствии элиминирован. Населяет бассейн Каспия, на нерест заходит в реки Волга и Урал. В бассейне Балхаша акклиматизирован, но промысловой численности не достиг. Проходной вид, вероятно образующий и пресноводные формы. Половозрелым становится в возрасте 8 лет. Нерестится при температуре воды 10-22°С на галечниковом субстрате. Плодовитость может превышать 1 млн. икринок, но в среднем около 500 тыс. Питается, главным образом, зообентосом и мелкой рыбой. Достигает массы тела около 60 кг при длине 230 см. Известен возраст до 33 лет. Ценный промысловый вид, повсеместно сокращающий свою численность. Аральская и балхашская популяции занесены в Красную книгу Казахстана (2008), аральская в Красную книгу Узбекистана (2003) СR, каспийская популяция в Красные книги Туркмении (1999) и России (2001). Включен в Красный список МСОП как вид, находящийся в критическом состоянии (СR): A2cde.
- 7. Acipenser ruthenus Linnaeus, 1758 **стерлядь**; сүйрік . Речной и полупроходной пресноводный вид. Водится в реках Урал, Иртыш, Тобол. В прошлом отмечался в устье р. Эмба. Половозрелым становится обычно в возрасте 4-5 лет. Нерестится весной при температуре воды 8-18*С на песчаногалечниковом субстрате. Плодовитость до 150 тыс. икринок, средняя несколько десятков тысяч. Питается преимущественно зообентосом, реже мелкой рыбой и икрой рыб. Живёт, по-видимому, до 15 лет. Достигает длины более 60 см и массы тела более 2 кг. Ценный промысловый вид. Численность повсеместно сокращается. Уральская популяция внесена в Красную книгу России (2001). Вид в целом по критериям МСОП считается уязвимым (VU).
- **8.** Acipenser stellatus Pallas, 1771 **севрюга**; шоқыр. Обитает в бассейне Каспия. Дважды делались попытки акклиматизации в Арале, в итоге не увенчавшиеся успехом, хотя в первые годы были обнадеживающими. Проходной вид. На нерест заходит в реки, в том числе в Урал и в Волгу. Созревает в возрасте 5-7 лет. Нерестится весной при температуре воды 13-17°С на галечниковых грунтах. Максимальная плодовитость около 1 млн. икринок, средняя около 250 тыс. В пище организмы зообентоса, нектобентоса, крабы и рыбы. Известен возраст до 25 лет. Достигает длины более 200 см и массы тела 63 кг. Ценный промысловый вид. Численность его сократилась до критического состояния (СR): А2сde (МСОП, 2001).
- **9**. *Huso huso* (Linnaeus, 1758) **белуга**; қортпа. Населяет бассейн Каспийского моря. Проходная рыба. Основные нерестовые реки Волга и Урал. Половозрелость наступает в возрасте 12 лет. Нерестится

не ежегодно в мае при температуре воды 7-15°С. Икра откладывается на твердый грунт (камни, галька, крупнозернистый песок). Плодовитость до 5.7 млн. икринок, средняя — 800 тыс. Растёт быстро, достигая самых больших размеров среди пресноводных и проходных рыб: длина около 450 см, масса тела до 1000 кг. Предельный возраст, по-видимому, около 50 лет. Молодь питается беспозвоночными (хирономиды, ручейники, бокоплавы, мизиды, олигохеты), личинками и икрой рыб. Взрослые особи — хищники, потребляют многие виды рыб (вобла, лещ, сазан, бычки, кильки, сельдь, судак, осётр, собственная молодь и др.). Естественное воспроизводство белуги сильно сократилось. Ценный промысловый вид, находящийся в критическом состоянии (СR): A2bcd.

10. Pseudoscaphirhynchus fedtschenkoi (Kessler, 1872) — сырдарьинский лжелопатонос; сырдарья тасбекіресі. Обитает в р. Сырдарье и оросительных каналах её бассейна. Эндемичный, реликтовый, туводный вид. Нерестится весной. Плодовитость до 4 тыс. икринок, обычно меньше. Питается, в основном, водными личинками насекомых. Достигает 27 см длины без хвостовой нити. Плохо изученный непромысловый вид. Встречается очень редко и единично. Достоверных случаев обнаружения этого вида на территории Республики Казахстана в течение последних 25 лет не отмечено. Находится под угрозой исчезновения. Занесён в Красные книги Казахстана (2008), Таджикистана (1997) и Узбекистана — СК (2003).

Отряд Clupeiformes – Сельдеобразные

Семейство Clupeidae Cuvier, 1816 - Сельдевые; майшабақтар

- 11. Alosa brashnikovii (Borodin, 1904) каспийская морская сельдь, бражниковская сельдь; каспий теңіз майшабағы, бражников майшабағы. Различают 8-9 подвидов. В Северном Каспии встречается во время нерестового хода и размножения типичный подвид A.b.brashnikovii, который в реки не заходит. Созревает в возрасте 2-3 года. Нерестится в море с конца апреля до середины мая на глубине 1-3 м. Плодовитость до 178 тыс. икринок, в среднем 66 тыс. Питается беспозвоночными и мелкой рыбой. Длина до 48 см, масса тела до 500 г. Ценная промысловая рыба.
- 12. Alosa caspia (Eichwald, 1838) каспийский пузанок; каспий қарынсауы. Таксономия вида плохо разработана. Выделяют несколько таксонов, из которых в Казахстане представлены А. (caspia) caspia, А. (caspia) salina, встречающиеся в Северном Каспии (Богуцкая и др., 2013). Эвригалинная рыба. Заходит в низовья рек, но выше дельты обычно не поднимается. Созревает на 3-4-ом году жизни. Нерестится порционно с конца апреля до середины июня в пресной или солоноватой воде. Плодовитость 116-218 тыс. икринок. Питается зоопланктоном и мизидами, в том числе и во время нереста. Длина до 28 см, масса тела до 220 г. Возраст до 9 лет. Ценная промысловая рыба.
- 13. Alosa kessleri (Grimm, 1887) каспийская проходная сельдь, черноспинка; қарақаптал, каражон. Представлена двумя подвидами: типичным (бешенка) A.k. kessleri и волжской многотычинковой сельдью A.k. volgensis (Berg, 1913), обитающими в бассейне Каспия. В последнее время они рассматриваются в статусе отдельных видов (Богуцкая и др., 2013). Проходная рыба. Нерестится в реках Волга и Урал в мае-июле порционно. Созревает на 4-5-ом году жизни. Плодовитость 100-312 тыс. икринок. Питается ракообразными, личинками насекомых и мелкой рыбой. Растёт быстро. Возраст до 7 лет. Длина до 52 см, масса до 1800 г. Ценная промысловая рыба. Численность волжской сельди сильно сократилась и она занесена в Красные книги Казахстана (2008), Туркменистана (1999) и России (2001). МСОП (IUCN, 2001): Endangered B2ab(iii, v).
- **14**. Alosa saposchnikowii (Grimm, 1885) **большеглазый пузанок**; бадырақкөзді қарынсау. Обитает в Северном Каспии во время нерестового хода и размножения, затем мигрирует на юг моря. Солоноватоводный вид, в реки не заходит. Нерестится в море порционно в апреле-мае при температуре воды 14-17°С. Икринки полупелагические. Плодовитость до 166 тыс., в среднем около 90 тыс. икринок. Половозрелым становится на 3-4-ом году жизни. Питается мелкой рыбой и рачками. Длина тела до 30 см, средняя масса около 150 г. Промысловая рыба.
- **15**. *Alosa sphaerocephala* (Berg, 1913) **круглоголовый** (аграханский) **пузанок**; жұмырбасты қарынсау. Обитает в Северном Каспии везде, кроме опресненных районов. Нерестится в мае-июне при температуре воды 15-20°C на глубине 1-6 м. Длина до 23 см. Малоценная промысловая рыба.
- **16**. Clupea harengus Linnaeus, 1758 атлантическая сельдь; атлант майшабағы. Подвид C.h. membras балтийская сельдь (салака), в 1950-е годы вселялся в Аральское море, где акклиматизировался, но значительной численности не достиг. В 1980-е годы салака встречалась в Арале повсеместно. Созревала в 3-4 года при длине около 15 см. Нерестилась единовременно при температуре воды 6-18°C в прибрежье на глубине 3-6 м. Плодовитость составляла до 130 тыс. икринок. Питалась рачковым планктоном, личинками хирономид, бокоплавами, креветками, моллюсками и мелкой рыбой.

Длина достигала 22 см, масса тела – 135 г. В настоящее время в Малом море ловится единично. Промысловая рыба.

- 17. Clupeonella cultriventris (Nordmann, 1840) черноморско-каспийская тюлька; кара-теңіз каспий тюлькасы. В Каспийском море водится эвригалинная морфа, встречающаяся вдоль всего побережья и заходящая в низовья рек, а в оз. Челкар пресноводная морфа. Есть мнение (Kottelat, 1997; Богуцкая и др., 2013), что черноморские и каспийские стада тюльки это отдельные виды, соответственно *C. cultriventris* и *C. caspia Svetovidov*, 1941. Возможно, и чархальская тюлька должна иметь видовой статус. Созревает рано на первом втором году жизни, при длине тела 5-7 см. Нерестится порционно с середины апреля до июля, в Северном Каспии почти повсеместно. Плодовитость от 10 до 60 тыс. икринок. Икра развивается в толще воды. Питается в основном зоопланктоном и бентосом, реже мальками и икрой рыб. Длина до 15 см, масса тела до 20 г. Известен возраст до 6 лет. Промысловая рыба.
- **18**. Clupeonella engrauliformis (Borodin, 1904) **анчоусовидная тюлька**; анчоустектес тюлькасы. Обитает преимущественно в Южном и Среднем Каспии. В пресные воды не входит. Держится обычно вдали от берегов, на глубине от 10 до 100 м. Созревает в возрасте 2-3 года при длине тела 9-10 см. Нерестится с апреля по ноябрь в глубоководных районах. Плодовитость от 6 до 60 тыс. икринок, в среднем 25 тыс. Икра пелагическая. Питается, в основном, зоопланктоном. Длина до 15 см, масса тела до 20 г. Возраст до 8 лет. Промысловая рыба.
- 19. Clupeonella grimmi Kessler, 1877 большеглазая тюлька; бадырақкөзді тюлькасы. Морской вид Южного и Среднего Каспия, выше широты Мангышлака обычно не встречается. К берегам не подходит, предпочитая глубины 80-100 м. Созревает на втором-третьем году жизни при длине около 10 см. Нерестится практически круглогодично с пиком в январе-марте в глубоководных районах при температуре воды 6-13°С. Плодовитость до 23.5 тыс., в среднем около 16 тыс. икринок. Питается крупным зоопланктоном, мизидами и молодью рыб. Длина до 18 см, масса тела до 26 г. Промысловый вид.

Отряд Salmoniformes – Лососеобразные

Семейство Salmonidae Rafinesque, 1815 – Лососевые; албырттар

- **20.** Brachymystax lenok (Pallas, 1773) **ленок**; ленок. Описано несколько подвидов, но их статус подвергается сомнению. Типичный подвид Br. lenok lenok населяет реки Южного Алтая, включая бассейн р. Иртыш, а маркакольский Br. lenok savinovi оз. Маркаколь. Последнего сейчас предлагают считать валидным видом (Богуцкая, Насека, 1996). Размножается ранней весной на галечниках и песчаных отмелях. Созревает на 4-ом году жизни. Плодовитость до 5 тыс., в среднем 2 тыс. икринок. Питается в равной степени зообентосом и рыбой. Достигает массы около 2.5 кг. Известен возраст до 10 лет. Ценный промысловый вид.
- 21. *Нисho taimen* (Pallas, 1773) обыкновенный **таймень**; таймен. Водится в р. Иртыш и его правобережных притоках. Возможно, есть в р. Тобол. Туводная рыба. Половой зрелости достигает в возрасте 4-5 лет. Нерестится ранней весной на галечниковых грунтах. Плодовитость в казахстанском ареале у самок массой 7-8 кг до 15.5 тыс. икринок. Растет быстро, достигая в пятигодовалом возрасте длины тела около 80 см. По характеру питания типичный хищник, в его рационе, в основном, рыба, реже бентические беспозвоночные, встречаются птицы и млекопитающие. В ареале достигает массы 80 кг, в Казахстане в последние годы не более 30 кг. Ценный промысловый вид, численность которого в республике быстро сокращается. Включен в Красную книгу Казахстана (2008) по ІІ категории и Китая (1998) по категории уязвимых видов (VU).
- 22. Parasalmo mykiss (Walbaum, 1792) микижа; микижа, бахтах. Образует морские, проходные и пресноводные формы, среди которых выделяют 6 подвидов. Подвид *P. т. mykiss* из водоёмов Камчатки (ранее Salmo mykiss) был вселён в 1980-е годы в бассейн р. Текес, а пресноводная радужная форель (ранее S. gairdnerii, S. iridea) в 1960-е годы акклиматизирована и образовала самовоспроизводящиеся популяции в водоёмах бассейна р. Чилик в юго-восточном Казахстане. Половой зрелости форель достигает здесь в возрасте 2-4 года. Нерестится в феврале-апреле при температуре воды 4-5°С. Икру откладывает в гнёзда на галечниковом грунте. Плодовитость до 5.6 тыс. икринок. Эврифаг: питается зообентосом, рыбой, насекомыми и др. Длина достигает более 50 см, масса тела 6 кг. Ценный промысловый вид. Объект прудового рыбоводства.
- **23**. Salmo trutta Linnaeus, 1758 кумжа; албырт. В Северном Каспии очень редко встречается подвид S. trutta caspius, который в последние годы рассматривается как вид Salmo caspius Kessler, 1877 каспийская кумжа (Богуцкая и др., 2013). Из Аральского моря был известен подвид S. trutta aralensis, не встречающийся уже более 60 лет. Проходные рыбы, но есть и туводные, речные популяции.

Размножение осенне-зимнее, при температуре воды 3-13°С. Плодовитость до 45 тыс. икринок. Икра донная, зарывается в гальку. Взрослые питаются мелкой рыбой, мизидами, креветками. Длина до 130 см, масса до 13 кг. Ценный промысловый вид. Каспийская кумжа внесена в Красные книги Казахстана (2008), Туркменистана (1999) и России (2001), аральская — в Красные книги Казахстана (2008) и Узбекистана — EX (2003).

Семейство Coregonidae Cope, 1872 – Сиговые; аксахалар

- 24. Coregonus albula (Linnaeus, 1758) европейская ряпушка; көкшұбар.
- 25. Coregonus lavaretus (Linnaeus, 1758) обыкновенный сиг; ақсаха.
- **26**. *Coregonus peled* (Gmelin, 1789) **пелядь**, сырок; пелядь.

Эти сиги — широко распространённые арктические рыбы, не обитавшие прежде в Казахстане. В 1960-1980-е гг. они неоднократно вселялись проинкубированной икрой и личинками в более чем 40 водоёмов на севере и северо-востоке республики. Во многих водоёмах прижились и давали потомство, нередко и гибридное. По данным Казахрыбвода, в 60-е гг. в оз. Узынколь и в Бухтарминское вдхр. вселялся личинками байкальский омуль (*C. autumnalis migratorius*), а также в 1977-1980 гг. в озера Малое Чебачье и Сливное вселялся муксун (*C. muksun*). Эти интродукции дали отрицательный результат. В 2009 г. отмечена поимка пеляди в бассейне р. Или, куда она, вероятно, попала из КНР. Среди сиговых различают много подвидов и экоформ. Их систематика в Казахстане нуждается в уточнении.

Половозрелость обычно наступает в возрасте 2-х лет. Нерест начинается в конце октября при температуре воды 6°С и ниже. Проходит он дружно за 10-15 дней на уплотнённых грунтах. Плодовитость колеблется в Казахстане в широких пределах: у рипуса (крупная ряпушка) 4.5-56 тыс. икринок, у сига-лудоги 21-56 тыс., у пеляди 14-85 тыс. икринок. Оплодотворённая икра развивается всю зиму – 4-5 мес. Рост сигов сильно зависит от состояния кормовой базы. Ряпушка – типичный планктофаг. Пелядь при недостатке зоопланктона может питаться зообентосом и нектобентосом. Сиг-лудога имеет смешанный тип питания, включая даже водоросли, а сиг севанский преимущественно бентофаг (гаммарусы, моллюски, ручейники и др.). Размеры в Казахстане: рипус – до 35 см и 630 г, пелядь – до 37 см и 870 г, севанский сиг – до 40 см и 780 г. Ценные промысловые рыбы. Важные объекты озёрнотоварного рыбоводства (Шустов, Митрофанов, 1992; Горюнова, Данько, 2015).

27. Stenodus leucichthys (Gueldenstaedt, 1772) — нельма, белорыбица; ақбалық, сылан. Представлена двумя подвидами: нельма — St. l. nelma — обитает в бассейне Среднего и Верхнего Иртыша, а белорыбица — St. l. leucichthys — эндемик бассейна Каспия, заходящий в р. Урал. В последние годы их стали обособлять в ранге самостоятельных видов (Богуцкая и др., 2013). Проходная рыба, могущая образовывать и туводные формы. Размножается в октябре-ноябре при температуре воды 1-6°С на каменисто-галечниковом грунте. Плодовитость до 120 тыс., в среднем около 100 тыс. икринок. Питается преимущественно мелкой рыбой. Длина свыше 100 см, масса тела более 10 кг. Ценная промысловая рыба, численность которой сильно сократилась. Нельма внесена в Красные книги Казахстана (2008) и Китая (1998), а белорыбица — в Красные книги Казахстана (2008), Туркменистана (1999) и — уральская популяция — России (2001). Необходимо включение в КК Казахстана на видовом уровне.

Семейство Thymallidae Gill, 1884 – Хариусовые; хариустар

28. *Thymallus arcticus* (Pallas, 1776) – **сибирский хариус**; сібір хариусы. В Казахстане представлен двумя подвидами: типичным, или западносибирским — *Th. a. arcticus*, обитающим в реках Южного Алтая, и маркакольским — *Th. a. brevicephalus* — в оз. Маркаколь. Туводная рыба. Половозрелость наступает на 3-м году жизни. Размножается в мае-июне на галечниках. Плодовитость — до 2 тыс. икринок, средняя около 1.5 тыс. Питается обычно донными беспозвоночными и попадающими в воду насекомыми, в меньшей степени мелкой рыбой. Абсолютная длина — до 30 см, масса тела достигает 1 кг. Промысловый вид.

Семейство Esocidae Cuvier, 1816 – Щуковые; шортантар

29. Esox lucius Linnaeus, 1758 — обыкновенная **шука**; шортан. Широко распространённый вид. Встречается повсеместно, за исключением Балхаш-Алакольского и Таласского бассейнов, ряда изолированных озёр Центрального и Северного Казахстана. Туводная рыба, обитающая как в пресной, так и в солоноватой воде. Предпочитает стоячие или слабопроточные водоемы. Созревает в 2-4 года. Размножается ранней весной — в марте-апреле, на севере республики — до середины мая. Икра откладывается единовременно на глубине до 1 м на вегетирующие или отмершие растения. Плодовитость до 270 тыс. икринок, в среднем около 50 тыс. Типичный хищник: питается наиболее многочисленными и доступными видами рыб после достижения длины тела около 5 см. Растет быстро.

Известная максимальная длина в Казахстане 110 см, масса тела – 16 кг в возрасте 15 лет. Ценный промысловый вид.

Отряд Anguilliformes – Угреобразные

Семейство Anguillidae Rafinesque, 1815 – Угрёвые; жыланбалықтар

30. Anguilla anguilla (Linnaeus, 1758) — речной угорь; өзен жыланбалығы. Чужеродный немногочисленный вид в бассейне Каспия. Проник в Каспий из верховьев Волги, где он стал встречаться после выпуска молоди в оз. Селигер в 1960-е годы. Возможно, проникает и из водохранилищ Оренбургской области, где он акклиматизирован. Периодически отмечаются его поимки в море, в том числе единично в устье р. Урал (в 1973 г. — длиной до 88 см, массой до 1220 г; в 2008 г.- длиной 70 см и массой 780 г). Известны находки в водах Азербайджана, чаще — у берегов Ирана. В последние годы сведений о его встречаемости в водах республики нет.

Отряд Cypriniformes – Карпообразные

Семейство Cyprinidae Bonaparte, 1832 – Карповые; тұқылар

- **31**. Abbottina rivularis (Basilewsky, 1855) речная **абботтина**; өзен абботтинасы. Случайно акклиматизирована в Казахстане и сначала была известна как лжепескарь *Pseudogobio rivularis*. Встречается в бассейнах Арала, Балхаша, Алаколя, Чу, Таласа и др. Весь ареал в республике не уточнен. Туводный вид. Икру откладывает в гнездо на дне водоёма в количестве нескольких сотен. Самец охраняет кладку. В пище обнаружены рачковый планктон, олигохеты, личинки и имаго насекомых, водоросли. Длина рыбы до 12 см. Непромысловый вид.
- 32. Abramis brama (Linnaeus, 1758) лещ; тыран, табан. Прежде считалось, что в Казахстане обитает подвид A. b. orientalis восточный лещ, естественный ареал которого бассейны Каспийского и Аральского морей. Сейчас признаётся, что оснований для выделения подвидов нет. Акклиматизирован в бассейнах Балхаша, Иртыша, Таласа, озёрах Северного и Центрального Казахстана. Полупроходной или туводный вид. Половая зрелость наступает в 3-4 года. Размножается весной и в начале лета. Икру откладывает порционно, в основном, на вегетирующие и отмершие водные растения, реже на другой субстрат. Плодовитость до 700 тыс. икринок, в среднем около 200 тыс. Преимущественно бентофаг, реже потребляет зоопланктон и растения. Предельный возраст 20 лет, обычно не более 14. Масса тела до 3 кг. Ценный промысловый вид.
- 33. Abramis (=Ballerus) ballerus (Linnaeus, 1758) синец; көк-тыран. В последнее время вместе с белоглазкой выделяется рядом исследователей в отдельный род Ballerus Heckel, 1843 синцы (Богуцкая, Насека, 2004; Богуцкая и др., 2013). Встречается в р. Урал, в водоёмах междуречья Волги и Урала, в опресненных участках Северного Каспия. Преимущественно речная, туводная рыба. Половозрелой становится в 3 года. Нерестится в начале лета при температуре воды 17-18°С. Плодовитость до 25 тыс. икринок, которые откладываются на растения. Питается преимущественно зоопланктоном и фитопланктоном, в меньшей степени бентосом. Достигает длины 35 см и массы тела 0.5 кг. Малоценная промысловая рыба.
- **34**. Abramis (=Ballerus) sapa (Pallas, 1814) **белоглазка**; айнакөз. Типичный подвид A.s.sapa обитает в бассейне Северного Каспия, аральский A.s.aralensis в бассейне Арала. Выделение этих подвидов дискуссионно. Полупроходной и жилой вид. Половозрелый с 3-4 лет. Размножается весной. Икру откладывает единовременно на различный субстрат. Плодовитость до 40 тыс. икринок. Преимущественно бентофаг. Длина до 39 см, масса тела до 800 г. Малоценная промысловая рыба. Аральская белоглазка, внесена в Красную книгу Узбекистана VU: D (2003).
- **35**. Alburnoides oblongus Bulgakov, 1923 **ташкентская быстрянка** (**верховодка**); ташкент үкішабақтектес. Обитает в бассейнах притоков Сырдарьи рек Арысь, Бугунь, Келес, Чирчик и др. Туводная рыба. Биология слабо изучена. Половозрелости достигает в 2 года. Нерестится в мае. В пище зоопланктон, личинки насекомых, растения. Малочисленный непромысловый вид, занесённый в Красную книгу Узбекистана VU: D (2003). Возможно, в том же нуждаются и казахстанские популяции.
- **36.** Alburnoides taeniatus (Kessler, 1874) **полосатая быстрянка**; жолақ үкішабақтектес. Водится в бассейнах среднего течения рек Сырдарьи и Чу. Туводная рыба. Созревает на 2-м году жизни. Размножается весной и летом. Икра откладывается на растения порционно. Плодовитость до 9.1 тыс. икринок. В пище водные растения, зоопланктон, личинки насекомых. Длина до 11 см, масса тела чаще не более 5 г. Непромысловый вид, играющий определенную роль в деларвации водоёмов. Систематика родов Alburnus, Alburnoides плохо разработана и нуждается в уточнении.
- **37**. *Alburnus alburnus* (Linnaeus, 1758) **уклея**; үкі шабақ. Пресноводная рыба, обитающая в водоёмах бассейна Северного Каспия, кроме моря, в том числе в пределах Казахстана практически

- повсеместно. С 2000 г. стала встречаться в уловах в реках Тобол, Ишим и Иртыш, где прежде не водилась. Туводная рыба. Половозрелой становится в 2-4 года. Нерестится порционно в мае-июне, откладывая икру на растения. Плодовитость до 5.1 тыс. икринок. Эврифаг, потребляющий наиболее доступный корм: фито- и зоопланктон, макрофиты, зообентос, может поедать икру и личинок рыб. Длина до 14.5 см, масса тела обычно не больше 25 г. Непромысловый вид. Объект любительского рыболовства.
- **38**. Aristichthys nobilis (Richardson, 1845) пёстрый **толстолобик**; шұбар дөңмаңдай. Попал в Казахстан в 1958 г., как объект прудового рыбоводства. Проник в реки Урал, Сырдарья и Или. В двух последних сформировал самовоспроизводящиеся популяции и созревает в 3-4 года. Размножается летом, с середины мая до июля при температуре воды более 20°С. Икра батипелагическая, развивается в потоке воды. Плодовитость обычно не превышает 500 тыс. икринок и коррелирует с возрастом и размерами тела. Питается фито- и зоопланктоном, а также детритом. Может способствовать подавлению «цветения» воды. В республике отмечен возраст до 15 лет, длина до 130 см, масса тела до 75 кг. Ценная промысловая рыба.
- **39**. Aspiolucius esocinus (Kessler, 1874) **шуковидный жерех**, **лысач**; шортантәрізді ақмарқа. Эндемичный реликтовый вид. Водится только в равнинных участках рек и каналов бассейнов Сырдарьи и Амударьи, но сведений о его встречаемости нет уже более 40 лет. Предпочитает мутные водотоки. Размножается весной с возраста 6-7 лет, при достижении длины тела 45-50 см. Плодовитость до 150 тыс. икринок. Типичный хищник, с первого года жизни питается рыбой. Известны особи массой около 3 кг. Внесён в Красные книги Казахстана (2008), Таджикистана (1997), Туркменистана (1999), Узбекистана-EN (2003) и Киргизии (2006).
- **40**. Aspius aspius (Linnaeus, 1758) обыкновенный жерех; акмарка. Представлен двумя подвидами: типичный *А. а. aspius* обитает в реках бассейна Каспия, аральский *А.а. iblioides* в бассейне Арала. Типичный подвид случайно акклиматизирован в бассейне Балхаша. Есть полупроходная и туводная формы. Созревает в возрасте 3-5 лет. Нерестится ранней весной единовременно, на песчаногалечниковых грунтах при температуре воды 5-10°С. Плодовитость до 300 тыс. икринок, в среднем около 100 тыс. Преимущественно хищник, питающийся мелкими рыбами. Достигает длины 70 см и массы тела 7 кг. Ценный промысловый вид.
- 41. Barbus (=Luciobarbus) brachycephalus Kessler, 1872 короткоголовый усач; кыска-басты каяз, теңге-балық. В роде Barbus в последнее время выделяли 2 подрода – Barbus Cuvier, 1816 и Luciobarbus Heckel, 1843. Ко второму (щуковидные усачи) относили каспийских и аральских усачей. Затем статус указанных подродов был повышен до родового (Богуцкая, Насека, 2004). Соответственно короткоголовый усач стал называться Luciobarbus brachycephalus (Kessler, 1872), а усач булат-маи (см. далее) – L. capito (Gueldenstaedt, 1773). Здесь этих усачей мы приводим в традиционном понимании объема рода Barbus. Короткоголовый усач представлен двумя подвидами: аральским B.b. brachycephalus - в бассейнах Арала и Балхаша (в последнем акклиматизирован) и каспийским -B.b.caspius Berg, (1914) – в бассейне Каспия, преимущественно в южной части моря, реже в средней у западного побережья, единично в Волге. Проходная рыба. Аральский усач половозрелости достигает в 5-8 лет. Нерестится единовременно или порционно с конца апреля до августа. Плодовитость – до 1260 тыс. полупелагических икринок. Преимущественно бентофаг, но питается также растениями, насекомыми, икрой и личинками рыб. Длина до 111 см, масса тела до 22 кг, возраст до 22 лет. Ценная промысловая рыба, численность которой повсеместно сильно сократилась. Подвид аральский усач внесён в Красные книги Казахстана (2008), Таджикистана (1997), Узбекистана-ЕN (2003) и Кыргызстана (2006). В Казахстане необходимо занесение в Красную книгу на уровне вида, так как каспийский подвид в водах республики в новейшей истории не отмечен, а в России по критериям МСОП оценивается как «уязвимый» (VU) A2cd.
- 42. Barbus (=Luciobarbus) capito (Gueldenstaedt, 1773) усач булат-маи, чанари; қаяз. Номинативный подвид B.c.capito в бассейне Каспия обитает на юге моря и очень редок в дельте Волги. Возможно заходит в устье р. Урал. Подвид В. с. conocephalus туркестанский усач, населяет бассейны рек Сырдарья и Чу. В Аральском море был редок. Преимущественно пресноводная, жилая рыба. Созревает в возрасте 4-5 лет. Нерестится с конца апреля по июль. Плодовитость ниже, чем у аральского усача: обычно не более 200 тыс. икринок. В пище преобладают растения (высшие и водоросли), но значительна доля и бентоса. Изредка потребляет и мелких рыб. Длина до 70 см, масса тела почти до 6 кг, возраст до 10 лет. Промысловая рыба, численность её сокращается. Подвид туркестанский усач включен в Красные книги Казахстана (2008), Узбекистана- VU: D (2003) и Кыргызстана (2006). Но в Казахстане целесообразна охрана на видовом уровне подобно короткоголовому усачу, поскольку номинативный подвид в Каспии отнесен по критериям МСОП к «уязвимым» (VU) A2cd.
- **43**. *Blicca bjoerkna* (Linnaeus, 1758) **густера**; балпан- балық, шұбар-балық. Преимущественно пресноводная рыба. Встречается в реках Волга, Урал, Эмба, Уил, Сагиз и в придельтовых опресненных

участках Каспия. Созревает на 3-4-м году жизни. Нерестится в мае-июне порционно или единовременно. Средняя плодовитость около 40 тыс. икринок, которые откладываются на вегетирующие или отмершие растения. Питается детритом, растениями, личинками и имаго насекомых. Длина до 34 см, масса тела до 700 г, возраст до 12 лет. Малоценный промысловый вид.

- 44. Сароеtobrama kuschakewitschi (Kessler, 1872) остролучка; сүйрікқанат. Эндемик бассейна Арала, отличающийся сильной гладкой колючкой в спинном плавнике. В Сырдарье и её придаточной системе обитает типичный подвид С.к. kuschakewitschi, а в р. Чу чуйская остролучка С.к. orientalis. Туводный умеренный реофил. Созревает в возрасте 3 года. Нерестится с середины апреля до июля. Плодовитость в р. Чу до 9 тыс. икринок, в Сырдарье в 3-4 раза выше. Икра клейкая, откладывается на разный субстрат. Основная пища детрит, донные обрастания, водоросли, ил, личинки насекомых. Растет медленно. Доживает до 9 лет. Длина до 21 см, масса тела до 150 г, в р. Чу размеры меньше. Промыслового значения не имеет. Численность сокращается. Чуйский подвид включен в Красные книги Казахстана (2008) и Кыргызстана (2006), типичный в Красную книгу Узбекистана (2003).
- 45. Carassius auratus (Linnaeus, 1758) азиатско-европейский карась; азия-еуропалык табаны. Широко распространённый вид, оба подвида которого встречаются в Казахстане. Из них китайский карась, или золотая рыбка С. а. auratus (L.) идентифицирован в республике недавно (Скакун, Горюнова, 2004). Он населяет Балхаш-Илийский и Алакольский бассейны. Другой подвид серебряный карась С. а. gibelio (Bloch, 1782) водится там же и в бассейнах Северного Каспия и Аральского моря, в бессточных системах Северного и Центрального Казахстана. Туводный вид. Становится зрелым в 2-4 года. Нерестится порционно при температуре воды выше 10°С с конца весны и всё лето. Икра клейкая, откладывается на растения. Плодовитость колеблется в широких пределах: от 15 до 345 тыс. икринок. У серебряного карася встречаются однополые популяции. Спектр питания широкий. В основном потребляет зообентос, но также детрит, водоросли, зоопланктон. Длина до 45 см, масса тела до 3.2 кг. Промысловый вид.
- **46.** Carassius carassius (Linnaeus, 1758) **золотой**, или **обыкновенный карась**; мөңке. Распространён в бассейнах Северного Каспия, Иртыша и в бессточных системах Северного и Центрального Казахстана. Нередко обитает вместе с серебряным карасём. Туводный вид. Созревает в 2-5 лет. Нерест проходит порционно в мае-июле, при температуре воды выше 17°С. Икра клейкая, откладывается на растения. Плодовитость до 450 тыс. икринок. Эврифаг: питается зоопланктоном, бентосом и растениями. Рост очень вариабилен по условиям обитания. Известный максимальный возраст 14 лет. Длина рыбы до 40 см, масса до 2 кг. Промысловый вид.
- **47**. Chalcalburnus chalcoides (Gueldenstaedt, 1772) **шемая**; шемей, май-балык. В связи с отсутствием четких морфологических границ между родами Alburnus, Chalcalburnus, Alburnoides некоторые авторы относят шемаю к роду Alburnus (Богуцкая и др., 2013). Представлена двумя подвидами. Типичный Ch. ch. chalcoides обитает в бассейне Каспия, преимущественно на юге моря. Заходит в Волгу и Урал. Полупроходная рыба, нерестится в реках. Другой подвид Ch. ch. aralensis Вегд, 1924 аральская шемая населяла Аральское море, водится в озерах низовьев Сырдарьи. Оба подвида могут образовывать жилые формы. Нерестятся порционно летом, с мая по август, как в пресной, так и в соленой воде. Плодовитость до 74 тыс. икринок, в среднем 30-38 тыс. Пища разнообразна: от фито- и зоопланктона до рыб включительно. В Каспии длина до 36 см, масса до 585 г, возраст до 6 полных лет. В бассейне Арала соответственно до 31 см, до 450 г и до 9 лет. Промысловый вид.
- **48**. Chondrostoma variabile Jakowlew, 1870 волжский **подуст**; еділ қызылкөзі. Встречается в бассейнах рек Волга, Урал и Эмба. Типично речная рыба, но может заходить в пойменные озёра. Половозрелость наступает в возрасте 3-4 года. Размножается весной единовременно, откладывая икру на каменистый грунт. Плодовитость до 12 тыс. икринок. В пище преобладают водоросли, детрит и перифитон. Темп роста умеренный. Известны особи массой более 1.5 кг. Малоценный промысловый вид. Численность невелика. Объект любительского лова.
- **49**. *Сtenopharyngodon idella* (Valenciennes, 1844) **белый амур**; ак амур. В Казахстане акклиматизирован в 1950-е годы. Самовоспроизводящиеся популяции сформировались в реках Волга, Или и Сырдарья. Отмечен в р. Урал. Образует полупроходные и жилые формы. Созревает в 3-5 лет. Нерестится в мае-июне единовременно или порционно. Плодовитость до 2.5 млн. пелагических икринок, развивающихся во время ската по течению. Кормится, в основном, растениями, как водными, так и наземными (на разливах), но может питаться зообентосом и даже мелкими рыбами. Достигает длины более 1 м и массы тела более 30 кг. Ценный промысловый вид. Объект прудового и озёрно-товарного рыбоводства.
- **50.** *Cyprinus carpio* Linnaeus, 1758 **сазан, карп**; тұқы. Представлен подвидом *C. с. carpio* L. европейский сазан. Принятое прежде выделение аральского подвида *C.с. aralensis* дискуссионно. Ранее населял только бассейны Каспия и Арала. Сейчас расселён в республике практически повсеместно,

включая Балхаш-Алакольский и Иртышский бассейны. Полупроходной и туводный вид. Созревает в 3-6 лет Нерест порционный, начинается весной при температуре воды 14°С и продолжается до августа. Клейкую икру откладывает на растения. Плодовитость до 2.5 млн. икринок, чаще до 1 млн. Спектр питания широк: водоросли, детрит, зоопланктон, бентос, иногда молодь рыб. Длина до 80 см, масса до 16 кг. Известный возраст до 19 лет. Ценная промысловая рыба. Природоохранный статус по критериям МСОП: «уязвимый» (VU) А2се.

- **51.** Diptychus (=Gymnodiptychus) dybowskii Kessler, 1874 **голый осман**; қабыршақсыз көкбас. Обитает в горных реках бассейнов Балхаша, Алаколя, Сырдарьи и Иртыша (северные склоны Тарбагатая). Встречается в приграничном участке р. Чу. Туводный вид. Созревает в возрасте 2-4 года. Нерестится в весенне-летнее время единовременно, но есть и порционно нерестующие популяции. Крупная икра откладывается на каменистый грунт. Плодовитость невелика до 12.5 тыс. икринок. Типичный бентофаг. Длина до 30 см. Известный возраст до 11 лет. Непромысловый вид. Объект любительского лова.
- **52.** Diptychus maculatus Steindachner, 1866 **чешуйчатый осман**; қабыршақты көкбас. Обитает в горных реках бассейна Балхаша, в предгорную зону обычно не спускается. Туводный вид. Половозрелым становится на 3-5-м году жизни. Нерестится порционно с весны до осени. Икра крупная, откладывается на каменисто-галечниковый грунт. Плодовитость невысокая до 5 тыс. икринок. Питается донными беспозвоночными. Известный возраст до 11 лет, длина тела до 30 см. Непромысловый вид. Объект спортивно-любительского рыболовства.
- **53.** Gobio gobio (Linnaeus, 1758) **пескарь**; теңге-балық. Широко распространённый вид. В Казахстане представлен четырьмя подвидами: обыкновенный G.g. gobio обитает в реках бассейна Каспия, где предложено рассматривать его как вид G. volgensis Vasil'eva, Mendel, Vasil'ev, Lusk et Luskova, 2008 волжский пескарь (Богуцкая и др., 2013); сибирский G. g. cynocephalus Dyb. в бассейне Иртыша, маркакольский G. g. acutipinnatus Menschikov в оз. Маркаколь, туркестанский G.g. lepidolaemus в бассейне Арала, включая реки Сарысу, Чу и Талас. На основании молекулярногенетических данных сибирского и туркестанского пескарей предложено рассматривать в качестве самостоятельных видов (Mendel et al., 2008; Novak et al., 2008). Туводный вид. Половозрелый со 2-го года жизни. Нерест весеннее-летний, единовременный или порционный. Плодовитость до 5.5 тыс. икринок, откладываемых на плотный грунт. Питается зообентосом, насекомыми, детритом, икрой рыб. Длина до 22 см. Непромысловый вид.
- **54**. *Hemiculter leucisculus* (Basilewsky, 1855) **востробрюшка**; білеу-балық, кәдімгі қырлықұрсақ. Акклиматизирована в водоёмах Казахстана. Встречается в бассейнах Арала, Балхаш-Алаколя, Чу. Весь ареал не уточнен. Отмечена в иранской части бассейна Каспия. Туводный вид. Созревает на 2-3-ем году жизни, достигнув длины 7-10 см. Нерест порционный, с мая по июль. Плодовитость до 50 тыс. пелагических икринок. Питается зоопланктоном, бентосом, насекомыми, растениями и даже мелкой рыбой. Длина до 25 см, масса тела до 220 г. Малоценная промысловая рыба.
- 55. Hypophthalmichthys molitrix (Valenciennes, 1844) белый толстолобик, толпыга; ак дөңмандай. Разводится в прудхозах Казахстана, куда завезён в 1960-е годы из бассейна Амура и рек Китая. Подрощенная молодь выпускалась в дельты Волги и Урала. Вселялся с белым амуром в бассейн Алаколя. Проник в реки Тобол, Или и Сырдарья. В последних сформировались самовоспроизводящиеся популяции. Созревает в 3-4 года. Размножается летом. Плодовитость доходит до 3 млн. икринок. Батипелагическая икра развивается пассивно скатываясь по течению. Питание очень специфично. Достигнув длины 15 мм питается почти исключительно фитопланктоном и детритом. Максимальная длина около 130 см, масса до 45 кг. Ценная промысловая рыба. Может быть эффективным биомелиоратором, подавляющим «цветение» воды.
- **56.** Leucaspius delineatus (Heckel, 1843) обыкновенная **верховка**; кәдімгі бетшабак. Естественный ареал водоёмы Средней и Восточной Европы от Рейна до Волги. В Казахстане была отмечена в бассейне р. Урал в пойменных озерах и прудах (Шапошникова, 1964). Обнаружена вдали от естественного ареала в бассейне Среднего Тобола (Сатин, Коев, 2003), в 2004 г. в оз. Кендикты бассейна р. Ишим, в р. Шерубай-Нура. Длина исследованных рыб до 6 см. Не изученный в Казахстане непромысловый вид.
- **57**. Leuciscus cephalus (Linnaeus, 1758) **голавль**; тұрпан. Сейчас его стали относить к роду Squalius Bonaparte, 1837, который ранее рассматривался как подрод рода Leuciscus (Богуцкая и др., 2013). Обитает в бассейнах рек Урал и Эмба. Туводный вид. Нерестится весной на песчано-галечниковых грунтах. Плодовитость до 193 тыс. мелких икринок. Питается воздушными насекомыми, мелкими рыбами, нередко крупными жуками, мелкими лягушками и растениями. Может достигать длины 80 см и массы тела 4 кг. Малоценная промысловая рыба, не имеющая значения в промысле из-за малочисленности. Объект любительского лова.

- **58**. Leuciscus idus (Linnaeus, 1758) **язь**; аққайран, қара-балық. Представлен двумя подвидами: типичный L.i. idus обитает в дельте Волги, в бассейнах рек Урал и Иртыш, в озёрах и реках на севере и западе республики, а туркестанский L.i. oxianus (Kessler) в бассейне Арала, включая реки Сарысу и Чу. Туводный вид. Половозрелость наступает в 3-4 года. Размножается весной. Мечет икру единовременно на песчаные отмели и на залитую растительность при температуре воды 6-9°С. Плодовитость сильно колеблется по водоёмам: 13.5-186 тыс. икринок. Спектр питания широкий от водорослей до крупных организмов бентоса. Длина до 50 см, масса тела до 4 кг, обычно меньше. Промысловый вид, хотя численность его везде невелика, особенно туркестанского подвида, который в Узбекистане занесён в Красную книгу DD (2003).
- **59**. *Leuciscus lehmanni* Brandt, 1852 **зеравшанский елец**; заравшан тарак балыгы. Прежде в Казахстане вид не был известен. Изредка единично стал встречаться с 2004 г. в низовье р. Сырдарьи, где не изучен. Мелкая непромысловая рыба.
- **60**. Leuciscus leuciscus (Linnaeus, 1758) **обыкновенный елец**; тарақ-балық. В реках бассейна Каспийского моря обитает типичный подвид L. l. leuciscus, а в бассейне р. Иртыш и в водоёмах Центрального Казахстана (реки Нура, Сарысу, Чу) сибирский подвид L. l. baicalensis (Dybowski, 1874), проникший и в бассейн Балхаша. Туводный вид. Половозрелым становится в 2-3 года. Нерестится ранней весной единовременно, откладывая икру на песчаное дно или на растения. Плодовитость до 50 тыс. икринок, чаще до 11.5 тыс. Питается, в основном, бентосом, реже растениями. Длина до 25 см, масса тела до 300 г, обычно меньше. Малоценная промысловая рыба.
- **61**. Leuciscus lindbergi Zanin et Eremeew, 1934 таласский елец; талас тарақ-балығы. Обитает в р. Талас и в водоёмах хр. Каратау. Туводный вид. Созревает в возрасте 2-3 года. Нерестится в начале весны. Икру откладывает единовременно на песчано-галечниковые грунты и корневища растений в реках и в озёрах. Плодовитость до 36 тыс. икринок. Пищу составляют зоопланктон, бентос, водоросли, семена растений, детрит. Длина до 25 см, масса тела до 250 г. Численность сильно колеблется по водоёмам и по годам, но в целом невелика. Малоценная промысловая рыба.
- **62**. *Megalobrama terminalis* (Richardson, 1846) **чёрный амурский лещ**; Амур кара тыраны. Естественный ареал водоёмы Восточной Азии от р. Амур до Южного Китая. В Казахстане чужеродный вид. Обнаружен в 1999 г. в верховье Капчагайского вдхр., куда попал вероятно из КНР. Ловится очень редко и единично. Не изучен. Видовая идентификация нуждается в уточнении. В естественном ареале созревает на 6-м году жизни. Нерестится в реках. Икра пелагическая, развивается, скатываясь по течению. В бассейне р. Амур достигает длины 60 см. Промысловая рыба.
- **63.** Opsariichthys uncirostris (Temminck et Schlegel, 1846) **трегубка** (**троегуб**); үш-ерінді. Естественный ареал водоёмы Восточной Азии. Случайно попал в бассейн р. Сырдарьи в Узбекистане и распространился до низовьев этой реки. Встречается редко, занимая нишу мелкого хищника. Морфологические признаки по сравнению с естественным ареалом практически не изменились. Биология в Казахстане не изучена. Малоценная промысловая рыба.
- **64**. *Pelecus cultratus* (Linnaeus, 1758) **чехонь**, чехня, сабля-рыба; қылыш-балық. Обитает в реках Урал и Сырдарья с придельтовыми участками моря, в пойменных озёрах и водохранилищах. Образует полупроходную и жилую формы. Созревает, в основном, в 3 года, часть рыб на год позже. Нерестится единовременно (в басс. Каспия) и порционно (в басс. Арала) с апреля по июнь при температуре воды не менее 12°С. Плодовитость до 200 тыс. полупелагических икринок. Эврифаг: питается наиболее доступными объектами, включая растения, зоопланктон, бентос и молодь рыб. Известен возраст до 11 лет. Длина до 48 см, масса тела до 1.1 кг. Промысловая рыба.
- **65**. *Phoxinus* (=*Rhynchocypris*) *percnurus* (Pallas, 1814) **озёрный гольян**; көл гольяны. В настоящее время часто рассматривается в составе другого рода *Rhynchocypris*. Представлен двумя подвидами: номинативный *Ph. ph. percnurus* обитает в бассейне Иртыша и озёрах Северного Казахстана, гольян Игнатова *Ph. ph. Ignatowi* (Berg) в реках Селеты, Талды и, возможно, Токрау. Длина до 10 см. Туводный, малочисленный, слабо изученный, непромысловый вид.
- **66.** *Phoxinus phoxinus* (Linnaeus, 1758) **гольян обыкновенный**; кәдімгі гольян. Представлен двумя подвидами: типичный *Ph. ph. phoxinus* обитает в бассейнах Урала и Эмбы, Иртыша и Балхаша (р. Аягуз), в бассейне Алакольских озер; гольян зайсанский *Ph. ph. sedelnicovi* Berg в оз. Зайсан (Бухтарминское вдхр.), в р. Аягуз и в р. Каракол. Туводный вид. Биология изучена слабо. Созревает достигнув длины 3-4 см. Размножается в апреле-июне. Питается мелкими воздушными и придонными беспозвоночными. Длина до 6.5 см. Малочисленный непромысловый вид.
- **67**. *Phoxinus brachyurus* Berg, 1912 **семиреченский гольян**; жетісу гольяны. Прежде считался подвидом обыкновенного гольяна. Обитает в реках юго-восточного Казахстана (бассейны Чу, Или, Алакольских озёр). Туводный вид. Изучен слабо. Нерест порционный с середины апреля до августа. Плодовитость до 2.1 тыс. икринок. Питается мелкими хирономидами, имаго муравьёв, жуков, мошек.

Известный возраст до 7 лет. Длина до 6.5 см. Численность в отдельных биотопах может быть высокой, но в последние годы повсеместно сокращается. Непромысловый вид. Внесён в Красную книгу Алматинской области (2006).

- **68.** Lagowskiella (=Rhynchocypris) poljakowi (Kessler, 1879) **балхашский гольян**; балқаш гольяны. Ранее относился к роду *Phoxinus*. Населяет реки бассейнов Балхаша и Иссык-Куля, а также р. Тентек. Предпочитает водоёмы с заметным течением. Биология плохо изучена. Нерестится летом порционно. Плодовитость до 1.5 тыс. икринок. Длина до 12 см. Точных данных о численности нет. В последние годы везде стал редок. Непромысловый вид. Внесён в Красную книгу Алматинской области (2006).
- **69.** Pseudorasbora parva (Temminck et Schlegel, 1846) **амурский чебачок**; амур шабағы. Случайно акклиматизирован в республике. Распространился по многим водоёмам бассейнов Арала, Балхаша и Алаколя. Отмечен в ирригационных каналах, лагунах, заливах побережья Каспия. Границы ареала не уточнены. Туводный вид. Созревает в возрасте 1 год. Размножается весной и летом, откладывая более 10 порций икры общим числом до 3 тыс. икринок. Преимущественно бентофаг, но может потреблять также зоопланктон и растения. Длина до 11 см. Непромысловый вид.
- **70**. Rhodeus ocellatus (Kner, 1866) глазчатый горчак; теңбіл кекіре. Непреднамеренно попал в бассейн р. Сырдарьи при перевозке растительноядных рыб. По сборам 2011 года идентифицирован в бассейне р. Или (Васильева и др., 2015). Мелкая, длиной обычно 3-6 см, короткоцикличная, высокотелая рыба. Обитает в медленно текучих и в стоячих пресных водах. Биология в Казахстане не изучена. Туводный непромысловый вид.
- 71. Rhodeus sericeus (Pallas, 1776) амурский обыкновенный горчак; амур кәдімгі кекіре. Морфологически неоднородный вид. Обнаружен в 1992 г. в бассейне р. Или и распространился по низовьям её притоков, пойменным водоёмам, мелководьям Капчагайского вдхр. (Карпов, Калдаев, 2005). Есть в Чиликском прудхозе и в равнинном участке р. Большая Алматинка. Видовая идентификация нуждается в уточнении (Дукравец, Мамилов, 2008). Возможно, что сюда попал и китайский горчак (Rh. sinensis Gunther, 1868), обитающий в верхнем течении р. Или (Ren Mulian and other, 1998). Биология здесь не изучена. Пресноводная мелкая короткоцикличная рыба длиной до 6.5 см, массой до 4 г. Перед икрометанием у самок развивается длинный яйцеклад, с помощью которого икра откладывается в мантийную полость двустворчатых моллюсков. Непромысловая рыба.
- 72. Romanogobio albipinnatus (Lukasch, 1933) белопёрый пескарь; акканатшалы тенге-балык. Romanogobio Banarescu, 1961 сначала рассматривался как подрод рода Gobio, однако в дальнейшем статус подрода был повышен до родового (Богуцкая, Насека, 2004). Пресноводная рыба из бассейнов Чёрного и Каспийского морей. Указана для бассейнов Волги и Урала и возможно для р. Эмба (Чибилев, Дебело, 2009; Богуцкая и др., 2013). Биология в Казахстане не изучена. Промыслового значения не имеет.
- 73. Rutilus frisii (Nordmann, 1840) вырезуб; ойықтіс балық. Представлен в Казахстане эндемичным подвидом R. f. kutum кутум, обитающим в бассейне Каспия. Есть мнение (Богуцкая и др., 2013), что это самостоятельный вид R. kutum (Каmensky, 1901) Полупроходная рыба. Заходит в низовья Волги и Урала. Молодь в 1960-е годы была обнаружена в верховьях р. Эмба (Митрофанов, 1973). Нерест весенний, единовременный. Икра приклеивается к растениям, но иногда откладывается и на гальку. Плодовитость до 280 тыс., обычно до 110 тыс. икринок. Живёт до 10 лет. Длина до 65 см, обычная масса тела 1-1.5 кг. Промысловый вид. На севере Каспия в 1980-1990 гг. был редок, в казахстанской части моря почти не встречался и был занесён в Красную книгу республики (1991, 1996, 2008). В последние годы численность кутума возрастает вследствие увеличения масштаба искусственного воспроизводства в Азербайджане, Иране, России.
- 74. Rutilus rutilus (Linnaeus, 1758) плотва, вобла; торта, кара-көз. Широкоареальный евразиатский вид, представленный в Казахстане 4 подвидами, выделение которых дискуссионно. Два из этих подвидов туводные, обитающие почти исключительно в пресной воде (R. r. fluviatilis серушка и R. r. lacustris сибирская плотва). Два другие преимущественно полупроходные (R. r. aralensis аральская плотва и R. r. caspicus северокаспийская вобла). Распространен вид повсеместно, в бассейнах Таласа и Балхаш Алаколя акклиматизирован. Размножается весной единовременно. Плодовитость до 310 тыс., обычно не более 100 тыс. икринок, развивающихся в приклеенном к растениям состоянии. Эврифаг: питается зообентосом, а также фито- и зоопланктоном, макрофитами, детритом; может поедать икру и личинок рыб. Предельный возраст около 15 лет. Известная длина до 50 см, масса тела до 1.5 кг. Промысловый вид.
- **75**. Scardinius erythrophthalmus (Linnaeus, 1758) **краснопёрка**; қызыл қанат. Водится в реках Каспийского и Аральского бассейнов, включая Сарысу и Чу. Туводный вид. Нерест порционный, весенне-летний. Икра откладывается на мягкие водные растения. Плодовитость до 213 тыс. икринок, в

среднем по водоёмам — от 10 до 100 тыс. Половозрелой становится в возрасте 2-3 года. В пище преобладают растения, доля животных компонентов невелика. Известный возраст до 11 лет. Длина до 32 см, масса тела до 600 г. Малоценная промысловая рыба.

- 76. Schizothorax intermedius Mc'Clelland, 1842 обыкновенная маринка; кәдімгі қара-балық. Обитает в бассейнах рек Сырдарья, Талас и в реках хр. Каратау. Проходная и туводная рыба. Половозрелой обычно становится в 3-4 года. Икрометание единовременное в апреле-мае при температуре воды 5-10°С. Плодовитость до 60 тыс., чаще до 20 тыс. икринок. Питается растениями и зообентосом, изредка молодью рыб. Длина до 50 см, масса тела до 1.5 кг. Есть карликовые формы. Промыслового значения не имеет. Объект любительского рыболовства.
- 77. Schizothorax argentatus Kessler, 1874 балхашская маринка; қара-балық. В Балхаш-Алакольском бассейне и в р. Чу обитают 2 подвида: типичный Sch.a. argentatus и илийская маринка Sch.a. pseudaksaiensis, выделение которых подвергается постоянным ревизиям: казахстанские ихтиологи рассматривают илийскую маринку как форму балхашской (Баимбетов, Митрофанов, 1988; Исбеков, Тимирханов, 2009), зарубежные настаивают на их видовой самостоятельности (Eschmeyer, 2016; Froese, Pauly, 2016). Полупроходная или туводная рыба. Половозрелость наступает в возрасте 3-7 лет. Размножается весной единовременно. Икру откладывает обычно на каменистый грунт. Плодовитость до 122.5 тыс. икринок. В питании подвидов есть различия: у балхашского преобладают растения и бентос, у илийского бентос и рыба. Предельный возраст около 20 лет. Длина до 80 см, масса тела до 12 кг. Промысловый вид, повсеместно сокращающий свою численность. Илийская популяция илийской маринки (эндемичный экотип «кокбас») занесена в Красную книгу Казахстана (2008) как практически исчезнувшая.
- 78. Tinca tinca (Linnaeus, 1758) линь; оңғақ. Пресноводный вид. Распространен в бассейнах Урало-Каспия и Иртыша. Вселяли в водоёмы бассейнов Арала и Балхаш-Алаколя, но в реках Чу, Талас и Сарысу он по-видимому не прижился, хотя водится в некоторых озёрах бассейнов этих рек. Редок в бассейне р. Или. Предпочитает малопроточные, хорошо прогреваемые, заросшие водоёмы. Созревает в возрасте 3-4 года. Нерестится весной и летом, порционно откладывая икру на водные растения. Плодовитость до 330 тыс. икринок, в среднем около 200 тыс. Питание разнообразное: в основе его донные беспозвоночные, но много и растений. Известен возраст до 8 лет. Длина до 32 см, масса тела до 1 кг. Промысловый вид.
- 79. Vimba vimba (Linnaeus, 1758) рыбец, сырть; тұрпа. Обитает в бассейнах Балтийского, Чёрного и Каспийского морей. В последнем представлен подвидом каспийский рыбец V.v. persa, которому начинают придавать (Богуцкая и др., 2013) видовой статус V. persa (Pallas, 1814). Полупроходная рыба, которая водится преимущественно на юге моря и у его западного побережья, но отмечалась и в Северном Каспии (Берг, 1949). В Волгу заходит единично. Сведения о поимках в р. Урал в публикациях датируются серединой прошлого века (Чибилев, Дебело, 2009). Новейших данных о встречаемости рыбца в казахстанской части бассейна в литературе мы не нашли. Возможно, это свидетельствует не об отсутствии его здесь, но является следствием недостатка соответствующих исследований.

Так, по сообщению участников экспедиций последних лет Казахского агентства прикладной экологии (КАПЭ) в научных уловах на Северном Каспии рыбец не редок. Весной 2015 г. 2 экз. рыбца длиной 24.2 и 23.5 см, массой 195 и 180 г были пойманы в устьях притоков р. Урал в его среднем течении на территории России (Давыгора, 2015). В Казахстане не изучен. Созревает в 3 года. Плодовитость 25-58 тыс. икринок. Нерестится в реках в мае. Промысловая рыба длиной до 30 см (Лебедев и др., 1969).

Семейство Catostomidae Cope, 1871 – Чукучановые; чукучандар

80. Ictiobus cyprinellus (Valenciennes, 1844) — большеротый буффало; үлкен-ауызды буффало. Естественный ареал — Северная Америка. В Казахстан завезен в 1970-е годы для рыбоводных работ, которые на рубеже веков были свёрнуты. Попал в Капчагайское вдхр. на р. Или, где отмечена поимка в 1997 г. одного 3-годовалого самца с текучими половыми продуктами. Однако натурализации в бассейне, по-видимому, не произошло. Туводная рыба. Созревает на 3-4-м году жизни. Нерестится весной единовременно. К нерестовому субстрату индифферентен. Плодовитость — до 700 тыс. икринок. Питается зоопланктоном, имея специальный фильтрационный аппарат. Растёт быстро. Достигает длины около 100 см. Ценный промысловый вид.

Семейство Balitoridae Swainson, 1839 – Балиторовые; талма- балықтар

Систематика семейств *Balitoridae* и *Cobitidae* (см. далее) достаточно запутана и до последнего времени периодически подвергается ревизии (Богуцкая, Насека, 2004; Прокофьев, 2007).

- **81**. *Barbatula barbatula* (Linnaeus, 1758) **усатый голец**; талма-балық. Пресноводный, широко распространённый в Европе вид, обитающий в Казахстане в бассейнах рек Урал и Эмба. Ранее относился к роду *Nemacheilus*. Туводный вид. Длина до 18 см. Нерестится весной. Материалов о морфометрии, биологии и численности в водоёмах республики нет. Непромысловый вид.
- **82**. Barbatula toni (Dybowski, 1869) **сибирский голец**; сібір талма-балығы. Прежде относился к роду Nemacheilus в качестве подвида усатого гольца. Внутривидовая структура не разработана. Выделение подвида из оз. Маркаколь дискуссионно. В республике населяет водоёмы бассейнов р. Иртыш и р. Нура, где плохо изучен. Нерестится ранней весной. Плодовитость до 11.5 тыс. икринок. Питается бентосом. Длина до 21 см. Численность не известна. Непромысловый вид.
- 83. Lefua costata (Kessler, 1876) восьмиусый голец; сегізмуртты талма-балыгы. Чужеродный вид в Казахстане. Впервые обнаружен летом 2015 г. в р. Эмель в улове мальковым бреднем в количестве 2 экз. абс. длиной 5.9 и 6.0 см, массой около 1.3 г (Мамилов и др., 2015). Более крупный экземпляр, длиной около 14 см, пойман в устье р. Эмель в 2016 г. Естественный ареал этого гольца водоёмы юга Дальнего Востока России, Северного Китая, включая бассейн Амура, Монголии, Кореи. Ведёт придонный образ жизни в водоёмах со слабым течением и развитой растительностью. В Казахстан попал по-видимому из Китая.
- **84.** Nemacheilus (=Iskandaria) kuschakewitschii (Herzenstein, 1890) **голец Кушакевича**; Кушакевич талма-балығы. Обитает в р. Сырдарья и её притоках. Туводный вид. Сведения по биологии крайне ограничены. Нерестится летом, откладывая икру на галечниковый грунт. Плодовитость 100-200 икринок. При длине 5 см все особи половозрелы. Наибольшая длина 11 см. Распространен в ареале локальными группами. Непромысловый вид.
- **85**. Nemacheilus (=Triplophysa) conipterus Turdakov, 1954 **терский голец**; терс талма-балығы. Обитает в реках Талас, Терс (Асса), Арысь, Келес и мелких речках хр. Каратау. Туводный вид. Созревает на третьем году жизни при длине около 5 см. Нерестится, вероятно, в мае-июне. Плодовитость мала: 80-120 икринок. Питание детритно-растительное. Максимальный размер около 10 см, масса тела около 10 г. Непромысловый вид.
- **86.** Nemacheilus (=Triplophysa) sewerzowii G. Nikolsky, 1938 **голец Северцов**; Северцов талма-балығы. Эндемик Балхаш-Алакольского бассейна. По ряду морфологических особенностей близок к роду *Triplophysa*. Распространен локально в р. Или от устья до р. Каскелен и в низовье последней. Указан также для рек Иссык, Талгар, Аксу, Каратал, Лепсы, Аягуз, Тентек, Урджар и мелких ручьёв Джунгарии. Туводный вид. Созревает на втором году жизни по достижении длины 3 см. Икрометание летнее, вероятно порционное. Плодовитость до 2.7 тыс. икринок, чаще до 1.2 тыс. Бентофаг. Длина до 5 см. Непромысловый вид. В последние годы ловится единично. Внесён в Красную книгу Алматинской области (2006).
- **87**. *Triplophysa stoliczkai* (Steindachner, 1866) **тибетский голец**; тибет талма-балығы. Ранее относился к роду *Nemacheilus*. В Казахстане описано 2 подвида: типичный в бассейне Балхаш Алаколя и тянь-шаньский *Tr. st. elegans* (Kessler, 1874) в бассейнах рек Сырдарья, Чу, Талас. Туводный вид. Половозрелости достигает на 2-3-ем году жизни. Размножается порционно в весеннее-летний период. Икру откладывает на песок. Плодовитость до 10.6 тыс. икринок. В пище преобладают водоросли, перифитон, обычны личинки насекомых. Возраст до 6 лет. Длина до 17 см. Непромысловый вид. Внешне почти не отличается от пятнистого губача, с которым ареалы редко пересекаются.
- **88.** Triplophysa dorsalis (Kessler, 1872) **серый голец**; сұр талма-балық. Ранее относился к роду Nemacheilus. Указан для бассейнов Балхаша (левобережные притоки р. Или), Алаколя и Сырдарьи до Яны-кургана (кроме низовьев), включая реки Талас и Чу, а также для р. Шаган в бассейне Иртыша. Туводная рыба, свойственная медленно текущим водоемам. Созревает в 2 года. Размножается с апреля до октября, откладывая несколько порций икры на растительность. Плодовитость до 5 тыс. икринок. Питается преимущественно зоопланктоном и зообентосом, реже водорослями. Возраст до 6 лет. Длина до 16.5 см. Непромысловый вид.
- 89. Triplophysa strauchii (Kessler, 1874) пятнистый губач; теңбіл талма-балық, салпыерін. Ранее относился к роду Nemacheilus. Распространен довольно широко. Известны 3 подвида: типичный в бассейнах р. Чу, озёр Бийликоль, Балхаш и Алаколь, озёрный в Алакольских озёрах и зайсанский в бассейне оз. Зайсан и реках северных склонов Тарбагатая. О биологии и численности последнего данных нет. Туводный вид, но прежде были известны миграции по р. Или. Созревает в возрасте 2-3 года. Нерестится порционно с марта до конца лета. Икру откладывает при температуре воды от 5 до 24°С на песчано-галечниковый грунт и на растения. При этом озёрный губач крупнее и плодовитее типичного: соответственно длина до 29 и 25 см, масса тела до 270 и 200г, плодовитость прежде достигала 67 и 48 тыс. икринок, а в последние годы не превышает 18 тыс. у типичного подвида из мелких рек. Питание разнообразное: от растительных до животных кормов. Живёт до 8 лет. Малоценная промысловая рыба.

- **90.** *Triplophysa labiata* (Kessler, 1874) **одноцветный губач**; біртүсті талма-балық. Ранее относился к роду *Nemacheilus*. Эндемик Балхаш-Алакольского бассейна. Указан также для среднего течения р. Чу. Вместе с молодью карпа попал в бассейн Сырдарьи. Туводный вид. Половозрелость наступает в 2-3 года. Размножается с мая всё лето, откладывая несколько порций икры. Индифферентен к субстрату. Плодовитость до 60 тыс. икринок. Питается, в основном, зоопланктоном и бентосом. Длина до 21 см. Возраст до 7 лет. Непромысловый вид. В связи с сильным сокращением численности внесён в Красную книгу Алматинской области (2006).
- 91. Dzhikhunia sp. Prokofiev, 2001 голец неопределенного вида, относящийся к роду Dzhikhunia, был описан А.М. Прокофьевым (Prokofiev, 2001) по единственному экземпляру, обнаруженному им в коллекции, собранной Ф.А. Турдаковым в середине прошлого века в бассейне р. Терс. С тех пор других экземпляров данного рода гольцов на территории Республики Казахстан не найдено.

Семейство Cobitidae Swainson, 1839 – Вьюновые; шырма-балыктар

- **92**. Cobitis melanoleuca Nichols, 1925 сибирская **щиповка**; сібір шырма-балығы. Полиморфный пресноводный вид с большим ареалом. В Казахстане обитает в бассейнах Каспия, рек Иртыш и Нура. Ранее был известен как *С. taenia sibirica* и *С. taenia granoei*. В связи с дискуссионностью системы рода эти синонимы могут быть восстановлены. Биология в республике не изучена. В Сибири половой зрелости достигает при длине тела 7 см, плодовитость от 500 до 1000 икринок, в пище микрофитобентос и диатомовые водоросли. В Казахстане немногочисленный, непромысловый вид.
- **93**. *Cobitis taenia* Linnaeus, 1758 **обыкновенная щиповка**; кәдімгі шырма-балығы. Широко распространенный в Европе полиморфный пресноводный вид. В Казахстане указан для дельты Волги, для малых рек бассейна Урала и для р. Эмба, но не изучен. Сведений о его морфологии, биологии и численности здесь нет. Непромысловый вид.
- **94.** Cobitis amphilekta Vasil'eva et Vasil'ev, 2012– **хвалынская щиповка**; хвалын шырма-балыгы. Новый вид, описанный по коллекциям Зоомузея МГУ из Кызылагачского залива на юге Каспия и из северо-восточной части моря у полуострова Бузачи. Прежде этот вид неправильно идентифицировали, относя к *C. taenia* или к *Cobitis* (=Sabanejewia) caspia (Васильева, Васильев, 2012). В Казахстане не изучен.
- 95. Misgurnus fossilis (Linnaeus, 1758) **вьюн**; шырма-балық. Пресноводный, широко распространенный в Европе вид. Указан для бассейна реки Волга, включая её дельту. По опросным данным, изредка ловился в Камыш-Самарских озерах. Возможно, есть в р. Урал. Однако достоверных сведений о его встречаемости в республике нет.
- **96**. *Misgurnus nikolskyi* **вьюн Никольского**; Никольский шырма-балығы. В 1990-х гг. обнаружен в Казахстане в р. Или. По сборам в 2011 г. Е.Д. Васильева и др. (2015) показали, что здесь натурализовался вьюн Никольского *M. nikolskyi*. Биология не изучена. Встречается единично.
- 97. Sabanejewia aurata (De Filippi, 1863) переднеазиатская (золотистая) щиповка; алдыңғыазия-лық шырма-балық. Ранее относилась к роду Cobitis. Ареал номинативного подвида ограничен бассейном южной части Каспия. В Казахстане представлена подвидом S. a. aralensis в бассейнах рек Сырдарья, Сарысу, Чу. Туводный вид. Созревает на втором году жизни при длине 3-4 см. Сведения о характере икрометания противоречивы. По одним оно весеннее единовременное, по другим летнее порционное. Плодовитость обычно до 1.5 тыс. икринок, откладываемых на плотный грунт. Пища разнообразна: детрит, водоросли, зоопланктон, личинки хирономид, моллюски. Живёт до 4 лет. Длина до 7 см. Непромысловый вид. Аральская щиповка занесена в Красную книгу Республики Узбекистан (2003)- NT.
- **98**. *Sabanejewia caspia* (Eichwald, 1838) **каспийская щиповка**; Каспий шырма-балығы. Обитает в бассейне Южного Каспия. Отдельные единичные находки указаны для районов устьев рек Урал и Эмба. Биология не изучена. Длина до 9 см. Непромысловый вид.

Отряд Siluriformes – Сомообразные

Семейство Siluridae Cuvier, 1816 – Сомовые; жайындар

99. Silurus glanis Linnaeus, 1758 — обыкновенный, или европейский, **сом**; жайын. Обитает в бассейнах Каспия (кроме р. Эмба) и Арала, включая реки Чу и Сарысу. Акклиматизирован в бассейнах Таласа и Балхаша. Жилая и полупроходная рыба. Созревает в возрасте 3-4 года. Нерест единовременный или порционный, растянут с конца апреля до июля. Фитофил. Плодовитость — до 1 млн. икринок. В основе питания — рыба. Потребляет и беспозвоночных (ракообразные, насекомые, моллюски), а также амфибий, рептилий, водоплавающих птиц и попавших в воду млекопитающих. Длина достигает более 2 м, масса тела до 200 кг. Ценная промысловая рыба.

Отряд Beloniformes – Сарганообразные

Семейство Adrianichthyidae Jordan, 1923 – Адрианихтовые; адрианихттектестер

100. Oryzias latipes (Temminck et Schlegel, 1846) — медака; медака. Впервые обнаружена в р. Или в 1970 г. Завезена, по-видимому, с растительноядными рыбами из Китая, где недавно был выделен отдельный подвид O. latipes sinensis Chen, Uwa et Chu, 1989 — китайская медака, которому сейчас придают статус отдельного вида O. sinensis (Богуцкая, Насека, 2004). Населяет многие водоёмы бассейнов Арала, Балхаша и Алаколя. Короткоцикличный вид. Половозрелость ранняя — в возрасте до полугода. Нерест многопорционный, с апреля по октябрь. Плодовитость — до 90 икринок в одной порции. Обычно они, слипшись в комок, висят у анального отверстия самки до вылупления личинок. Питание смешанное: водоросли и зообентос. Длина тела до 5 см. Непромысловый вид. Представляет интерес для аквариумного рыбоводства и как деларватор водоёмов. Таксономия требует уточнения, так как статус многих популяций O. latipes в Китае до сих пор не ясен. По мнению некоторых авторов (Карпов, 1992; Мамилов, Приходько, 2011), в бассейн р. Или попала именно китайская медака.

Cyprinodontiformes – Карпозубообразные

Семейство Poeciliidae Bonaparte, 1838 – Пецилиевые, или Гамбузиевые; пецилилер, гамбузилар

- **101.** *Gambusia affinis* (Baird et Girard, 1853) миссисипская **гамбузия**; миссисип гамбузиясы. Завезена из Северной Америки в первой половине 20 века. Поскольку выделяют 2 подвида —*G.a. affinis* и *G.a. holbrooki Girard*, 1859, которые рассматриваются как отдельные виды, между которыми возможны помеси (Богуцкая, Насека, 2004), статус попавшей в Казахстан гамбузии требует уточнения. Она спорадически расселилась по тёплым водоёмам юга республики (бассейны Арала, Таласа, Чу и Балхаша). Половой зрелости достигает в 30-45 дней. Размножается живорождением несколько раз за лето, вымётывая до 100 мальков в каждой порции. Питается обычно личинками насекомых. Возраст до двух лет. Длина до 8 см. Промыслового значения не имеет. Интересна как деларватор водоёмов.
- **102**. *Poecilia reticulata* Peters, 1859 **гуппи**; гуппи. Чужеродный вид в ихтиофауне республики. Объект аквариумного содержания, попавший в водоёмы бассейна р. Или. Самовоспроизводящиеся дикие популяции отмечались в ряде водоёмов в поймах рек Малая и Большая Алматинки, подпитываемых от тёплых источников. Подобное указывается для европейской части России (Богуцкая, Насека, 2004).

Отряд Atheriniformes - Атеринообразные

Семейство Atherinidae Risso, 1827 – Атериновые; атериналар

103. Atherina boyeri Risso, 1810 — обыкновенная **атерина**; кәдімгі атерина. До 1973 г. была известна как А. mochon. Выделяют 2 подвида, из которых А. b. caspia — каспийская атерина, обитающая в бассейне Каспия, акклиматизирована в Арале в 50-е гг.; сейчас её выделяют в отдельный вид A.caspia (Богуцкая и др., 2013). Морская эвригалинная рыба, не избегающая опреснённых вод. Становится половозрелой на 2-ом году жизни. Размножается в мае-июне, откладывая икру на растения. Плодовитость около 600 икринок. Питается преимущественно планктоном. Длина до 14 см, масса тела до 150 г. Непромысловый вид.

Отряд Gadiformes - Трескообразные

Семейство Lotidae Bonaparte, 1837 – Налимовые; нэлімдер

104. Lota lota (Linnaeus, 1758) — **налим**; нәлім, ит-балык. Прежде включался в состав семейства Gadidae. Обитает в р. Иртыш и её притоках, включая реки Ишим и Тобол, в р. Нуре, в канале Иртыш-Караганда и некоторых озёрах (Зеренда, Майбалык, Б. Тарангул и др.). Водится в верховье р. Урал, откуда может заходить в пределы Казахстана. Редок в дельте Волги. Пресноводный холодолюбивый вид. Может выдерживать соленость до 6 промилле. Созревает на 2-4-ом году жизни. Размножается зимой при температуре воды близкой к 0°С. Икру мечет на каменистый грунт. Плодовитость — до 3.6 млн. икринок. Питается, в основном, рыбой, лягушками, а молодь — планктоном и бентосом. Длина до 2 м, масса тела до 32 кг. Численность невелика. Промысловый вид.

Отряд Gasterosteiformes – Колюшкообразные Подотряд Gasterosteoidei – Колюшковидные

Семейство Gasterosteidae Bonaparte, 1831 – Колюшковые; тікенектілер

105. Gasterosteus aculeatus Linnaeus, 1758 — **трёхиглая колюшка**; уштікенекті шаншар-балык. В Казахстане не водилась. Инвазионный вид в Каспийском море. Недавно обнаружена в Иране, в 62

Азербайджане и в Дагестане. Указывается для всего Каспия, включая и его северную часть (Богуцкая и др., 2013). О встречаемости именно в территориальных водах Казахстана пока сведений нет.

- **106.** Pungitius pungitius (Linnaeus, 1758) девятииглая колюшка; тоғызтікенекті шаншар-балық. Циркумполярный полиморфный вид бассейнов северных морей. Есть полупроходные и туводные пресноводные формы. В Казахстане известен из бессточных озёр Кокчетавской области и из бассейна р. Тобол. Вероятно, есть в реках Иртыш и Ишим. Нерестится летом порционно. Плодовитость до 1000 икринок. Икра откладывается в гнездо и охраняется самцом. Длина до 9 см. О численности сведений нет. Непромысловый вид.
- **107.** Pungitius platygaster (Kessler, 1859) **малая южная девятииглая колюшка**; оңтүстік шаншар-балығы. Эвригалинный широко распространённый вид. В Казахстане представлен двумя подвидами: типичным *P. р. platygaster* и аральским *P. р. aralensis* (Kessler, 1877). Первый обитает в бассейне Северного Каспия, включая р. Урал с притоками, р. Эмба и водоёмы Волго-Уральского междуречья. Второй в бассейне Арала и в р. Нура, проник в реки Ишим и Иртыш. Туводная рыба. Нерест весенне-летний, растянутый, порционный. Плодовитость до 700 икринок, которые в гнезде охраняются самцом. Пища разнообразна: водоросли, зоопланктон, личинки насекомых, бокоплавы. Может поедать икру и личинок рыб. Длина до 7 см. Непромысловый вид. Имеет значение в деларвации водоёмов. Численность сильно колеблется. Аральский подвид занесён в Красную книгу Узбекистана (2003) NT.

Подотряд Syngnathoidei – Игловидные

Семейство Syngnathidae Bonaparte, 1831 – Игловые; тебентектес- балықтар

108. Syngnathus abaster Risso, 1827— пухлощёкая игла-рыба; тебен-балық, теңіз тебені. Прежнее название S. nigrolineatus изредка используется до сих пор. Подвид S. a. caspius обитает в Каспийском море, был акклиматизирован в Арале. Первоначально был описан как вид — S. caspius Eichwald, 1831, что находит применение и сегодня в связи с неясностью таксономических отношений средиземноморской, черноморской и каспийской пухлощёкими рыбами. Морская эвригалинная рыба, заходит в пресные воды. Известна из низовьев Урала и водоёмов Волго-Уральского междуречья. Нерестится летом порционно. Икра развивается в выводковой камере самцов на хвосте в количестве нескольких десятков штук. Питается планктоном, нектобентосом, молодью рыб. Длина до 18 см. Численность невелика. Непромысловый вид.

Отряд Mugiliformes – Кефалеобразные

Семейство Mugilidae Cuvier, 1829 – Кефалевые; кефалдар

- **109.** Liza (= Chelon) auratus (Risso, 1810) кефаль-сингиль; сингиль. Указанные родовые названия в настоящее время синонимизируются. Морская эвригалинная рыба. Перевезена из Чёрного моря в Каспий, где натурализовалась. Вселялась в Арал, где по-видимому не прижилась. В Казахстане изучена слабо. Впервые созревает в возрасте 3-5 лет. Нерестится в конце лета осенью. Плодовитость до 920 тыс. икринок. Питается в основном детритом. Длина до 30 см. Сведений о численности нет. Промысловый вид.
- **110**. *Liza* (= *Chelon*) *saliens* (Risso, 1810) **кефаль-остронос**; сүйіртұмсық. Морская рыба, но может заходить в пресную воду. Акклиматизирована в Каспии, вселялась в Аральское море, где не прижилась. Изучена плохо. Нерестится летом. Питается зоопланктоном, детритом, перифитоном, мелкими моллюсками. Длина до 50 см. Промысловый вид.

Отряд Perciformes – Окунеобразные Подотряд Percoidei – Окуневидные

Семейство Percidae Cuvier, 1816 – Окуневые; алабұғалар

- 111. *Gymnocephalus cernua* (Linnaeus, 1758) обыкновенный **ёрш**; таутан. В Казахстане обитает повсеместно, за исключением р. Эмба и южных бассейнов (Балхаш-Алаколь, Чу, Талас, Сырдарья выше низовых озёр). Туводная рыба. Половозрелость наступает в 2-3 года. Нерестится в апреле-июне порционно. Плодовитость до 163 тыс. икринок, обычно не более 30 тыс. Типичный бентофаг, но может поедать растения, икру и личинок рыб. Длина не превышает 20 см, масса тела 250 г, но в Усть-Каменогорском вдхр. в первые годы его наполнения отмечались и более крупные особи. Малоценная промысловая рыба. Объект спортивного рыболовства.
- **112**. *Perca fluviatilis* Linnaeus, 1758 **речной окунь**; өзен алабұғасы. Обитает повсеместно, за исключением Балхаш-Алакольского бассейна, где заменён другим видом, р. Талас и бассейна Сырдарьи

в пределах Чимкентской области. Туводная рыба. Достигает половозрелости в возрасте 1-3 года. Нерестится весной при температуре воды 7-15°С. Фитофил. Откладывает икру на растения «гирляндами», но иногда и на грунт. Плодовитость — до 900 тыс. икринок. Питание смещанное: зообентос и молодь рыб, в том числе и собственная. Каннибализм особенно проявляется там, где нет других рыб. Известный максимальный возраст — 16 лет. Длина до 50 см, масса тела почти до 3 кг. Промысловый вид.

- 113. Perca schrenkii Kessler, 1874 балхашский окунь; балқаш алабұғасы. Эндемик Балхаш-Алакольского бассейна. При перевозках сеголеток карпа из Алматинского прудхоза в 1960-е годы попал в бассейны рек Чу, Нура, Селеты, Оленты, где возник репродуктивный контакт с речным окунем и отмечались гибридные формы. Однако устойчивые популяции балхашского окуня за пределами его естественного ареала по-видимому не сформировались. Туводный вид, образующий 2 экоформы пелагическую, быстрорастущую и тростниковую, тугорослую. Созревает в возрасте 2-4 года. Нерестится ранней весной единовременно, откладывая икру преимущественно на растения «гирляндами». Плодовитость до 245 тыс. икринок. Питается зообентосом и рыбой. Известный максимальный возраст 21 год. Длина до 50 см, масса тела до 2.5 кг. Промысловая рыба. Занесена в Красную книгу МСОП в пределах ареала, а Балхаш-илийская популяция в Красную книгу Казахстана (2008).
- 114. Sander lucioperca (Linnaeus, 1758) обыкновенный судак; көксерке, тісті-балық. Естественный ареал в Казахстане бассейны Северного Каспия (в р. Эмба не обнаружен) и Арала. Акклиматизирован в бассейнах рек Чу, Талас, Нура, Иртыш и в Балхаш-Алакольском бассейне. Полупроходная рыба. Созревает в 2-4 года. Нерестится весной при температуре воды 6-16°С. Икра откладывается единовременно в гнездо на плотном грунте или на корневища тростника. Кладка охраняется самцом. Плодовитость до 1.7 млн. икринок, обычно до 800 тыс. Питание в основном рыбное. Молодь, реже и взрослые особи, поедают также мизид, бокоплавов, креветок, крупных личинок насекомых. Известный возраст до 16 лет. Максимальная длина тела превышает 1 м, масса достигает 16 кг. Ценная промысловая рыба.
- 115. Sander marinus (Cuvier, 1828) морской судак; теңіз көксеркесі. Обитает, в основном, в Южном, редко в Среднем Каспии, однако встречается и в Северном. В частности, в 2008-2010 гг. он ловился у полуострова Мангышлак (Чернова, Орлова, 2012). Опреснённой воды избегает. Больших миграций не совершает. Созревает в 2-4 года. Нерестится весной у берегов на каменистом грунте. Плодовитость до 125 тыс. икринок. Питается мелкими рыбами и креветками. Достигает длины 60 см. Малоценная промысловая рыба. Численность в Казахстане не известна. По критериям МСОП отнесен к категории DD слабо изученные.
- **116.** Sander volgensis (Gmelin, 1789) **берш**; берш. Обитает в р. Урал и её старичных озёрах, а также в оз. Балхаш и р. Или, где акклиматизирован вместе с судаком. Пресноводная оседлая рыба, не совершающая значительных миграций. Держится обычно разрозненно, образуя некоторые скопления в преднерестовый период. Созревает на 3-4-ом году жизни. Сроки и условия размножения, как у судака. Икрометание может быть порционным и единовременным. Плодовитость до 250 тыс. икринок, обычно не более 150 тыс. Питается преимущественно мелкой рыбой, мизидами, бокоплавами. Возраст отмечен до 11 лет. Длина до 45 см, масса тела до 1.4 кг. П.ромысловая рыба.

Подотряд Gobioidei - Бычковидные

Семейство Odontobutidae Hoese et Gill, 1993—Головешковые или элеотровые; элеотрлар

- 117. Micropercops cinctus (Dabry de Thiersant, 1872) китайский элеотрис; кытай элеотрисі. Попал в водоёмы юга республики (бассейны Арала, Балхаша, Алакольских озёр) с Дальнего Востока. Ранее относился к Hypseleotris swinhonis в связи с дискуссионностью систематики головешковых рыб. Пресноводный короткоцикличный вид, созревающий на 2-м году жизни. Нерестится порционно, откладывая до 7 порций икры на твёрдый субстрат. Плодовитость до 150 икринок в одной кладке, каждая из которых охраняется самцом до выхода предличинок. Питание смешанное: водоросли, рачковый планктон, зообентос, икра и личинки рыб. Максимальный возраст 5 лет. Длина до 5 см. Непромысловый вид. Может разводиться в аквариумах.
- 118. Perccottus glenii Dybowski,1877 головешка-ротан; ротан-элеотрисі. Обитает в бассейне р. Амур, в пресных водах Кореи, Китая, Приморья. В Казахстан попал, видимо, вместе с элеотрисом в 1960-е годы и указывался для бассейнов рек Или и Сырдарья. В дальнейшем его идентификация подвергалась сомнению, и в 1980-е годы этот вид тут уже не отмечался. Зато он был обнаружен в бассейнах рек Иртыш, Ишим и Тобол, где натурализовался. Его идентификация тоже нуждается в проверке. Сведений о биологии в Казахстане нет. Питание смешанное, как у элеотриса. Длина до 20 см. Малоценная рыба. Может разводиться в аквариумах.

Семейство Gobiidae Fleming, 1822 – Бычковые; бұзаубас-балықтар

- . *Веnthophiloides* (*Asra*) *turcomanus* (Iljin, 1941) **пуголовка туркменская**; туркмен карақшысы. Описанная по двум экземплярам, отловленным у восточных берегов Южного Каспия, эта пуголовка в качестве единственного вида была отнесена сначала к роду *Asra*, который недавно был синонимизирован с родом *Benthophiloides*. В Казахстане не была известна. В 2008 г. в казахстанской части моря на глубине 9,4 м пойман 1 экз. длиной 39 мм и массой 304,5 мг (Тимирханов, Линник, 2011).
- . Вептнорнішь аbdurachmanovi Ragimov, 1978 **пуголовка Абдурахманов**; Абдурахманов каракшысы. Эндемик, распространенный в Каспии повсеместно, включая дельту Волги и приуральские воды. Прежде считался подвидом азовской пуголовки В. magistri Iljin, 1927, для которой сейчас оставлен только ареал Азовского моря (Boldyrev, Bogutskaya, 2007). Ловился в акватории Мангистауской области во время государственного мониторинга экосистемы моря в 2007 г. и 2010 г. (Чернова, Орлова, 2012). Мелководный, плохо изученный, непромысловый вид. Последние авторы отметили также, что в 2008-2009 гг. в том же районе они ловили и азовскую пуголовку, что лишний раз свидетельствует о нечёткости таксономических разграничений. В нашем списке мы азовскую пуголовку не учитываем.
- . *Benthophilus baeri* Kessler, 1877 **пуголовка Бэра**; Бэр қарақшысы. Эндемик Каспия. Водится, в основном, у западного побережья моря от р. Куры до дельты Волги. В казахстанском секторе моря найдена в 2009-2010 гг. у полуострова Мангышлак. Длина до 5 см. Биология не изучена. Непромысловый вид.
- . *Benthophilus casachicus* Ragimov, 1978 **казахская пуголовка**; қазақ қарақшысы. Редкий вид, эндемик Каспия. Описан по 4-м экземплярам, выловленным на глубине 29-46 м возле о. Огурчинского и Киндерлинской косы. Отмечен в дельте Волги и Урала, а также у восточного берега моря. Длина до 8 см. Непромысловый вид.
- 123. Benthophilus ctenolepidus Kessler, 1877 **шипоголовая пуголовка**; тікенекбасты қарақшы. Эндемик Среднего и Южного Каспия. Держится глубоководно, в прибрежье редок. Длина до 6.5 см. Вероятно водится в казахстанской части моря, но сведений об этом нет. Непромысловый вид.
- **124.** Benthophilus granulosus Kessler, 1877 зернистая пуголовка; түйіршікті қарақшы. Эндемик Каспия. Населяет почти все прибрежные участки, включая предустья Волги и Урала, район полуострова Бузачи и залива Мёртвый Култук. Нерестится в дельтах рек в мае-июле. Длина до 6 см, масса тела до 4 г. Малоизученый непромысловый вид.
- . *Benthophilus grimmi* Kessler, 1877 **пуголовка Гримма**; Гримм қарақшысы. Эндемик Среднего и Южного Каспия. В северной части моря отмечена у побережья России. В реки не входит. У побережья Мангышлака ловился весной и осенью 2008 г. Не изучен. Непромысловый вид.
- . *Benthophilus kessleri* Berg, 1927 **пуголовка Кесслера**; Кесслер қарақшысы. Эндемик Среднего и Южного Каспия. О встречаемости в казахстанском секторе моря достоверных сведений не было до 1999-2000гг, когда этот вид был обнаружен в преддельте р. Урал в количестве более 20 экз. В 2007-2010 гг. ловился у Мангышлака. Непромысловый вид.
- 127. Benthophilus leobergius Berg, 1949 пуголовка Берга; Берг қарақшысы. Прежде относилась в ранге подвида к виду B. stellatus (Sauvage, 1874) звёздчатая пуголовка, которая населяет пресные и солоноватые воды бассейнов Черного, Азовского и Каспийского морей. В настоящее время каспийские популяции рассматриваются как самостоятельный вид. В Каспии распространена повсеместно. Заходит в дельту Волги и в низовье Урала. В преддельте последнего в 1999-2000 гг. выловлено 36 экз. В 2009 г. ловилась у Мангышлака. Нерестится в апреле-июне порционно. Плодовитость до 2.5 тыс. икринок. Питается обычно моллюсками, икрой и молодью рыб. Длина до 10 см. Малочисленная непромысловая рыба.
- 128. Benthophilus leptocephalus Kessler, 1877 узкоголовая пуголовка; жіңішкебасты қарақшы. Эндемик Среднего и Южного Каспия, распространённый, в основном, на юге моря. В северной части моря и в реках не встречается. В Казахстане не отмечен. Непромысловый вид.
- . Benthophilus leptorhynchus Kessler, 1877 **узкорылая пуголовка**; жалпақтұмсықты қарақшы. Глубоководный вид, обитающий, в основном, у западного берега Среднего Каспия. По Казахстану данных нет. Непромысловый вид.
- . *Benthophilus macrocephalus* (Pallas, 1787) **каспийская** (большеголовая) **пуголовка**; үлкенбасты қарақшы. Эндемик Каспия. В северной части моря распространена повсеместно. Встречается в устьях Волги и Урала. Нерест порционный, в мае-июне. Питается ракообразными, моллюсками, червём нереис и рыбой. Длина до 13 см, масса тела до 35 г. Недостаточно изученная непромысловая рыба.
- . *Benthophilus mahmudbejovi* Ragimov, 1976 **пуголовка Махмудбеева**; Махмудбеев қарақшысы. Отмечена у российского побережья Северного Каспия, в низовьях и в дельте Волги.

- В 1999-2000 гг. в преддельте р. Урал выловлено 19 экз. длиной до 5 см. Ловилась у Мангышлака в 2008-2010 гг. Слабо изучена. Непромысловый вид.
- **132.** *Benthophilus spinosus* Kessler, 1877 **шиповатая пуголовка**; тікенекті қарақшы. Обитает в средней и южной части Каспия. В северной части моря и в реках не встречалась. В Казахстане известна из р-на п-ова Мангышлак. В 2000 г. 1 экз. пойман в устье р. Урал. Плодовитость до 250 икринок. Длина до 4 см. Слабо изученный непромысловый вид.
- **133**. Benthophilus svetovidovi Pinchuk et Ragimov, 1979 **пуголовка Световидова**; Световидов қарақшысы. Морской глубоководный вид. Описан по двум экземплярам из южной части Каспия. Отмечен весной и осенью 2010 г. у побережья Мангышлака. Прежде в Казахстане не был известен. Не изучен. Непромысловый вид.
- **134.** Caspiosoma caspium (Kessler, 1877) каспиосома; каспиосома. Водится в бассейнах Чёрного, Азовского и Каспийского морей, в Каспии преимущественно в северной его части. Заходит в пресные воды. Нерестится в мае-июле. Плодовитость невелика десятки икринок. Мелкая, длиной до 4 см, рыба. Немногочисленный непромысловый вид.
- **135**. *Hyrcanogobius bergi* Iljin, 1928 **бычок Берга**; Берг бұзаубас-балығы. Эндемик Каспия. На севере моря встречается повсеместно, в том числе перед устьями рек Волга, Урал, Эмба. Вероятно, есть и в низовьях этих рек. Нерестится в мае, на глубине до 4 м. Плодовитость до 410 икринок. Длина до 4.5 см. Малоизученный непромысловый вид.
- **136.** *Knipowitschia caucasica* (Berg, 1916) **бычок-бубырь**; бұзаубас- балығы. Эвригалинный вид бассейна Каспия, многочисленный в низовьях и авандельте впадающих в море рек. Случайно интродуцирован в Аральское море. Размножается с конца апреля до начала июня. Икру откладывает на отмершую растительность в количестве до 400 шт. Длина тела до 4 см. Мало изученный непромысловый вид.
- **137**. *Кпіроwіtschia іІјіпі* Berg, 1931 **бычок Ильина**; Ильин бұзаубас- балығы. Глубоководный эндемик Каспия. В водах Казахстана отмечен в 2008-2009 гг. (Чернова, Орлова, 2012), прежде не был известен. Не изучен. Непромысловый вид.
- **138**. *Кпіроwіtschia longecaudata* (Kessler, 1877) **длиннохвостый бычок** Книповича; ұзынқұйрықты бұзаубас-балық. Водится в бассейнах Черного, Азовского и Каспийского морей. В Северном Каспии обитает почти повсеместно, преимущественно в опресненных участках. Входит в нижние течения рек. Держится в толще воды и у дна. Нерестится весной на глубине до 4 м. Плодовитость до 500 икринок. Длина рыбы не более 5 см. Непромысловый вид.
- **139**. *Mesogobius nigronotatus* (Kessler, 1877) **пятнистый бычок-кнут**; шұбар бұзаубас-балық. Вид описан по единственному экземпляру, пойманному в Каспийском море у берега Мангистауской области. Таксономический статус нуждается в уточнении. Биология и численность не известны. В 2000 г. в устье Урала были отловлены 2 экз. Мелкая рыба.
- **140.** *Mesogobius nonultimus* (Iljin, 1936) **серый бычок-кнут**; соңғыемес бұзаубас-балық. Эндемик Каспия. Редко встречающийся морской вид, обитающий, в основном, на глубинах. В Северном Каспии был известен из района дельты Волги и у берегов Дагестана. В пресную воду не заходит (Решетников и др., 1997). Икрометание единовременное, у берега. Плодовитость до 1.5 тыс. икринок. Длина до 15 см, масса до 23 г. (Казанчеев, 1981). В Казахстане обнаружен в 2007-2008 гг. у Мангышлака. Систематическое положение дискуссионно. Непромысловый вид.
- 141. Neogobius (Chasar) bathybius (Kessler, 1877) **глубоководный бычок**; тереңнің бұзаубас-балығы. Эндемик Каспия. В северной части моря очень редок. В пресные воды не заходит. В Казахстане пока не отмечен. Половозрелости достигает на 2-м году жизни. Нерестится летом, единовременно. Плодовитость до 3 тыс. икринок. В основе пищи ракообразные, нереис, мелкие рыбы. Предельный возраст 4 года. Длина тела до 25 см. Непромысловый вид.
- **142.** Neogobius (Eichwaldiella) caspius (Eichwald, 1831) **хвалынский бычок**; хвалын бұзаубас-балығы. Эндемик Каспия. На севере моря редок. В пресные воды не заходит. В 2007-2010 гг. ловился в водах Мангистауской области. Нерестится летом, у берега, порционно. Плодовитость до 2.3 тыс. икринок. Питается ракообразными, моллюсками, мелкими рыбами. Живёт до 4 лет. Длина до 16 см. Непромысловый вид.
- **143**. Neogobius fluviatilis (Pallas, 1814) **бычок-песочник**; құмдауыт бұзаубас-балық. Населяет бассейны Чёрного, Азовского и Каспийского морей. В Каспии обитает повсеместно, в том числе в приустьевых участках и в низовьях впадающих в море рек. Выделяется здесь в подвид N. f. pallasi (Berg, 1916), возможно являющийся отдельным видом. Случайно интродуцирован в Аральское море. Созревает на 2-м году жизни. Размножается в мае-июле, порционно. Плодовитость до 1 тыс. икринок. Питается ракообразными, моллюсками, рыбой. Предельный возраст 5 лет. Длина до 12 см. Непромысловый вид.

- **144.** Neogobius (Babka) gymnotrachelus (Kessler, 1857) **бычок-гонец**; хабаршы бұзаубас-балық. Обитает в Чёрном, Азовском и Каспийском морях. В Каспии преимущественно в северной и средней части моря. Заходит в дельты рек. Представлен здесь подвидом *N. g. macrophthalmus* (Kessler, 1877), который сейчас рассматривается как отдельный вид *Babka macrophthalma* (Kessler, 1877). В 2008-2010 гг. ловился у полуострова Мангышлак. Биология изучена слабо. Питается ракообразными: гаммаридами и корофиидами. Длина тела до 6.5 см. Непромысловый вид.
- **145.** Neogobius (Ponticola) gorlap (Iljin, 1949) каспийский бычок-головач; Каспий дэубас танабалығы. Водится в прибрежье Северного и Среднего Каспия, включая дельты рек. Прежде считался каспийским подвидом N. kessleri gorlap (Berg, 1949) черноморского вида. Случайно попал в Арал. Созревает на 2-3-ем году жизни. Нерестится весной и в начале лета порционно, откладывая икру на каменисто-галечниковый грунт и подводные предметы. Плодовитость в среднем около 1300 икринок. Питание преимущественно хищное (молодь рыб, в том числе и бычки), в меньшей степени потребляет ракообразных и моллюсков. Длина до 20 см. Слабо изученный непромысловый вид.
- **146.** Neogobius (Apollonia) melanostomus (Pallas, 1814) **бычок-кругляк**, черноротый бычок; жұмыр бұзаубас-балық. Эвригалинный вид бассейнов Черного, Азовского и Каспийского морей, случайно попавший и в Арал. Встречается по всему Каспию (преимущественно в средней части) и во впадающих в него реках, у Мангышлака, а также в р. Кушум и в оз. Шалкар. Выделяется здесь в эндемичный подвид *N. т. affinis* (Eichwald, 1831), возможно являющийся отдельным видом. Размножается на севере моря в мае-июле, порционно. Икра приклеивается к растениям и подводным предметам. Плодовитость до 1.3 тыс. икринок. Преимущественно бентофаг, специализирующийся на моллюсках, бокоплавах, икре рыб. Предельный возраст около 5 лет. Длина до 15 см. Малоценный промысловый вид. Объект любительского лова.
- **147**. *Neogobius (Ponticola) ratan* (Nordmann, 1840) **бычок-ратан**; ратан. Обитатель Понто-Каспия. Каспийские популяции выделяются в подвид *N. г. goebelii* (Kessler, 1874), возможно являющийся отдельным видом. В опреснённых районах моря и в устьях рек редок. Описан по единичным экземплярам, отловленным в Среднем Каспии. В 2010 г. ловился у п-ва Мангышлак. Биология не известна. Непромысловый вид.
- **148.** Neogobius (Ponticola) syrman (Nordmann, 1840) **бычок-ширман**; шырман. Населяет Черноморский и Каспийский бассейны. Случайно попал в Аральское море. В Каспии повсеместно, в том числе в приуральских водах и у Мангистау. Прежде отмечался в р. Эмба (Шапошникова, 1964). Размножается весной и в начале лета. Питается ракообразными, моллюсками, молодью рыб. Максимальный размер до 20 см и около 200 г. Непромысловый вид.
- **149**. *Proterorhinus nasalis* (De, 1863) **каспийский бычок-цуцик**; каспий мыжырайған бұзаубасбалық. Эвригалинный вид Каспийского бассейна, случайно интродуцированный в Арал. Каспийские популяции, распространённые в море повсеместно, прежде выделялись в подвид *P. marmoratus nasalis Berg*. В настоящее время для бычка Каспия принято видовое название, а распространение вида *P. marmoratus* (Pallas, 1814) ограничивается Чёрным морем. Постоянно встречается также в реках и озёрах бассейна Каспия. Размножается с мая по август порционно, откладывая икру на каменистый грунт и подводные предметы. Предельный возраст 2 года. Длина тела до 7 см. Непромысловый вид.
- **150.** Rhinogobius cheni (Nichols, 1931) китайский носатый бычок; кытай конкак мурынды бұзаубас-балығы. Населяет многие водоёмы Средней Азии и юга Казахстана бассейнов Арала, Балхаша и Алаколя. Чужеродный короткоцикличный вид. Завезён случайно из Китая вместе с растительноядными рыбами. Таксономия рода слабо разработана и долго этот бычок был известен как *R.* (Ctenogobius) similis Gill, 1859. Современный таксономический статус вида восстановлен Е.Д. Васильевой (2007). Половозрелость наступает на 2-м году жизни. Нерестится с мая по август порционно. Плодовитость до 2 тыс. икринок, в среднем около 1 тыс. Преимущественно бентофаг: в основе питания личинки хирономид, подёнок, олигохеты. Молодь питается, в основном, рачковым планктоном. Продолжительность жизни до 5 лет. Длина тела до 6.5 см, масса до 3.5 г. Непромысловый вид.

Природоохранный статус по критериям МСОП для большинства представителей семейства Бычковые, указанных в нашем списке, не установлен. Десять из них оценены как виды, вызывающие наименьшие опасения (LC).

Семейство Channiidae Fowler, 1934 – Змееголовые; жыланбас-балықтар

151. Channa argus (Cantor, 1842) – **змееголов**; жыланбас- балык. Чужеродный вид, попавший в Среднюю Азию и Казахстан при перевозке растительноядных карповых рыб. Натурализовался в бассейнах Арала и Балхаша. Предпочитает малопроточные, заросшие и хорошо прогреваемые водоемы. Благодаря наджаберному органу может использовать для дыхания атмосферный кислород, что позволяет ему на некоторое время выползать на сушу во влажной среде. Половозрелости достигает в возрасте

2-4 года. Нерестится в мае-июле при температуре воды 18-25°С, единовременно или порционно. Плодовитость — до 110 тыс. икринок, в среднем около 50 тыс. Икра откладывается в гнездо из растительности у поверхности воды и охраняется самцом, который охраняет до 2 недель и стайки своих мальков. Пища, в основном, рыбная. Потребляет также раков, лягушек, крупных насекомых. Длина до 90 см, масса тела до 9 кг. Промысловая рыба.

Отряд Scorpaeniformes – Скорпенообразные

Семейство Cottidae Bonaparte, 1831 – Керчаковые, или Рогатковые; керчактар

- **152**. *Cottus gobio* Linnaeus, 1758 **обыкновенный подкаменщик**; кәдімгі тастасалағыш. Встречается в бассейне р. Урал, где представлен, по-видимому, подвидом *С. g. koshewnikowi Gratzianow*, 1907 русский подкаменщик. Длина до 12 см. Биология не изучена. Численность не известна. Непромысловый вид.
- **153**. *Cottus sibiricus* Warpachowski, 1889 **сибирский подкаменщик**, широколобка; сібір тастасалағышы. Обитатель водоёмов Сибири. В Казахстане встречается в бассейне Иртыша. Длина рыбы до 15 см. На предкрышке хорошо выражены три шипа. На брюшных плавниках нет чётких тёмных полос. Биология не изучена. Непромысловый вид.
- **154.** *Соttus poecilopus* Heckel, 1836 **пёстроногий подкаменщик**; ала канаты тастасалагышы. Прежде в Казахстане не отмечался. Обнаружен в июле 2006 г. в р. Бухтарма на территории Катон-Карагайского национального парка (Прокопов, Ануарбеков, 2007). Описан по 3 экз., размеры которых не указаны. Ареал в значительной части совпадает с ареалом сибирского подкаменщика. Возможно, есть в р. Тобол. Таксономическое название требует уточнения. Видимо правильнее называть его *С. altaicus Kaschenko*, 1899 сибирский пёстроногий подкаменщик, который в водоёмах Алтая отличается от *С. sibiricus* двумя шипами на предкрышке, скрытыми в коже, наличием тёмных полос на брюшных плавниках и более узкой головой (Богуцкая, Насека, 2004; Острошабов, Насека, 2005). Размер до 9 см.
- 155. Сония jaxartensis Berg, 1916 чаткальский подкаменщик; шаткал тастасалағышы. Таксономический статус нуждается в уточнении. Имеющиеся данные позволяют предположить, что, возможно, это представитель полиморфного вида С. spinulosus Kessler, 1872 туркестанский подкаменщик (Дукравец и др., 2002). В Казахстане встречается в верховьях бассейнов притоков р. Сырдарьи (Арысь, Бадам и др.) и р. Терс. Занимает ограниченные стации с холодной водой. Размножение происходит в конце весны начале лета. Половая зрелость наступает по достижении длины 6 см. Питается водными личинками и имаго насекомых, бокоплавами. Известная длина до 11 см. Непромысловый вид. Численность невелика и вызывает тревогу. Занесён в Красные книги Казахстана (2008) и Узбекистана (2003).

Отряд Pleuronectiformes – Камбалообразные

Семейство Pleuronectidae Rafinesque, 1815 – Камбаловые; Камбалалар

156. Platichthys flesus (Linnaeus, 1758) — **речная камбала**; өзен камбаласы. Выделяют до 6 подвидов, из которых черноморский *P. f. luscus* (Pallas,1814) — **камбала-глосса** интродуцирован в Каспийское море и в 1980-е годы — в Арал. В последнем натурализовался. В Малом Арале в 2000-е годы нерестится почти по всей акватории в марте-апреле при температуре воды до 10°С. В популяции преобладают в 2-4 раза самки, которые обычно крупнее самцов. Питается донными беспозвоночными (креветки, крабы, нереис) и молодью рыб. Известный возраст в Арале до 8 лет. Длина до 30 см, масса тела до 400 г. Промысловый вид, составляющий в последние годы основу промысла на Арале вместе с лещом, плотвой и сазаном. По казахстанской части Каспия информации нет.

Литература

Абдиев Ж.А., Альпейсов Ш.А., Коломин Ю.М., Фефелов В.В. Современное состояние и гидрофауна водоёмов бассейна реки Ишим//Экология и гидрофауна водоёмов трансгранич. басс. Казахстана. Алматы, 2008. С. 392-412.

Баимбетов А.А., Митрофанов В.П. Род *Schizothorax* Heckel, 1838 — Маринка//РыбыКазахстана. Алма-Ата: Наука, 1988. Т. 3. С. 50-83.

Берг Л.С. Фауна России. Рыбы. СПб., 1911, т. 1. 250 с. **Берг** Л.С.Рыбы пресных вод СССР и сопредельных стран. М.; Л. Ч. 1. 1948. 468 с. Ч. 2. 1949. С. 469-926. Ч. 3. 1949. С. 927-1382.

Богуцкая Н.Г., Кияшко П.В., Насека А.М., Орлова М.И. Определитель рыб и беспозвоночных Каспийского моря. Том 1. Рыбы и моллюски. СПб. , М.: КМК, 2013. 543 с. Богуцкая Н.Г., Насека А.М. Круглоротые и рыбы озера Ханка (система р. Амур): Аннотированный список с комментариями по их таксономии и зоогеографии региона. СПб.: ГосНИОРХ, 1996. 89 с. Богуцкая Н.Г., Насека А.М. Каталог бесчелюстных и рыб пресных и солоноватых вод России с номенклатурными и таксономическими комментариями. М.: КМК, 2004. 389с.

Бокова Е.Б., Джунусова Г., Токаев И.Д. Каспийская минога вернулась в р. Жайык (Урал-Каспийский бассейн)// Selevinia, т. 23, 2015. С. 219.

Васильева Е.Д. Бычки рода *Rhinogobius* (Gobiidae) Приморья и водоёмов Средней Азии и Казахстана. 1. Морфологическая характеристика и таксономический статус//Вопросы ихтиологии, 2007. Т. 47, № 6. С. 733-742. Васильева Е.Д., Васильев В.П. *Cobitis amphilekta* sp. nova — новый вид щиповки (Cobitidae, Cypriniformes) из бассейна Каспийского моря//Вопросы ихтиологии, т. 52, № 2, 2012. С. 177-183. Васильева Е.Д., Мамилов Н.Ш., Магда И.Н. Новые виды карпообразных рыб (Cypriniformes) в фауне Балхаш-Илийского бассейна Казахстана//Вопросы ихтиологии, т. 55, № 4, 2015. С. 379.

Горюнова А.И., Данько Е.К. Степные озера Северного Казахстана. LAP Lambert Academic Publishing, Saarbrucken, 2015. 291 с.

Данько Е.К., Дукравец Г.М. О полосатой быстрянке *Alburnoides taeniatus* (Kessler) из бассейна реки Шу// Selevinia, т. 21, 2013. С. 144.

Давыгора А.В. Первые регистрации каспийского рыбца *Vimba vimba persa* (Pallas, 1814) в бассейне среднего течения реки Урал//Selevinia, т. 23, 2015. С. 217-218.

Дукравец Г.М. К вопросу о составе ихтиофауны Республики Казахстан//Selevinia, т. 3, вып. 4. Алматы, 1995. С. 27-30. Дукравец Г.М. О появлении амурского змесголова Channa argus warpachowskii Berg в Балхаш-Илийском бассейне//Selevinia. Алматы, 2003. С. 195-196. Дукравец Г.М. Биологическое состояние некоторых локальных популяций балхашского окуня Perca schrenki Kessler в бассейне реки Или//Рыбохозяйственные исследования в Республике Казахстан: история и современное состояние. Алматы: Бастау, 2005. С. 93-109. Дукравец Г.М. Новые чужеродные виды в ихтиофауне Балхаш-Илийского бассейна (Республика Казахстан)//Состояние, охрана, воспроизводство и устойчивое использование биологических ресурсов внутренних водоёмов: международной научно-практической конф. Волгоградское отд. ФГНУ ГосНИОРХ. Волгоград, 2007. С. 95-96. Дукравец Г.М. К морфологии и биологии змесголова Channa argus (Cantor, 1842) бассейна реки Или//Известия НАН РК, сер. биол. и мед., № 1 (271). Алматы, 2009. С. 43 – 48. Дукравец Г.М. О количественном составе ихтиофауны Казахстана и назревших коррективах в Красной книге//Вестник КазНУ, сер. биол., № 5 (51). Алматы, 2011. С. 52-55. Дукравец Г.М. О чужеродных видах рыб в Республике Казахстан//Известия НАН РК, сер. биол. и мед. 2013. № 5 (299). Алматы. С. 32- 37. Дукравец Г.М. Дополнение к аннотированному списку рыбообразных и рыб Республики Казахстан//Известия НАН РК, сер. биол. и медиц, № 1 (307). Алматы, 2015. С. 74-77. Дукравец Г.М., КарповВ.Е., Мамилов Н.Ш., Меркулов Е.А., Митрофанов И.В. О составе и распределении ихтиофауны в казахстанской части бассейна реки Чу//Вестник КазГУ, сер. биол. 2001. № 2 (14). Алматы, С. 94-104. Дукравец Г.М., Мамилов Н.Ш., Баимбетов А.А., Мельников В.А. Аннотированный список рыб Алматинской области Казахстана//Вестник КазНУ, сер. биол., 2007. № 3 (33). Алматы, С. 56-71. Дукравец Г.М., Мамилов Н.Ш. О горчаке (Rhodeus sp.) в бассейне р. Или//Selevinia, 2008. С. 251-252. Дукравец Г.М., Мамилов Н.Ш. Новые данные о ташкентской верховодке Alburnoides oblongus Bulgakov из рек Южного Казахстана//Известия НАН РК, сер. биол. и мед. № 6 (294), 2012. С. 25-29. Дукравец Г.М., Мамилов Н. Ш., Митрофанов И.В. Аннотированный список рыбообразных и рыб Республики Казахстан (Сообщение 1. Семейства Миноговые, Осетровые, Сельдевые, Лососевые, Сиговые, Хариусовые, Щуковые, Угревые, Карповые)//Изв. НАН РК, сер. биол. и мед. № 3(279), 2010 а. С. 36 – 49. Дукравец Г. М., Мамилов Н. Ш., Митрофанов И. В. То же. (Сообщение 2. Семейства Чукучановые, Балиторовые, Вьюновые, Сомовые, Адрианихтовые, Пецилиевые, Атериновые, Налимовые, Колюшковые, Игловые, Кефалевые, Окуневые, Головешковые, Бычковые, Змееголовые, Керчаковые, Камбаловые)// Известия НАН РК, сер. биол. и мед. № 4 (280), 2010 б. С. 18-28. Дукравец Г.М., Митрофанов И.В., Митрофанов В.П. Ташкентская верховодка Alburnoides oblongus Bulgakov в водоёмах южного Казахстана//Вопросы ихтиологии, т. 38, № 3, 1998. С. 422-424. Дукравец Г.М., Митрофанов И.В., Митрофанов В.П. Морфологическая изменчивость подкаменщиков (Cottidae, Scorpaeniformes) из южного Казахстана//Selevinia, № 1-4. Almaty, 2002. С. 25-36.

Исбеков К.Б., Тимирханов С.Р. Редкие рыбы озера Балхаш. Алматы: LEM, 2009. 182 с.

Казанчеев Е.Н. Рыбы Каспийского моря. М., 1981. 168 с.

Карпов В.Е. *Oryzias latipes* (Temminck et Schlegel) — медака//Рыбы Казахстана. Алма-Ата: Гылым, 1992. Т.5. С. 231-241. Карпов В.Е. Список видов рыб и рыбообразных Казахстана//Рыбохозяйственные исследования в Республике Казахстан: история и современное состояние. Алматы: Бастау, 2005. С. 152-168. Карпов В.Е., Калдаев С.С. Морфобиологическая характеристика горчака (Сем. Cyprinidae, Rhodeus sp.) Капшагайского водохранилища и р. Или// Там же. Алматы: Бастау, 2005. С. 168-173.

Ким А.И. Состояние рыбных запасов р. Урал в Западно-Казахстанской области//Приоритеты и перспективы развития рыбного хозяйства. Мат-лы международной научно-практич. конф. Алматы, 2014. С. 200-203.

Кириченко О.И. Видовой состав и современное состояние ихтиофауны пойменных водоёмов Павлодарского Прииртышья//Мат-лы международной научно-практич. конф. «Иртышский бассейн: современное состояние и проблемы устойчивого развития». Павлодар: ПМПИ, 2009. Т. 1. С. 141-147. **Кириченко О.И., Жаркенов Д.К.** Уклея – чужеродный вид рыб в водоёмах бассейна Иртыша и проблема биологических инвазий//Selevinia, 2009. С. 155-158.

Коломин Ю.М. О нахождении двух видов карповых рыб (сем. Cyprinidae): уклеи – *Alburnus alburnus* (Linne) и верховки – *Leucaspius delineatus* (Heckel) в водоёмах Северо-Казахстанской области//Рыбохозяйств. исследования в Республике Казахстан: история и современ. состояние (сб. науч. тр.). Алматы: Бастау, 2005. С. 203-206.

Красная книга Алматинской области. Животные. Алматы, 2006. 520с.

Красная книга Республики Казахстан. Том 1. Животные. Ч. 1. Позвоночные. Алматы: Нур-Принт, 2008. 320 с. Красная книга Кыргызской Республики. Бишкек, 2006. 541 с.

Красная книга Республики Узбекистан. Том II. Животные. Ташкент: Chinor ENK, 2003. 250 с.

Красная книга Российской Федерации (животные). М.: АСТ, Астрель, 2001. 864 с.

Красная книга Таджикистана. Душанбе: Дониш, 1997. 336 с.

Красная книга Туркменистана. Том 1. Беспозвоночные и позвоночные. Ашхабад: Туркменистан, 1999. 371 с.

Мамилов Н.Ш. Описание трегубки *Opsariochthys uncirostris* из реки Сырдарьи//Вестник КазНУ, сер. биол. № 2 (44). Алматы, 2010. С. 82-85. Мамилов Н.Ш., Абдильдаев М.А. Описание выборки сибирского гольца *Barbatula toni* из Центрального Казахстана//Экология животных Казахстана. Тр. Ин-та зоологии МОН РК. Алматы, 2009. Т. 50. С. 243-246. Мамилов Н.Ш., Приходько Д.Е. О составе ихтиофауны верхнесреднего участка р. Иле на территории Республики Казахстан//Мат-лы Международной научной конференции «Зоологические исследования за 20 лет независимости Республики Казахстан». Алматы, 2011. С. 265-267. Мамилов Н.Ш., Данько Е.К., Сансызбаев Е.М. Восьмиусый голец — чужеродный вид в ихтиофауне Казахстана//Selevinia, т. 23. Алматы, 2015. С. 133-135. Мамилов Н.Ш., Хабибуллин Ф.Х., Акбердина Г.Ж., Салимбаева А.С. Разнообразие ихтиофауны рек Центрального Казахстана//Selevinia, т. 21, 2013. С. 87-91.

Митрофанов В.П. Карповые рыбы Казахстана: Дис. ... докт. биол. наук. Алма-Ата, 1973. 404 с. **Митрофанов В.П., Дукравец Г.М.** Круглоротые и рыбы//Книга генетического фонда фауны Казахской ССР. Часть 1. Позвоночные животные. Алма-Ата: Наука, 1989. С. 7-28. **Митрофанов В.П., Дукравец Г.М., Баимбетов А.А., Мельников В.А., Сидорова А.Ф., Песериди Н.Е. и др.** Рыбы Казахстана в 5-ти томах. Алма-Ата: Наука. Том 1, 1986. 272 с. Том 2, 1987. – 200 с. Том 3, 1988. 304 с. Том 4, 1989. 312 с. Том 5, 1992. 464 с.

Митрофанов И.В. О происхождении и систематике рода *Leuciscus* Agassiz (Cyprinidae) Средней Азии и Казахстана//Вопросы ихтиологии, т. 33, № 6, 1993. С. 763-768. Митрофанов И.В. Гольцы реки Шаган (бассейн Иртыша) //Selevinia, № 2. Алматы, 1994. С. 24-28. Митрофанов И.В. Полевой определитель бычков и пуголовок Каспия//Tethys Aqua Zoological Research. Vol. II. Almaty: Tethys, 2003. Р. 171-176. Митрофанов И.В., Баимбетов А.А., Мур М.Д. Аннотированный четырехъязычный словарь названий рыб Казахстана. Алматы: Tethys, 1999. 56 с. Митрофанов И.В., Мамилов Н.Ш., Матмуратов С.А. Состояние популяций серого гольца *Nemachailus dorsalis* (Сургіпіformes, Osteichthyes) в зоне влияния Семипалатинского испытательного полигона//«Сибирская зоологическая конф.», посвященная 60-летию ин-та систематики и экологии животных СО РАН. Новосибирск, 2004. С. 264.

Панин Г.Н., Мамедов Р.М., Митрофанов И.В. Современное состояние Каспийского моря. М., 2005. 356 с. Песериди Н.Е. *Acipenser guldenstadti persic*us Borodin – персидский (куринский) осетр/Рыбы Казахстана, т.1. Алма-Ата: Наука, 1986. С. 99-109.

Прокопов К. П., Ануарбеков С.М. Нахождение пестроногого подкаменщика (*Cottus poecilopus* Heckel, 1836) в Восточном Казахстане//Мат-лы конф. «Аманжоловские чтения – 2007», ч. 7. Усть-Каменогорск, 2007. С. 81-83.

Прокофьев А.М. Материалы к ревизии рода *Triplophysa* Rendahl, 1933 (Cobitoidea: Balitoridea: Nemacheilinae): ревизия номинальных таксонов Герценштейна (1888), описанных в составе видов «*Nemachilus*» *stoliczkae* и «*Nemachilus*» *dorsonotatus* с выделением нового вида Tr. *Scapanognatha sp. nova*//Вопросы ихтиологии, т. 47, № 1, 2007. С. 5-25.

Решетников Ю.С., Богуцкая Н.Г., Васильева Е.Д., Дорофеева Е.А., Насека А.М., Попова О.А., Савваитова К.А., Сиделева В.Г., Соколов Л.И. Список рыбообразных и рыб пресных вод России//Вопросы ихтиологии, т.37, № 6, 1997. С. 723-771.

Сатин В.А., Коев А.В. Современное состояние ихтиофауны Среднего Тобола//Тр. ф-та естеств. наук Курганского ун-та. М.: МАКС Пресс, 2003. С. 24-26.

Скакун В.А., Горюнова А.И. О происхождении серебряного карася в водоёмах Южного Казахстана//Сибирская зоологич. конф. (Тезисы докл.). Новосибирск, 2004. С. 189.

Соколовский В.Р., Тимирханов С.Р. Рыбы Алаколь-Сасыккольской системы озер//Тр. Алакольского госуд. природного заповедника, т.1. Алматы: Мектеп, 2004. С. 175-191.

Тимирханов С.Р., Ким Ю.А. Угорь *Anguilla anguilla* (Linnaeus, 1758) в Казахстане//Selevinia. Алматы, 2011. С. 221. **Тимирханов С.Р., Линник А.С.** Бычок туркменский – *Benthophiloides (Asra) turcomanus* (Iljin, 1941) (Gobiidae, Perciformes) – новый для Казахстана вид рыбы//Зоологические исследования за 20 лет независимости Республики Казахстан (мат-лы международной научной конф.). Алматы, 2011. С. 293-294.

Турдаков Ф.А., Пискарев К.В. Материалы по систематике и биологии чуйской остролучки и чуйской быстрянки//Тр. Ин-та зоологии и паразитологии АН КиргССР, Фрунзе, 1955. С. 65-71.

Чернова Н.В., Орлова И.В. Видовой состав ихтиофауны Каспийского моря в пределах Мангистауской области Республики Казахстан//Вестн. КазНУ, сер. эколог. № 1 (33), 2012. С.139-144.

Чибилев А.А., Дебело П.В. Рыбы Урало-Каспийского региона [Сер.: Природное разнообразие Урало-Касп. региона, т. 2]. Уральское отд. РАН, Ин-т степи. Екатеринбург, 2009. 192 с.

Шапошникова Г.Х. Биология и распределение рыб в реках Уральского типа. М.: Наука, 1964. 170 с.

Шустов А.И., Митрофанов В.П. Материалы по морфологии и биологии сиговых (Coregonidae) в водоёмах Казахстана//Рыбы Казахстана, т. 5. Акклиматизация, промысел. Алма-Ата: Гылым, 1992. С. 316-328.

Boldyrev V.S., Bogutskaya N.G. Revision of the tadpole-gobies of the genus Benthophilus (Teleostei: Gobiidae)// Ichthyol. Explor. Freshwaters. V/ 18, # 1, 2007. P. 31-96.

China Red Data Book of Endangered Animals. Pisces. Science Press, Beijing, Hong Kong, New York, 1998. 248 p. Dukravets G.M. The Status of *Perca schrenki* (Percidae) in Kazakhstan//Ital. J. Zool., 65, 1998. Suppl. 373-376.

Eschmeyer, W. N. (ed). Catalog of Fishes. California Academy of Sciences. Electronic version accessed 18 November 2016 – (http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp).

Froese R., Pauly D.. Editors. 2016. FishBase. World Wide Web electronic publication. www.fishbase.org, version 06/2016.

Kottelat M. European freshwater fishes//Journal of the Slovak Akademy of Sciences. Vol. 52 / Suppl. 5. Bratislava, 1997. 271 p.

Mendel, J.; Lusk, S.; Vasil'eva, E. D.; Vasil'ev, V. P.; Lusková, V.; Erk'akan, F.; Ruchin, A.; Koščo, J.; Vetešník, L.; Halačka, K.; Šanda, R.; Pashkov, A. N.; Reshetnikov, S. I., Molecular phylogeny of the genus Gobio Cuvier, 1816 (Teleostei: Cyprinidae) and its contribution to taxonomy. Mol. Phylogenet. Evol. 2008. 47, 1061-1075.

Mitrofanov I.V. Phenetic diversity and taxonomy of stone loaches subgenus Deuterophysa (Balitoridae)//Tethys Aqua Zoological Research. Almaty, 2002. P. 123-128. Mitrofanov I.V., Mamilov N.Ch., Skakun V.A. Ichthyofauna of Small Aral Sea / Preliminary Investigation. Results of short-term field expedition (August, 2002) of Kazakhstanicus and Japanese scientists, sponsored by JARAK with support of Tethys Scientific Society Kazakhstan. Almaty: Tethys, 2003. 38 p.

Nowak, M.; Koščo, J.; Popek, W. Review of the current status of systematic of gudgeons (Gobioninae, Cyprinidae) in Europe. AACL Bioflux. 2008. 1, 27-38.

Prokofiev A. M. *Dzihunia*, a New Genus of Nemacheiline Loaches from the Aral Sea Basin (Pisces: Cypriniformes: Balitoridae)// Zoosyst. Rossica. 2001. 10 (1), 209-213.

Ren Mulian, Guo Yan, Zhang Qingli, Zhang Renming, Li Hong, Cai Lingnang, Yong Weidong, Ren Bo, Gao Hong, Deng Guizhong. Fisheries resourses and fishery of river Yili. Harbin, 1998. 345 р. (на кит. яз.).

Ruban G.I., Kholodova M.V., Kalmykov V.A., Sorokin P.A. Morphological and molecular genetic stady of the Persian sturgeon *Acipenser persicus* Borodin. Taxonomic status//J. Ichthyol., 2008. V.48/# 10. P. 891-903.

Ruban G.I., Kholodova M.V., Kalmykov V.A., Sorokin P.A. A review of the taxonomic status of the Persian sturgeon (*Acipenser persicus* Borodin)// J. Appl. Ichthyol. 2011. V. 27. P. 470-476.

Zhimbey Ye.N., Mitrofanov I.V. Histopathologies in fish from North Caspian Sea//Tethys Aqua Zoological Research. Almaty, 2002. P. 129-136.

Summary

Gennadiy M. Doukravets, Nadir Sh. Mamilov, Igor V. Mitrofanov. Amended and enriched annotated list of lampreys and fishes of the Republic of Kazakhstan

The modern list of fishes and lamprey that inhabit Kazakhstan's water bodies is given taking into account the latest changes in the fishes taxonomy. Each description of fish species includes short annotation on its biology, taxonomy, distribution, abundance and economic value.

УДК 595.7 (574): 502.74

К фауне тлей (Hemiptera, Aphidoidea) Карагандинской области (Центральный Казахстан)

Кадырбеков Рустем Хасенович

Институт зоологии МОН РК, Алматы, Казахстан

Карагандинская область расположена в северной части Казахской складчатой страны, простираясь с запада на восток почти на 500 км и с севера на юг примерно на 200 км. В основном здесь находятся волнистые равнины и широкие долины с возвышающимися гранитными массивами. Мелкосопочник представляет собой древнюю горную систему, которая в результате длительного действия процессов выветривания превратилась в холмистую страну. Общая приподнятость территории мелкосопочника над уровнем моря — 350-500 м. Наиболее крупные обособленные горные массивы: Кент — 1367 м, Каркаралы — 1358 м, Бектауата — 1214 м, а также массивы Куу, Бугылы, Кызылрай. Климат области резко континентальный, сухой. Растительный покров представлен полынными и солянковыми пустынями и дернисто-злаковыми горными степями. На юге и западе встречаются небольшие песчаные территории.

В 2015 г. в степной части области мы изучали фауну насекомых. Исследования финансировались за счет грантового проекта № 1838/ГФ4 Комитета науки Министерства образования и науки Республики Казахстан. В течение летнего периода (июль, август) 2015 г. были предприняты экспедиционные работы в западной части Карагандинской области, где были обследованы полупустынная зона по границе между степной и пустынной зонами, мелкосопочные массивы Акшатау, Бектау-Ата, Бесшокы, Бугылы, Космурын, Улытау и находящиеся между ними равнинные степные территории между Карагандой и Улытау (рис. 1).

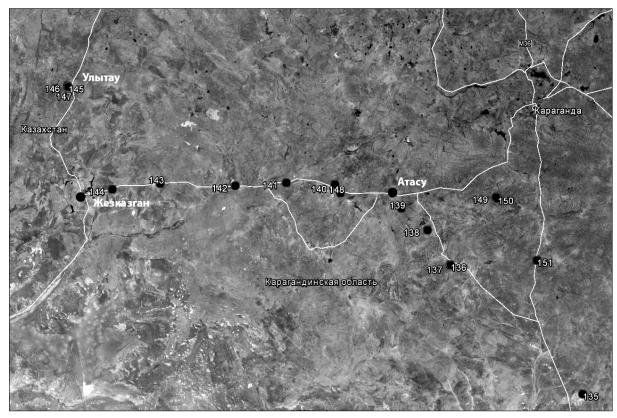


Рисунок 1. Места сборов тлей в Карагандинской области в июле-августе 2015 г.

Сведения об отдельных видах тлей, обитающих в степной зоне Казахстана, имеются в ряде работ Л.А. Юхневич (1962, 1968), Н.Е. Смаиловой (1968, 1971, 1975, 1978, 1980, 1985) и Р.Х. Кадырбекова (2004, 2005), в которых приводятся обзоры фауны тлей Западного, Центрального, Северного и Восточного Казахстана. Именно, по этим территориям тянется степная зона. Ниже приведен аннотированный список тлей Карагандинской области, в который вошли материалы 2015 г. и данные из приведенных выше литературных источников. Таксономия тлей выверена согласно имеющимся литературным источникам (Blackman, Eastop, 1994, 2006, 2011; Favret, 2016; G. Remaudiere, M. Remaudiere, 1997).

Семейство настоящих тлей (Aphididae) Подсемейство Phloeomyzinae

Phloeomyzus passerini (Signoret, 1875) – узкий олигофаг, живёт в трещинах коры тополей (*Populus nigra*); приурочен к пойменным лесам. Редкий, голарктический полизональный гигро-мезофильный вид, найденный в пойме реки Сарысу.

Подсемейство Eriosomatinae

Gootiella alba (Shaposhnikov, 1952) — монофаг, живёт внутри листовых галлов, сформированных из целого листа, на серебристом тополе (*Populus alba*); приурочен к пойменным лесам. Редкий, восточноевропейско-причерноморско-казахстанский темпорально-степной мезофильный вид, найденный в 38 км юго-восточнее Актогая, в пойме р. Токрау.

Pachypappa populi (Linnaeus, 1758) – факультативно гетерецийный вид, живущий внутри листовых галлов на осине (Populus tremula), сформированных из целого листа; приурочен к лесным формациям в

мелкосопочнике. Редкий, западноевразиатский борео-монтанный мезофильный вид, найденный в горах Каркаралы.

Mimeuria ulmiphila (del Guercio, 1917) — гетерецийный вид, живёт в слегка свернутых листьях на клене (*Acer platanoidis*), летом мигрирует на корни вяза (*Ulmus laevis*); приурочен к лесо-защитным насаждениям и населённым пунктам. Редкий, западноевразиатский борео-монтанный мезофильный вид, найденный в окрестностях станции Жана-Арка.

Pemphigus (s.str.) borealis Tullgren, 1909 – гетерецийный вид, живёт в листовых галлах на тополе (Populus nigra), летом мигрирует на корни череды (Bidens tripartitus); приурочен к пойменным лесам. Редкий, голарктический полизональный гигро-мезофильный вид, найденный в пойме реки Сарысу, а также в декоративных зелёных насаждениях населённых пунктов (Караганда, Жана-Арка).

Pemphigus (s.str.) bursarius (Linnaeus, 1758) — гетерецийный вид, живёт в листовых галлах на тополе (Populus nigra), летом мигрирует на корни различных астровых (Asteraceae); приурочен к пойменным лесам. Массовый, голарктический полизональный гигро-мезофильный вид, найденный в поймах рек Сарысу и Талдыманак.

Pemphigus (s.str.) immunis Buckton, 1896 — гетерецийный вид, живёт в листовых галлах на тополе (Populus nigra), летом мигрирует на корни молочая (Euphorbia spp.); приурочен к пойменным лесам. Обычный, западнотетийский темпорально-монтанный гигро-мезофильный вид, найденный в пойме реки Сарысу, а также в декоративных зелёных насаждениях населённых пунктов (Караганда, Жана-Арка). Для Центрального Казахстана указывается впервые.

Pemphigus (s.str.) spyrothecae Passerini, 1856 — узкий олигофаг, живёт в спиралевидно закрученных листовых галлах на тополе (Populus nigra); приурочен к пойменным лесам. Редкий, западнопалеарктический полизональный гигро-мезофильный вид, найденный в пойме реки Талдыманак.

Pemphigus (Pemphiginus) populi Courchet, 1879 — узкий олигофаг, живёт в крупных мешковидных листовых галлах на тополе чёрном (Populus nigra); приурочен к пойменным лесам и населённым пунктам. Редкий, западнопалеарктический полизональный гигро-мезофильный вид, найденный в декоративных насаждениях г. Балхаша.

Pemphigus (s.str.) populinigrae (Schrank, 1801) — узкий олигофаг, живёт внутри листовых галлов, сформированных по главной жилке на верхней стороне листа, на чёрном тополе (Populus nigra); приурочен к пойменным лесам и населённым пунктам. Обычный, транспалеарктический полизональный мезофильный вид, найденный в декоративных насаждениях населённых пунктов (Джезказган, Караганда).

Thecabius (s. str.) *affinis* (Kaltenbach, 1843) — узкий олигофаг, живёт внутри листовых галлов, сформированных из целого листа, на чёрном тополе (*Populus nigra*); приурочен к пойменным лесам и населённым пунктам. Обычный, голарктический полизональный мезофильный вид, найденный в декоративных насаждениях населённых пунктов (Джезказган, Караганда).

Tetraneura (s.str.) ulmi (Linnaeus, 1758) — гетерецийный вид, живёт в листовых галлах на вязе (Ulmus laevis, U. pumila), (Brachypodium sp., Bromus inermis, B. scoparius, Elymus dahuricus, E. sp., Elytrigia repens, Festuca sulcata); приурочен к зональной степи, лесо-защитным полосам и населённым пунктам. Обычный, повсеместно встречающийся, транспалеарктический полизональный мезо-ксерофильный вид.

Eriosoma (s.str.) lanuginosum (Hartig, 1839) — гетерецийный вид, живёт в листовых галлах на вязе (Ulmus laevis), летом мигрирует на корни груши (Pyrus communis); приурочен к лесо-защитным полосам и населённым пунктам. Редкий, космополитный полизональный мезофильный вид, найденный в уличных насаждениях Жезказгана и Жана-Арки. Для Центрального Казахстана указывается впервые.

Eriosoma (Mimaphis) patchiae (Börner et Blunck, 1916) — гетерецийный вид, живёт в листовых галлах на вязе (Ulmus pumila), летом мигрирует на корни крестовника (Senecio jacobaea); приурочен к лесо-защитным полосам и населённым пунктам. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в уличных насаждениях Жана-Арки. Для Центрального Казахстана указывается впервые.

Eriosoma (Schizoneura) ulmi (Linnaeus, 1758) – гетерецийный вид, живёт в листовых галлах на вязе (Ulmus laevis, U. pumila), летом мигрирует на корни груши (Grossularia sp., Ribes spp.); приурочен к лесозащитным полосам и населённым пунктам. Массовый, повсеместно встречающийся, транспалеарктический полизональный мезофильный вид.

Forda formicaria von Heyden, 1837 - 1857 — широкий олигофаг, живёт на корнях многих растений семейства мятликовых (Dactylis glomerata, Festuca sulcata, Stipa capillata, Poa angustifolia); приурочен к зональным степям и кустарниковым степям мелкосопочника. Обычный, повсеместно встречающийся, голарктический полизональный мезо-ксерофильный вид.

Forda marginata Koch, 1857 — широкий олигофаг, живёт на корнях многих растений семейства мятликовых (Agrostis gigantea, Bromus danthoniae, Helichtotrichon pubescens, Hordeum brevisubulatum,

Leymus ramosus, Dactylis glomerata, Festuca sulcata, F. valessiaca, Elymus multicaulis, Stipa capillata, S. kirghisorum, Phleum phleoides, Poa angustifolia); приурочен к зональным степям и кустарниковым степям мелкосопочника. Обычный, повсеместно встречающийся, голарктический полизональный мезоксерофильный вид.

Forda pawlowae Mordvilko, 1901 – 1857 – широкий олигофаг, живёт на корнях некоторых растений семейства мятликовых (Festuca valessiaca); приурочен к зональным степям и кустарниковым степям мелкосопочника. Редкий, широкотетийский аридно-монтанный ксеро-мезофильный вид, найденный в горах Кызылтас, в 40 км северо-восточнее п. Актогая.

Подсемейство Lachninae

Cinara (s.str.) pinea (Mordvilko, 1895) – монофаг, живёт на коре молодых побегов сосны обыкновенной (*Pinus silvestris*); приурочен к лесным формациям. Обычный, транспалеарктический полизональный мезофильный вид, найденный в горах Каркаралы.

Cinara (s.str.) pini (Linnaeus, 1758) — монофаг, живёт на коре прошлогодних побегов сосны обыкновенной (Pinus silvestris); приурочен к лесным формациям. Обычный, евразиатский бореомонтанный вид, найденный в горах Каркаралы.

Cinara (Cupressobium) juniperi (de Geer, 1773) — узкий олигофаг, живёт на коре стволов и ветвей арчи (Juniperus sabina); приурочен к кустарниковым степям мелкосопочника. Редкий, голарктический полизональный мезофильный вид, найденный в горах Кызылтас, в 40 км северо-восточнее п. Актогая.

Maculolachnus submacula (Walker, 1848) — факультативно гетерецийный вид, живёт на стволах шиповника (Rosa laxa), летом частично мигрирует на корни герани (Geranium collinum); приурочен к пойменным лесам, кустарниковым степям и лесным экосистемам мелкосопочника. Обычный, голарктический полизональный мезофильный вид, найденный в пойме реки Сарысу, в горах Бектау-Ата, Космурын, Улытау.

Tuberolachnus (s.str.) *salignus* (J. F. Gmelin, 1790) – узкий олигофаг, живёт на коре ивы (*Salix* sp.); приурочен к пойменным лесам. Редкий, голарктический полизональный гигро-мезофильный вид, найденный в горах Космурын.

Trama (s.str.) troglodytes von Heyden, 1837 – олигофаг, живёт на корнях полыни горькой (Artemisia absinthium); приурочен к луговым стациям и пойменным лесам. Редкий, транспалеарктический полизональный мезофильный вид, найденный в окрестностях г. Темиртау.

Подсемейство Calaphidinae

Euceraphis caerulescens Pashtshenko, 1984 — узкий олигофаг, живёт на нижней и верхней стороне листьев березы (Betula kirghisorum, B. pendula); приурочен к лесным экосистемам мелкосопочника и декоративным насаждениям населённых пунктов. Редкий, восточноевразиатский борео-монтанный мезофильный вид, найденный в горах Каркаралы и декоративных насаждениях (Караганда, Долинка). Для Центрального Казахстана указывается впервые.

Euceraphis punctipennis (Zetterstedt, 1828) — узкий олигофаг, живёт на нижней и верхней стороне листьев березы киргизской (Betula kirghisorum); приурочен к лесным экосистемам мелкосопочника. Массовый, циркумбореальный борео-монтанный мезофильный вид, найденный в горах Бугылы и Улытау.

Callipterinella calliptera (Hartig, 1841) — узкий олигофаг, живёт на нижней стороне листьев березы киргизской (Betula kirghisorum); приурочен к лесным экосистемам мелкосопочника. Обычный, евразиатский борео-монтанный мезофильный вид, найденный в горах Бугылы и Улытау.

Symydobius oblongus (von Heyden, 1837) – узкий олигофаг, живёт на коре ветвей березы киргизской (Betula kirghisorum); приурочен к лесным экосистемам мелкосопочника. Обычный, циркумбореальный борео-монтанный мезофильный вид, найденный в горах Бугылы и Улытау.

Calaphis betulicola (Kaltenbach, 1843) – узкий олигофаг, живёт на нижней стороне листьев березы киргизской (Betula kirghisorum); приурочен к лесным экосистемам мелкосопочника. Обычный, циркумбореальный борео-монтанный мезофильный вид, найденный в горах Бугылы и Улытау. Для Центрального Казахстана указывается впервые.

Therioaphis (s.str.) *riehmi* (Börner, 1949) — узкий олигофаг, живёт на нижней стороне листьев донника (*Melilotus albus*, *M. dentatus*); приурочен к зональной степи и лесным экосистемам мелкосопочника. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Бугылы, Космурын и Улытау.

Therioaphis (s.str.) tenera (Aizenberg, 1956) — узкий олигофаг, живёт на нижней стороне листьев караганы (Caragana frutex, C. pumila); приурочен к зональной степи и кустарниковым степям мелкосопочника. Обычный, широкоскифский степной ксерофильный вид, найденный в горах Бесшокы, Бугылы, Космурын, Улытау.

Therioaphis (s.str.) *trifolii* (Monell, 1882) — олигофаг, живёт на нижней стороне листьев клевера (*Trifolium pratensis*) и люцерны (*Medicago falcata*); приурочен к зональной степи и лесным экосистемам мелкосопочника. Обычный, транспалеарктический полизональный мезофильный вид, найденный в горах Бектау-Ата, Бесшокы, Космурын, Бугылы и Улытау.

Tinocallis (Eotinocallis) platani (Kaltenbach, 1843) – монофаг, живёт на нижней стороне листьев вяза крупнолистного (Ulmus laevis); приурочен к населённым пунктам и лесо-защитным полосам. Обычный, западнопалеарктический темпорально-степной мезофильный вид, найденный в декоративных насаждениях (Жана-Арка, Каркаралинск).

Tinocallis (Sappocallis) saltans (Nevsky, 1928) — монофаг, живёт на нижней стороне листьев карагача (Ulmus pumila); приурочен к населённым пунктам и лесо-защитным полосам. Обычный, повсеместно встречающийся, восточнопалеарктический темпорально-монтанный мезофильный вид.

Подсемейство Macropodaphidinae

Macropodaphis dzhungarica Kadyrbekov, 1991 — монофаг, живёт на нижней и верхней стороне листьев курильского чая (*Pentaphylloides parviflora*); приурочен к кустарниковым степям мелкосопочника. Редкий, казахстано-джунгаро-тибетский монтанный вид, найденный в горах Бугылы и в долине реки Нурталды в 90 км южнее г. Караганда. Для Карагандинской области и степной зоны указывается впервые.

Подсемейство Saltusaphidinae

Iziphya bufo (Walker, 1848) – узкий олигофаг, живёт на верхней стороне листьев осоки (*Carex* sp.); приурочен к луговым стациям мелкосопочника. Редкий, транспалеарктический полизональный гигромезофильный вид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Saltusaphis scirpus Theobald, 1915 — олигофаг, живёт на верхней стороне листьев осоки (Carex sp.); приурочен к луговым стациям мелкосопочника. Редкий, широкотетийский темпорально-монтанный гигро-мезофильный вид, найденный в горах Космурын. Для Центрального Казахстана указывается впервые.

Neosaltusaphis bodenheimeri Hille Ris Lambers, 1961 — узкий олигофаг, живёт на листьях осоки (Carex sp.); приурочен к луговым стациям в мелкосопочнике. Редкий, западноевразиатский бореальный мезо-гигрофильный вид, найденный в горах Космурын. Для фауны Казахстана указывается впервые.

Подсемейство Chaitophorinae

Chaetosiphella stipae Hille Ris Lambers, 1947 — узкий олигофаг, живёт на верхней стороне листьев ковыля волосатого и киргизского (Stipa capillata, S. kirghisorum); приурочен к равнинным и кустарниковым степям мелкосопочника. Обычный, широкоскифский степной ксерофильный вид, найденный в горах Бугылы, Бесшокы, Космурын, Улытау и в мелкосопочнике в 50 км северо-западнее ст. Атасу (474 м н.у.м.).

Sipha (Rungsia) burakowskii Holman et Szelegiewicz, 1974 — узкий олигофаг, живёт на верхней стороне листьев вейника (Leymus ramosus); приурочен к кустарниковым степям мелкосопочника. Редкий, казахстано-монгольский степной ксерофильный вид, найденный в мелкосопочнике в 50 км северозападнее ст. Атасу (474 м н.у.м.). Для фауны Казахстана указывается впервые.

Sipha (Rungsia) elegans del Guercio, 1905 – широкий олигофаг, живёт на верхней стороне листьев различных мятликовых (Aegilops cylindrica, Agropyron fragile, Bromus sp., Leymus ramosus); приурочен к зональным и кустарниковым степям мелкосопочника. Обычный, повсеместно встречающийся, голарктический полизональный мезо-ксерофильный вид.

Sipha (Rungsia) maydis Passerini, 1860 — широкий олигофаг, живёт на верхней стороне листьев различных мятликовых (Aegilops cylindrica, Arrhenatherum elatius, Bromus inermis, Dactylis glomerata, Elymus angustus); приурочен к зональным и кустарниковым степям мелкосопочника. Обычный, западнопалеарктический полизональный мезо-ксерофильный вид, найденный в горах Бектау-Ата, Бугылы, Бесшокы, Космурын и Улытау.

Chaitophorus diversifolii Juchnevitch, 1970 — монофаг, живёт на нижней стороне листьев туранги разнолистной (Populus diversifolia); приурочен к туранговникам в полупустынной зоне. Редкий, северотурано-джунгарский пустынный ксерофильный вид, найденный на северном берегу озера Балхаш (окр. пос. Саяк). Для Центрального Казахстана указывается впервые.

Chaitophorus horii beutani (Börner, 1950) — узкий олигофаг, живёт на нижней стороне листьев ивы (Salix sp.); приурочен к пойменным лесам. Редкий, западноевразиатский борео-монтанный мезогигрофильный вид, найденный в горах Космурын. Для Центрального Казахстана указывается впервые.

Chaitophorus leucomelas Koch, 1854 — узкий олигофаг, живёт на листьях, черешках и зеленых побегах тополя чёрного (*Populus nigra*); приурочен к пойменным лесам. Массовый, повсеместно встречающийся, транспалеарктический полизональный мезофильный вид. Наносит вред молодняку.

Chaitophorus populialbae (Boyer de Fonscolombe, 1841) — монофаг, живёт на нижней стороне листьев осины (*Populus tremula*); приурочен к лесным экосистемам мелкосопочника. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Бектау-Ата и Бугылы. Наносит вред молодняку.

Chaitophorus populeti (Panzer, 1801) — монофаг, живёт на нижней стороне и черешках листьев осины (Populus tremula); приурочен к лесным экосистемам мелкосопочника. Массовый, повсеместно встречающийся в местах произрастания осины, транспалеарктический полизональный мезофильный вид. Наносит вред молодняку.

Chaitophorus salicti (Schrank, 1801) — узкий олигофаг, живёт на нижней стороне листьев ивы (Salix sp.); приурочен к пойменным лесам и болотам в мелкосопочнике. Обычный, западнопалеарктический полизональный мезо-гигрофильный вид, найденный в горах Бугылы, Каркаралы, в пойме р. Токрау, в 37 км юго-восточнее п. Актогай.

Chaitophorus salijaponicus niger Mordvilko, 1929 — узкий олигофаг, живёт на нижней стороне листьев ивы (Salix alba, S. argyracea, S. viminalis); приурочен к пойменным лесам и болотам в мелкосопочнике. Массовый, повсеместно встречающийся, транспалеарктический полизональный мезогигрофильный подвид.

Chaitophorus tremulae tremulae Koch, 1854 — монофаг, живёт на нижней стороне листьев осины (Populus tremula); приурочен к лесным экосистемам мелкосопочника. Редкий, евразиатский бореомонтанный мезофильный подвид, найденный в горах Улытау.

Chaitophorus tremulae sorini Pintera, 1987 — монофаг, живёт на нижней стороне листьев осины (Populus tremula); к лесным экосистемам мелкосопочника. Редкий, восточноевразиатский мезофильный подвид, найденный в горах Бектау-Ата. Для Центрального Казахстана указывается впервые.

Chaitophorus truncatus (Hausmann, 1802) — узкий олигофаг, живёт на нижней стороне листьев ивы белой (Salix alba); приурочен к пойменным лесам и болотам в мелкосопочнике. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Космурын.

Lambersaphis pruinosa (Narzikulov, 1954) — монофаг, живёт на коре ветвей туранги разнолистной (*Populus diversifolia*); приурочен к туранговникам в полупустынной зоне. Редкий, куроараксинскотурано-джунгарский пустынный вид, найденный на северном берегу озера Балхаш (окр. п. Саяк). Для Центрального Казахстана указывается впервые.

Подсемейство Aphidinae

Pterocomma pilosum Buckton, 1879 — узкий олигофаг, живёт в трещинах коры стволов ивы (Salix alba); приурочен к пойменным лесам и болотам в мелкосопочнике. Обычный, западнопалеарктический вид транспалеарктического полизонального мезофильного вида, найденный в пойме рек Сарысу и Талдыманак, а также в горах Бугылы.

Pterocomma konoi Hori & Takahashi, 1939 — узкий олигофаг, живёт в трещинах коры стволов ивы (Salix viminalis); приурочен к пойменным лесам и болотам в мелкосопочнике. Редкий, транспалеарктический полизональный мезофильный вид, найденный в горах Бесшокы.

Pterocomma populeum (Kaltenbach, 1843) — узкий олигофаг, живёт в трещинах коры стволов чёрного тополя (*Populus nigra*); приурочен к пойменным лесам. Редкий, транспалеарктический полизональный мезофильный вид, найденный в пойме реки Сарысу и в декоративных насаждениях Жана-Арки и Караганды.

Pterocomma rufipes (Hartig, 1841) — узкий олигофаг, живёт в трещинах коры стволов ивы (Salix alba, S. fragilis); приурочен к пойменным лесам и болотам в мелкосопочнике, а также к декоративным насаждениям. Редкий, евразиатский борео-монтанный мезо-гигрофильный вид, найденный в с. Актайлак и в горах Каркаралы.

Pterocomma salicis salicis (Linnaeus, 1758) — узкий олигофаг, живёт в трещинах коры стволов ивы (Salix alba, S. caesia); приурочен к пойменным лесам и болотам в мелкосопочнике, а также к декоративным насаждениям. Обычный, циркумбореальный борео-монтанный мезофильный вид, найденный в горах Бугылы, Каркаралы и в декоративных насаждениях Караганды.

Pterocomma tremulae Börner, 1940 — монофаг, живёт в трещинах стволов осины (Populus tremula); приурочен к лесным формациям мелкосопочника. Редкий, западноевразиатский борео-монтанный мезофильный вид, найденный в 120 км от ст. Жанаарка.

Hyalopterus pruni (Geoffroy, 1762) – гетерецийный вид, живёт на нижней стороне листьев сливы и терна (Prunus domestica, P. spinosa), летом мигрирует на тростник (Phragmites australis); приурочен к

пойменным лесам и населённым пунктам. Массовый, повсеместно встречающийся, космополитный полизональный мезо-гигрофильный вид. Серьезный сельскохозяйственный вредитель.

Rhopalosiphum insertum (Walker, 1849) — гетерецийный вид, живущий на нижней стороне листьев яблони, летом мигрирует на корни некоторых мятликовых (Poaceae); приурочен к населённым пунктам и пойменным лесам. Обычный, транспалеарктический полизональный мезофидбный вид, найденный в населённых пунктах (Караганда, Жана-Арка, Каркаралинск, Долинка).

Rhopalosiphum maidis (Fitch, 1856) — олигофаг, живёт в колосках некоторых мятликовых (Bromus sp., Echinochloa crus-galii); приурочен к южным вариантам степей. Редкий, космополитный полизональный ксеро-мезофильный вид, найденный в горах Бектау-Ата и в окрестностях станции Жана-Арка. Для Центрального Казахстана указывается впервые.

Rhopalosiphum padi (Linnaeus, 1758) — гетерецийный вид, живёт на нижней стороне листьев черёмухи (Padus racemosa), летом мигрирует на наземную часть различных мятликовых (Poaceae); приурочен к зональной степи, кустарниковым степям и лесным экосистемам мелкосопочника. Массовый, повсеместно встречающийся, космополитный полизональный мезофильный вид.

Schizaphis (s.str.) graminum (Rondani, [1847] 1852) — широкий олигофаг, живёт на листьях мятликовых (Poaceae); приурочен к кустарниковым степям мелкосопочника. Редкий, космополитный полизональный мезо-ксерофильный вид, найденный в горах Космурын.

Brachyunguis (s.str.) *atraphaxidis* (Nevsky, 1928) — узкий олигофаг, живёт на листьях и зелёных побегах курчавки (*Atraphaxis virgata*, *A. replicata*); приурочен к каменистым степным склонам мелкосопочника. Обычный, ирано-туранский, аридно-монтанный ксерофильный вид, найденный в горах Бектау-Ата, Космурын.

Brachyunguis (s.str.) *brevisiphon* Kadyrbekov, 2002 — узкий олигофаг, живёт на зелёных побегах тамариска (*Tamarix ramosissima*); приурочен к солончакам степной зоны. Редкий, северотураноджунгарский пустынный ксерофильный вид, найденный в пойме реки Куланутпес. Для Центрального Казахстана указывается впервые.

Brachyunguis (s.str.) *harmalae* В. Das, 1918 — полифаг, живёт на наземных частях адраспана (*Peganum harmala*), лебеды (*Atriplex* sp.), изеня (*Kochia prostrata*); приурочен к выбитым скотом степным и засолённым участкам. Обычный, сетийский пустынный ксерофильный вид, найденный в окрестностях Жезказгана и в нескольких местах вдоль трассы Атасу — Джезказган. Для Центрального Казахстана указывается впервые.

Brachyunguis (s.str.) *monstratus* Kadyrbekov, 1999 — узкий олигофаг, живёт на листьях и зелёных побегах курчавки (*Atraphaxis* sp.); приурочен к каменистым степным склонам мелкосопочника. Редкий, казахстано-северотурано-джунгарский аридный ксерофильный вид, найденный в горах Улытау, в мелкосопочнике в 50 км северо-западнее ст. Атасу (474 м н.у.м.). Для Центрального Казахстана указывается впервые.

Brachyunguis (s.str.) tamaricis (Lichtenstein, 1885) — узкий олигофаг, живёт на зелёных побегах тамариска (Tamarix gracilis, T. ramosissima); приурочен к солончакам степной зоны. Обычный, западнотетийский аридный вид, найденный в окрестностях Жезказгана и в нескольких местах вдоль трассы Атасу — Жезказган. Для Центрального Казахстана указывается впервые.

Brachyunguis (s.str.) tamaricophilus (Nevsky, 1928) — узкий олигофаг, живёт на зелёных побегах тамариска (Tamarix gracilis, T. ramosissima); приурочен к солончакам степной зоны. Редкий, западнотетийский аридный вид, найденный в окрестностях Жезказгана и в пойме реки Талдыманак. Для Центрального Казахстана указывается впервые.

Protaphis alexandrae (Nevsky, 1928) — узкий олигофаг, живёт на стеблях и в соцветиях василька (Centaurea iberica, C. squarrosa); приурочен к аридным низкогорьям мелкосопочника. Обычный, туранский аридный ксерофильный вид, найденный в горах Бектау-Ата и в нескольких местах вдоль трассы Атасу — Жезказган. Для Центрального Казахстана указывается впервые.

Protaphis anuraphoides (Nevsky, 1928) — олигофаг, живёт на стеблях и в соцветиях некоторых астровых (Cousinia alata, Karelinia caspia); приурочен к полупустыням. Обычный, восточнотетийский аридно-монтанный ксеро-мезофильный вид, найденный на западном (окр. ст. Сарышаган) и северном берегу (окр. с. Орта-Диирмен) озера Балхаш.

Protaphis miranda Kadyrbekov, 2001 — олигофаг, живёт на корнях полыней (Artemisia absinthium, A. pauciflora, A. schrenkiana, A. sublessingiana, A. spp.); приурочен к зональной степи и кустарниковым степям мелкосопочника. Обычный, повсеместно встречающийся, северотурано-джунгаро-казахстанский аридно-монтанный ксеро-мезофильный вид.

Ephedraphis ephedrae ephedrae (Nevsky, 1929) – узкий олигофаг, живёт на побегах эфедры (Ephedra equisetina, E. lomatolepis); приурочены к каменистым склонам степного мелкосопочника.

Редкий, западнотетийский аридно-монтанный ксерофильный подвид, найденный в горах Космурын и Улытау.

Toxopterina vandergooti (Börner, 1939) — монофаг, живёт на корнях тысячелистника (Achillea millefolium); приурочен к степному мелкосопочнику. Редкий, западноевразиатский борео-монтанный мезо-ксерофильный вид, найденный в горах Бугылы и Улытау. Для Центрального Казахстана указывается впервые.

Xerobion alakuli (Juchnevitsch, 1974) — монофаг, живёт и развивается на наземных частях полыней подрода Seriphidium (Artemisia terrae-alba); приурочен к зональной степи и кустарниковым степям мелкосопочника. Редкий, казахстано-северотурано-джунгарский пустынный ксерофильный вид, найденный в мелкосопочнике в 50 км северо-западнее ст. Атасу (474 м н.у.м.). Для Центрального Казахстана указывается впервые.

Xerobion cinae (Nevsky, 1928) — монофаг, живёт и развивается на наземных частях полыней подрода Seriphidium (Artemisia spp.); приурочен к зональной степи и кустарниковым степям мелкосопочника. Массовый, повсеместно встречающийся, ирано-турано-джунгарский аридномонтанный, ксерофильный вид.

Xerobion caspicae (Bozhko, 1963) — монофаг, живёт и развивается на наземных частях полыней подрода Seriphidium (Artemisia terrae-alba); приурочен к зональной степи и кустарниковым степям мелкосопочника. Редкий, западносредиземноморско-причерноморско-казахстанский степной ксерофильный вид, найденный в окрестностях станции Атасу и в горах Улытау. Для Центрального Казахстана указывается впервые.

Xerobion compositae Kadyrbekov, 2014 — олигофаг, живёт и развивается на наземных частях полыней подрода бодяка (Cirsium arvense); приурочен к пойменным лесам. Редкий, казахстано-каратавский аридно-монтанный ксерофильный вид, найденный в пойме реки Талдыманак. Для Центрального Казахстана указывается впервые.

Xerobion eriosomatinum Nevsky, 1928 — узкий олигофаг, живёт и развивается на наземных частях изеня (Kochia prostrata); приурочен к кустарниковым степям мелкосопочника. Редкий, западнотетийский аридно-монтанный ксерофильный вид, найденный в горах Бектау-Ата и Космурын. Для Центрального Казахстана указывается впервые.

Xerobion juchnevitchae Smailova, 1974 — монофаг, живёт и развивается на наземных частях кокпека (Atriplex cana); приурочен к засоленным участкам в степной зоне. Редкий вид, центральноказахстанский аридный ксерофильный эндемик, найденный в окрестностях гор Бектау-Ата и в пойме реки Талдыманак.

Xerobion judenkoi (Szelegiewicz, 1959) – монофаг, живёт и развивается на стеблях полыней подрода Oligosporus (Artemisia glabra, A. marschalliana); приурочен к кустарниковым степям мелкосопочника. Редкий, западноскифский степной ксерофильный вид, найденный в окрестностях станций Кенгир и Жарык, а также в горах Бесшокы, Бугылы. Для Центрального Казахстана указывается впервые.

Aphis (s.str.) acetosae acetosae Linnaeus, 1761 — узкий олигофаг, живёт на стеблях щавеля (Rumex crispus, R. confertus); приурочен к пойменным лесам и окрестностям болот в мелкосопочнике. Редкий, голарктический полизональный гигро-мезофильный подвид, найденный в горах Бугылы и Каркаралы.

Aphis (s.str.) acetosae rumicivora Heie, 1986 — узкий олигофаг, живёт на стеблях щавеля (Rumex crispus); приурочен к пойменным лесам и окрестностям болот в мелкосопочнике. Редкий, западноевразиатский борео-монтанный гигро-мезофильный подвид, найденный в горах Улытау. Для фауны Казахстана указывается впервые.

Aphis (s.str.) affinis del Guercio, 1911 – узкий олигофаг, живёт на листьях мяты (Mentha arvense); приурочен к пойменным лесам и окрестностям болот в мелкосопочнике. Массовый, повсеместно встречающийся, западнотетийский темпорально-монтанный гигро-мезофильный вид.

Aphis (s.str.) althaeae Nevsky, 1929 — олигофаг, живёт на наземных частях растений семейства Malvaceae (Althaea nudiflora, Lavatera thuringiaca); приурочен к кустарниковым степям мелкосопочника. Обычный, западнотетийский аридно-монтанный мезо-ксерофильный вид, найденный в горах Бектау-Ата, Космурын, Бесшокы.

Aphis (s.str.) craccae Linnaeus, 1758 — 1986 — узкий олигофаг, живёт на стеблях горошка (Vicia cracca, V. subvillosa); приурочен к пойменным лесам и окрестностям болот в мелкосопочнике. Обычный, евразиатский борео-монтанный гигро-мезофильный вид, найденный в горах Бугылы, Каркаралы, Улытау.

Aphis (s.str.) craccivora craccivora Koch, 1854 — полифаг, живёт на стеблях и листьях различных растений из семейств Asteraceae, Caryophilaceae, Rosaceae, Brassicaceae, Papaveraceae, Fabaceae; встречается во всех степных биоценозах. Массовый, повсеместно встречающийся, космополитный полизональный мезо-ксерофильный вид. Серьёзный сельскохозяйственный вредитель.

Aphis (s.str.) eryngiiglomerata Bozhko, 1963 — узкий олигофаг, живёт в соцветиях синеголовника (Eringium planum); приурочен к кустарниковым степям мелкосопочника. Редкий, западноскифский степной ксерофильный вид, найденный в горах Бугылы и Улытау. Для Центрального Казахстана указывается впервые.

Aphis (s.str.) euphorbiae Kaltenbach, 1843 — узкий олигофаг, живёт в соцветиях молочая (Euphorbia virgata); приурочен к кустарниковым степям мелкосопочника. Редкий, западнопалеарктический полизональный мезо-ксерофильный вид, найденный в 26 км южнее с. Ынтымак.

Aphis (s.str.) fabae Scopoli, 1763 — полифаг, живёт на стеблях и листьях растений семейств Asteraceae, Rosaceae, Apiaceae; встречается во всех степных биоценозах. Массовый, повсеместно встречающийся, космополитный полизональный мезо-гигрофильный вид. Серьёзный сельскохозяйственный вредитель.

Aphis (s.str.) farinosa J. F. Gmelin, 1790 — узкий олигофаг, живёт на коре зеленых побегов ивы (Salix argyracea, S. turanica); приурочен к пойменным лесам. Обычный, повсеместно встречающийся, голарктический полизональный мезо-гигрофильный вид.

Aphis (s.str.) frangulae frangulae Kaltenbach, 1845 — полифаг, живёт на стеблях и листьях ястребинки (Hieracium virosum), кипрея (Epilobium hirsutum L.) и жостера (Rhamnus cathartica); приурочен к кустарниковым степям мелкосопочника. Обычный, транспалеарктический полизональный мезофильный подвид, найденный в горах Бектау-Ата, Космурын, Бесшокы, Улытау. Серьёзный сельскохозяйственный вредитель.

Aphis (s.str.) frangulae beccabungae Koch, 1855 — полифаг, живёт на наземных частях растений семейств Brassicaceae, Onagraceae, Lamiaceae, Scrophulariaceae; приурочен к кустарниковым степям и лесным экосистемам мелкосопочника, пойменным лесам. Массовый, повсеместно встречающийся, евразиатский борео-монтанный мезо-гигрофильный подвид. Серьезный сельскохозяйственный вредитель.

Aphis (s.str.) franzi Holman, 1975 — олигофаг, живёт в соцветиях некоторых сельдерейных (Peucedanum morissoni, Seseli glabratum, S. stricta); приурочен к кустарниковым степям мелкосопочника. Редкий, западноскифский степной западноскифский степной мезофильный вид, найденный в горах Бугылы, Улытау и в окрестностях Караганды. Для Центрального Казахстана указывается впервые.

Aphis (s.str.) galiiscabri Schrank, 1801 — узкий олигофаг, живёт на стеблях и листьях подмаренника (Galium saurense, G. verum, G. aparine); приурочен к кустарниковым степям мелкосопочника. Обычный, повсеместно встречающийся, западноевразиатский борео-монтанный мезофильный вид.

Aphis (s.str.) gossypii Glover, 1877 – 1855 – полифаг, живёт на наземных частях растений семейств Asteraceae, Brassicaceae, Fabaceae, Onagraceae, Lamiaceae, Scrophulariaceae; приурочен к кустарниковым степям. Обычный, повсеместно встречающийся, космополитный полизональный мезо-гигрофильный подвид. Серьёзный сельскохозяйственный вредитель.

Aphis (s.str.) hieracii Schrank, 1801 – узкий олигофаг, живёт в соцветии и по цветоносу ястребинки (Hieracium echioides); приурочен к кустарниковым степям и луговым биотопам мелкосопочника. Обычный, евразиатский борео-монтанный мезофильный вид, найденный в горах Бугылы, Улытау, в мелкосопочнике в 50 км северо-западнее ст. Атасу (474 м н.у.м.). Для Центрального Казахстана указывается впервые.

Aphis (s.str.) intybi Koch, 1855 — монофаг, живёт на листьях и стеблях цикория (Cichorium intybus); приурочен к кустарниковым степям и луговым биотопам мелкосопочника. Обычный западнопалеарктический полизональный мезо-ксерофильный вид, найденный в горах Бугылы, Бесшокы, Улытау.

Aphis (s.str.) jacobaeae Schrank, 1801 — узкий олигофаг, живёт на стеблях и листьях крестовника (Senecio jacobaea); приурочен к кустарниковым степям мелкосопочника. Редкий, евразиатский бореомонтанный мезофильный вид, найденный в горах Космурын и Бугылы.

Aphis (s.str.) janischi (Börner, 1940) – узкий олигофаг, живёт на стеблях и листьях бодяка (Cirsium incanum); приурочен к луговым степям мелкосопочника. Редкий, западноевразиатский борео-монтанный мезофильный вид, найденный в горах Бугылы. Для Центрального Казахстана указывается впервые.

Aphis (s.str.) jurineae Bozhko, 1953 – узкий олигофаг, живёт на цветоносах нагловатки (Jurinea sp.); приурочен к зональной степи. Редкий, причерноморско-казахстанский степной ксерофильный вид, найденный в окр. ст. Кызылжар (555 м н.у.м.). Для Центрального Казахстана указывается впервые.

Aphis (s.str.) longirostris Börner, 1950 — монофаг, живёт на корнях узколистных подорожников (*Plantago stepposa*); приурочен к солончакам и солонцам в пределах степной зоны. Редкий, европейско-западноскифский лугово-степной галофильный вид, найденный в горах Каркаралы и в зональной степи в Осакаровском районе.

Aphis (s.str.) nasturtii Kaltenbach, 1843 – полифаг, живёт на пастушей сумке (Capsella bursa-pastoris), подорожнике (Plantago major), жостере (Rhamnus cathartica); приурочен к кустарниковым

степям и лесным экосистемам, а также к пойменным лесам. Обычный, повсеместно встречающийся, голарктический полизональный мезофильный вид. Серьёзный сельскохозяйственный вредитель.

Aphis (s.str.) nepetae Kaltenbach, 1843 — узкий олигофаг, живёт на листьях и стеблях котовника (Nepeta cataria, N. pannonica); приурочен к кустарниковым степям и лесным экосистемам, а также к пойменным лесам. Обычный, повсеместно встречающийся, западноевразиатский борео-монтанный мезофильный вид.

Aphis (s.str.) newtoni Theobald, 1927 — узкий олигофаг, живёт на основании листьев касатика (Iris halophila); приурочен к луговым биотопам мелкосопочника. Обычный, евразиатский бореомонтанный мезофильный вид, найденный в горах Бектау-Ата, Космурын.

Aphis (s.str.) origani Passerini, 1860 — монофаг, живёт на листьях душицы (Origanum vulgare); приурочен к луговым стациям в мелкосопочнике. Обычный, западнопалеарктический полизональный мезофильный вид, найденный в горах Бектау-Ата, Космурын, Бесшокы, Улытау.

Aphis (s.str.) plantaginis Goeze, 1778 — узкий олигофаг, живёт на основании стебля подорожника (Plantago major, P. media); приурочен к кустарниковым степям и лесным экосистемам, а также к пойменным лесам. Обычный, повсеместно встречающийся, транспалеарктический полизональный мезофильный вид.

Aphis (s.str.) pomi de Geer, 1773 — олигофаг, живёт на нижней стороне, черешках листьев яблони (Malus domestica) и боярышника (Crataegus sp.); приурочен к агроценозам и населённым пунктам. Обычный, голарктический полизональный мезофильный вид, найденный в населённых пунктах (Балхаш, Джезказган, Долинка, Жана-Арка, Каркаралинск, Караганда).

Aphis (s.str.) pseudocomosa Stroyan, 1972 — олигофаг, живёт на стеблях и в соцветиях некоторых бобовых (Lathyrus pratensis, Onobrychis sp.); приурочен к луговым стациям в мелкосопочнике. Редкий, западноевразиатский борео-монтанный мезофильный вид, найденный в горах Бугылы. Для Центрального Казахстана указывается впервые.

Aphis (s.str.) ruborum (Börner, 1932) — монофаг, живёт на стеблях и нижней стороне листьев ежевики (Rubus caesius); приурочен к луговым стациям в мелкосопочнике. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Бугылы и Бектау-Ата.

Aphis (s.str.) rumicis Linnaeus, 1758 — узкий олигофаг, живёт в соцветиях, на стеблях, листьях щавеля (Rumex spp.); приурочен к луговым стациям в мелкосопочнике, лесным экосистемам и пойменным лесам. Массовый, повсеместно встречающийся, голарктический полизональный мезогигрофильный вид. Серьёзный сельскохозяйственный вредитель.

Aphis (s.str.) salviae Walker, 1852 — узкий олигофаг, живёт на наземных частях шалфея (Salvia nemorensis); приурочен к равнинным и кустарниковым степям в мелкосопочнике. Обычный, западнотетийский аридно-монтанный ксеро-мезофильный вид, найденный в горах Бектау-Ата, Космурын, Бугылы, Бесшокы, Улытау.

Aphis (s.str.) sedi Kaltenbach, 1843 — олигофаг, живёт на стеблях и листьях растений семейства камнеломковых (Sedum spp., Orostachys spinosa); приурочен к кустарниковым степям в мелкосопочнике. Редкий, голарктический полизональный мезофильный вид, найденный в горах Бугылы, Космурын.

A. (s.str.) schilderi (Börner, 1940) — олигофаг, живёт в соцветиях жабрицы (Seseli condensata) и горичника (Peucedanum morissoni); приурочен к равнинным и кустарниковым степям в мелкосопочнике. Редкий, западноскифский степной ксеро-мезофильный вид, найденный в горах Бугылы, Улытау. Для Центрального Казахстана указывается впервые.

Aphis (s.str.) spiraephaga F.P. Muller, 1961 — гетерецийный вид, живёт на молодых побегах таволги зверобойнолистной (Spiraea hypericifolia), факультативно мигрирует на травянистые растения (Epilobium adnatum, Valeriana sp., Lithrum virgatum); приурочен к кустарниковым степям в мелкосопочнике. Массовый, повсеместно встречающийся, западнопалеарктический монтанно-степной мезо-ксерофильный вид.

Aphis (s.str.) *tacita* Huculak, 1968 – узкий олигофаг, живёт на корнях астрагала (*Astragalus* sp.); приурочен к кустарниковым степям в мелкосопочнике. Редкий, западноскифский степной ксеромезофильный вид, найденный в горах Каркаралы.

Aphis (s.str.) taraxacicola (Börner, 1940) — узкий олигофаг, живёт на основании стебля одуванчика (*Taraxacum* spp.); приурочен к луговым стациям в мелкосопочнике, лесным экосистемам и пойменным лесам. Обычный, повсеместно встречающийся, транспалеарктический полизональный мезофильный вид.

Aphis (s.str.) thalictri (Koch, 1854) — узкий олигофаг, живёт на зелёных побегах и листьях василистника (Thalictrum collinum, T. foetidum); приурочен к лесным и луговым экосистемам мелкосопочника. Редкий, транспалеарктический полизональный мезофильный вид, найденный в горах Бугылы и Улытау

Aphis (s.str.) triglochinis Theobald, 1926 — факультативно гетерецийный вид, со смородины (Ribes aureum), мигрирующий на некоторые лютиковые (Ranunculaceae); приурочен к агроценозам и населённым пунктам. Редкий, евразиатский борео-монтанный мезофильный вид, найденный в Долинке и Караганде.

Aphis (s.str.) ucrainensis Zhuravlyov, 1997 — узкий олигофаг, живёт на молодых побегах таволги зверобойнолистной (Spiraea hypericifolia); приурочен к кустарниковым степям в мелкосопочнике. Обычный, причерноморско-казахстанско-алатавско-внутренне-тяньшанский монтанно-степной мезоксерофильный вид, найденный в горах Бектау-Ата, Бесшокы, Космурын. Для Центрального Казахстана указывается впервые.

Aphis (s.str.) ulmariae Schrank, 1801 — узкий олигофаг, живёт на зеленых побегах и листьях лабазника (Filipendula ulmaria); приурочен к лесным и луговым экосистемам мелкосопочника. Обычный, циркумбореальный борео-монтанный гигро-мезофильный вид, найденный в горах Бесшокы, Бугылы и Улытау.

Aphis (s.str.) urticata J. F. Gmelin, 1790 — узкий олигофаг, живёт на листьях и стеблях крапивы (Urtica cannabina, U. dioica); приурочен к луговым стациям в мелкосопочнике, лесным экосистемам и пойменным лесам. Обычный, повсеместно встречающийся, транспалеарктический полизональный мезофильный вид.

Aphis (Bursaphis) epilobiaria Theobald, 1927 — узкий олигофаг, живёт в соцветиях кипрея (Epilobium sp.) и иван-чая (Chamaenerion angustifolium); приурочен к луговым стациям в мелкосопочнике. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Космурын. Для Центрального Казахстана указывается впервые.

Aphis (Bursaphis) grossulariae Kaltenbach, 1843 – гетерецийный вид, живёт на листьях смородины (Ribes nigrum, R. saxatile), летом факультативно мигрирует на соцветия иван-чая (Chamaenerion angustifolium) и кипрея (Epilobium spp.); приурочен к кустарниковым степям и лесным экосистемам, а также к пойменным лесам. Обычный, транспалеарктический полизональный мезофильный вид, найденный в горах Бугылы, Улытау и в пойме реки Сарысу. Серьёзный сельскохозяйственный вредитель.

Cryptosiphum artemisiae Buckton, 1879 — монофаг, живёт в листовых галлах на полыни (Artemisia absinthium, A. vulgaris); приурочен к луговым стациям в мелкосопочнике, лесным экосистемам и пойменным лесам. Редкий, транспалеарктический полизональный вид, найденный в горах Космурын и Улытау.

Brachycaudus (s.str.) helichrysi (Kaltenbach, 1843) — полифаг, гетерецийный вид, живущий на косточковых розоцветных (Prunus domestica, P. spinosa) и мигрирующий на многие растения из семейств Asteraceae, Boraginaceae; встречается во всех степных экосистемах. Массовый, повсеместно встречающийся, космополитный полизональный мезофильный вид. Серьёзный сельскохозяйственный вредитель.

Brachycaudus (s.str.) *spiraeae* Börner, 1932 – узкий олигофаг, живёт в листовых галлах на таволге зверобойнолистной (*Spiraea hypericifolia*); приурочен к равнинным и кустарниковым степям мелкосопочника. Редкий, транспалеарктический полизональный мезо-ксерофильный вид, найденный в горах Космурын и Улытау.

Brachycaudus (Prunaphis) cardui (Linnaeus, 1758) — гетерецийный вид, живёт на нижней стороне листьев косточковых плодовых (Prunus domestica, P. spinosa), летом мигрирует на некоторые астровые (Carduus spp., Cirsium spp., Matricaria inodora, Senecio jacobaea); приурочен к равнинным и кустарниковым степям мелкосопочника. Обычный, голарктический полизональный мезофильный вид, найденный в горах Бектау-Ата, Космурын, Бугылы, Бесшокы, Улытау. Серьёзный сельскохозяйственный вредитель.

Brachycaudus (Appelia) tragopogonis tragopogonis (Kaltenbach, 1843) — олигофаг, живёт внутри соцветий козлобородника (Tragopogon spp.), приурочен к равнинным и кустарниковым степям мелкосопочника. Редкий, западнопалеарктический полизональный ксеро-мезофильный подвид, найденный в горах Бугылы и Бесшокы.

Brachycaudus (Thuleaphis) rumexicolens (Patch, 1917) — олигофаг, живёт внутри соцветий щавеля (Rumex crispus, R. confertus) и ревеня татарского (Rheum tatricum); приурочен к степным, лесным и пойменным экосистемам мелкосопочника. Редкий, западнопалеарктический полизональный ксеромезофильный вид, найденный в горах Бугылы и Бесшокы.

Dysaphis (s.str.) crataegi crataegi (Kaltenbach, 1843) – гетерецийный вид, живёт в листовых галлах на боярышнике (Crataegus altaica), летом мигрирует на корни дикой моркови (Daucus carota); приурочен к лесным экосистемам мелкосопочника. Редкий, западнопалеарктический полизональный мезофильный подвид, найденный в горах Улытау.

Dysaphis (s. str.) *devecta* (Walker, 1849) — узкий олигофаг, живёт в листовых галлах на яблоне (*Malus domestica*); приурочен к агроценозам и населённым пунктам. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в г. Балхаше.

Dysaphis (s.str.) ferulae (Nevsky, 1929) — узкий олигофаг, живёт на корневой шейке и в пазухах приземных листьев ферулы (Ferula akitschkensis, F. nuda, F. spp.); приурочен к равнинным и кустарниковым степям мелкосопочника. Обычный, северотурано-алтайско-алатавско-северотуркестанский аридно-монтанный ксерофильный вид, найденный в горах Бектау-Ата, Космурын, Бугылы, Бесшокы, Улытау.

Dysaphis (s.str.) foeniculus (Theobald, 1923) — олигофаг, живёт на корнях некоторых сельдерейных (Conioselinum vaginatum, Conium maculatum, Seseli coronatum); приурочен к луговым и лесным экосистемам. Редкий, голарктический полизональный мезофильный вид, найденный в горах Бугылы, Космурын, Улытау.

Dysaphis (s.str.) rumecicola emicis (Mimeur, 1935) — олигофаг, живёт на корнях и корневой шейке щавеля (Rumex confertus, R. spp.) и ревеня татарского (Rheum tatricum); приурочен к каменистым и глинистым пустыням, зональным равнинным степям, кустарниковым степям мелкосопочника и пойменным лесам. Обычный, широкотетийский темпорально-монтанный мезофильный вид, найденный в горах Бектау-Ата, Бугылы, Бесшокы, Космурын, Улытау, а также в каменистой пустыне в окрестностях ст. Сарышаган.

Dysaphis (s.str.) tschildarensis tschildarensis Daniyarova et Narzikulov, 1975 – узкий олигофаг, живёт на корнях и корневой шейке ферулы (Ferula akitschkensis); приурочен к каменистым пустыням и кустарниковым степям мелкосопочника. Редкий, афгано-туркестано-алатавско-тарбагатайский монтанный ксерофильный вид, найденный в окрестностях с. Теректы по трассе Атасу-Жезказган и в Бетпакдале (ур. Шолак-Эспе). Для Центрального Казахстана указывается впервые.

Acaudella puchovi Nevsky, 1929 — узкий олигофаг, живёт на листьях курчавки (Atraphaxis sp.); приурочен к каменистым пустыням. Редкий, туранский пустынный ксерофильный вид, найденный по дороге Мадиенет — Саяк. Для Центрального Казахстана указывается впервые.

Semiaphis dauci (Fabricius, 1775) — олигофаг, живёт в соцветиях некоторых сельдерейных (Bunium setosum, Daucus carota, Seseli spp.); приурочен к кустарниковым степям мелкосопочника. Обычный, западнопалеарктический полизональный мезо-ксерофильный вид, найденный в горах Бектау-Ата, Бесшокы, Космурын, Улытау.

Semiaphis horvathi Szelegiewicz, 1967 — олигофаг, живёт в соцветиях некоторых сельдерейных (Peucedanum morissonii, Silaus besserii); приурочен к кустарниковым степям мелкосопочника. Редкий, западноскифско-алатавский монтанно-степной мезофильный вид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Hyadaphis coriandri (В. Das, 1918) — гетерецийный вид, живёт в листовых галлах на жимолости татарской (Lonicera tatarica), летом мигрирует на соцветия некоторых растений семейства сельдерейных (Cenolophium fischerii (Spreng.) Косh, Ferula spp., Seseli spp.); приурочен к равнинным и кустарниковым степям мелкосопочника. Обычный, западнотетийский аридно-монтанный ксеро-мезофильный вид, найденный в горах Бектау-Ата, Бесшокы, Космурын, Улытау. Для Центрального Казахстана указывается впервые.

Hyadaphis tataricae (Aizenberg, 1935) — узкий олигофаг, живёт в листовых галлах на жимолости татарской (*Lonicera tatarica*); приурочен к пойменным лесам и лесным экосистемам мелкосопочника. Обычный, восточноевропейско-западноскифско-туркестанский темпорально-монтанный мезофильный вид, найденный в горах Бектау-Ата, Бугылы, Космурын, Улытау.

Brachycorinella asparagi (Mordvilko, 1929) – узкий олигофаг, живёт на побегах спаржи (Asparagus sp.); приурочен к лесным стациям мелкосопочника. Редкий, широкотетийский темпорально-монтанный мезофильный вид, найденный в горах Бектау-Ата. Для Центрального Казахстана указывается впервые.

Brachycorinella lonicerina (Shaposhnikov, 1952) — узкий олигофаг, живёт в листовых галлах на жимолости татарской (Lonicera tatarica); приурочен к пойменным лесам и лесным экосистемам мелкосопочника. Редкий, восточнотетийский темпорально-монтанный мезофильный вид, найденный в горах Бугылы и Космурын.

Cavariella (s.str.) aegopodii (Scopoli, 1763) – гетерецийный вид, живёт на нижней стороне листьев ивы (Salix spp.), летом мигрирует на сельдерейные (Cenolophium fischerii, Conioselinum vuglinatum, Seseli sessiliflorum); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Обычный, космополитный полизональный мезо-гигрофильный вид, найденный в пойме реки Сарысу, в горах Космурын и Улытау.

Cavariella (s.str.) theobaldi (Gillette et Bragg, 1918) – гетерецийный вид, живёт на нижней стороне листьев ивы (Salix spp.), летом мигрирует на борщевик (Heracleum dissectum); приурочен к пойменным

лесам и лесным экосистемам. Редкий, голарктический полизональный гигро-мезофильный вид, найденный в горах Бугылы и Улытау.

Coloradoa campestris Börner, 1939 — монофаг, живёт на стеблях полыней из подрода Oligosporus (Artemisia marschalliana); приурочен к кустарниковым степям мелкосопочника. Редкий, западноскифский монтанно-степной ксерофильный вид, найденный в горах Космурын. Для фауны Казахстана указывается впервые.

Coloradoa heinzei (Börner, 1952) — монофаг, живёт на листьях полыней подрода Seriphidium (Artemisia terrae-alba, A. nitrosa, A. pauciflora); приурочен к равнинным и кустарниковым степям мелкосопочника Обычный, повсеместно встречающийся, широкоскифский аридный ксерофильный вид.

Coloradoa tanacetina (Walker, 1850) — монофаг, живёт на листьях пижмы обыкновенной (*Tanacetum vulgare*); приурочен к луговым стациям мелкосопочника Редкий, западноевразиатский бореальный мезофильный вид, найденный в горах Космурын. Для фауны Казахстана указывется впервые.

Chaitaphis kazakhstanica Kadyrbekov, 2002 — монофаг, живёт внутри растущих верхушек бассии (Bassia sedoides); приурочен к солончакам и солонцам в пределах степной зоны. Редкий, казахстано-северотуранский аридный галофильный вид, найденный в окр. п. Молодежное и в 38 км восточнее п. Осакаровка. Для Центрального Казахстана указывается впервые.

Hayhurstia atriplicis atriplicis (Linnaeus, 1761) — олигофаг, живёт в листовых галлах на лебеде (Atriplex tatarica) и мари (Chenopodium album); приурочен к солончакам и солонцам в пределах степной зоны, к кустарниковым степям и луговым экосистемам мелкосопочника. Массовый, повсеместно встречающийся, голарктический полизональный галофильный вид.

Hayhurstia atriplicis chenopodii Mamontova-Solucha, 1963 — узкий олигофаг, живёт в листовых галлах на мари (Chenopodium album); приурочен к солончакам и солонцам в пределах степной зоны. Редкий, причерноморско-казахстанский степной галофильный подвид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Lipaphis (s. str.) erysimi (Kaltenbach, 1843) — широкий олигофаг, живёт в соцветиях желтушника (Erysimum diffusum); приурочен к кустарниковым степям мелкосопочника. Редкий, космополитный полизональный мезо-ксерофильный вид, найденный в горах Каркаралы.

Longicaudus trirhodus (Walker, 1849) — гетерецийный вид, живущий на шиповнике (Rosa laxa), летом мигрирует на василистник (Thalictrum collinum, T. simplex); приурочен к луговым и лесным экосистемам мелкосопочника. Редкий, транспалеарктический полизональный мезофильный вид, найденный в горах Бугылы и Улытау.

Myzaphis bucktoni Jacob, 1946 – узкий олигофаг, живёт в пазухах листьев шиповника (*Rosa* spp.); приурочен к кустарниковым степям мелкосопочника. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Бектау-Ата и Космурын.

Myzaphis rosarum (Kaltenbach, 1843) — олигофаг, живёт в пазухах молодых листьев на шиповнике (Rosa spp.); приурочен к пойменным лесам и лесным экосистемам мелкосопочника. Обычный, повсеместно встречающийся, голарктический полизональный мезофильный вид.

Hydaphias carpaticae Mamontova-Solucha, 1966 — узкий олигофаг, живёт в соцветиях подмаренника (Galium ruthenicum); приурочен к кустарниковым степям мелкосопочника. Редкий, причерноморско-казахстанско-алтайский степной мезо-ксерофильный вид, найденный в окр. с. Ынтымак. Для Центрального Казахстана указывается впервые.

Hydaphias hofmanni Börner, 1950 — узкий олигофаг, живёт в соцветиях подмаренника (Galium aparine, G. verum); приурочен к луговым экосистемам мелкосопочника. Редкий, транспалеарктический полизональный мезофильный вид, найденный в горах Бугылы и Каркаралы.

Hydaphias molluginis Börner, 1939 — узкий олигофаг, живёт в соцветиях подмаренника (Galium aparine); приурочен к луговым экосистемам мелкосопочника. Обычный, западноевразиатский бореомонтанный мезофильный вид, найденный в горах Бугылы и Улытау.

Hydaphias helvetica Hille Ris Lambers, 1947 — узкий олигофаг, живёт в соцветиях подмаренника (*Galium aparine*, *G. ruthenicum*); приурочен к луговым экосистемам мелкосопочника. Редкий, евразиатский борео-монтанный мезофильный вид, найденный в горах Бектау-Ата, Бесшокы.

Brevicoryne brassicae (Linnaeus, 1758) — широкий олигофаг, живёт на нижней стороне листьев многих растений семейства капустных (Arabis pendula, Barbarea vulgaris, Berteroa incana, Cardamine impatiens, Isatis tinctoria); приурочен к кустарниковым степям и луговым экосистемам мелкосопочника. Обычный, повсеместно встречающийся, космополитный полизональный мезофильный вид. Серьёзный сельскохозяйственный вредитель.

Cryptomyzus (s.str.) galeopsidis galeopsidis (Kaltenbach, 1843) – гетерецийный вид, живёт на нижней стороне листьев смородины (Ribes nigrum), летом мигрирует на пикульник (Galeopsis bifida); приурочен

к пойменным лесам и лесным экосистемам мелкосопочника, а также к населённым пунктам. Редкий, евразиатский борео-монтанный мезофильный вид, найденный в горах Бугылы и в Жана-Арке, Новоуспенке.

Cryptomyzus (s.str.) *korschelti* Börner, 1938 – гетерецийный вид, живёт на нижней стороне листьев каменной смородины (*Ribes saxatile*), летом мигрирует на чистец (*Stachys palustris*); приурочен к пойменным лесам, лесным экосистемам мелкосопочника и населённым пунктам. Редкий, западноевразиатский борео-монтанный мезофильный вид, найденный в горах Улытау и на станции Жана-Арка. Серьёзный сельскохозяйственный вредитель.

Cryptomyzus (s.str.) *ribis* (Linnaeus, 1758) — гетерецийный вид, живёт на нижней стороне листьев смородины (*Ribes nigrum, R. saxatile*), летом мигрирует на чистец (*Stachys palustris*); приурочен к пойменным лесам, лесным экосистемам мелкосопочника и населённым пунктам. Обычный, транспалеарктический полизональный мезофильный вид, найденный в горах Бугылы и Улытау, на станции Агадырь и в городе Джезказгане. Серьёзный сельскохозяйственный вредитель.

Capitophorus archangelskii Nevsky, 1928 — узкий олигофаг, живёт на нижней стороне листьев джиды (Elaeagnus oxycarpa); приурочен к лесо-защитным полосам и населённым пунктам. Редкий, ирано-турано-синдский пустынный ксерофильный вид, найденный в окрестностях станции Теректы и в городе Джезказгане. Для Центрального Казахстана указывается впервые.

Capitophorus elaeagni (Del Guercio, 1894) — олигофаг, живёт на нижней стороне листьев джиды (Elaeagnus oxycarpa); приурочен к лесо-защитным полосам и населённым пунктам. Редкий, космополитный полизональный мезофильный вид, найденный в декоративных насаждениях Джезказгана, Жана-Арки, Долинки.

Capitophorus hippophaes hippophaes (Walker, 1852) — олигофаг, живёт на нижней стороне листьев джиды (Elaeagnus oxycarpa); приурочен к лесозащитным полосам и населённым пунктам. Редкий, голарктический полизональный мезофильный вид, найденный в декоративных насаждениях Жана-Арки, Долинки, Каркаралинска.

Capitophorus pakansus Hottes et Frison, 1931 — монофаг, живёт на нижней стороне листьев девясила (Inula helenium); приурочен к луговым экосистемам мелкосопочника. Редкий, западнопалеарктический полизональный мезо-гигрофильный вид, найденный в горах Бектау-Ата и Бугылы. Для Центрального Казахстана указывается впервые.

Pleotrichophorus persimilis afghanensis Narzikulov et Umarov, 1972 — монофаг, живёт на стебле полыней из подрода Oligosporus (Artemisia dracunculus, A. marschalliana); приурочен к кустарниковым степям мелкосопочника. Редкий, афгано-алатавско-казахстанский монтанный ксеро-мезофильный подвид, найденный в горах Бесшокы, Космурын. Для фауны Казахстана указывается впервые.

Aphidura nomadica Kadyrbekov, 2013 — узкий олигофаг, живёт на стеблях смолевки (Silene suffrutescens); приурочен к каменистым степям мелкосопочника. Редкий, казахстано-алатавский монтанно-степной ксерофильный вид, найденный в 90 км северо-восточнее Караганды (горы и р. Нурталды).

Loniceraphis paradoxa Narzikulov, 1962 — узкий олигофаг, живёт на нижней стороне слегка свернутых листьев жимолости татарской (Lonicera tatarica); приурочен к лесным и луговым экосистемам мелкосопочника. Редкий, туркестано-алатавско-казахстано-алтайский монтанный мезофильный вид, найденный в горах Бугылы (Узынбулак). Для Центрального Казахстана указывается впервые.

Ovatus crataegarius (Walker, 1850) — гетерецийный вид, живёт на молодых побегах боярышника (Crataegus altaica), летом мигрирует на мяту (Mentha arvensis); приурочен к лесным и луговым экосистемам мелкосопочника. Редкий, космополитный полизональный мезофильный вид, найденный в горах Улытау.

Aulacorthum solani solani (Kaltenbach, 1843) — полифаг, живущий на листьях растений из различных семейств (Cerastium sp., Medicago falcata, Potentilla anserina); приурочен к лесным, луговым экосистемам мелкосопочника и населённым пунктам. Редкий в природе, космополитный полизональный мезофильный подвид, найденный в горах Бектау-Ата и Бесшокы. Серьёзный сельскохозяйственный вредитель.

Myzus (Nectarosiphon) persicae (Sulzer, 1776) — гетерецийный вид, живёт на листьях и побегах сливы и терна (Prunus domestica, P. spinosa), летом мигрирует на разнообразные травянистые растения (Arabis pendula, Campanula glomerata); приурочен к лесным, луговым экосистемам мелкосопочника и населённым пунктам. Редкий в природе, космополитный полизональный мезофильный вид, найденный в горах Космурын и на станции Жана-Арка. Серьёзный сельскохозяйственный вредитель.

Titanosiphon dracunculi Nevsky, 1928 – монофаг, живёт на нижней стороне листьев и по стеблям эстрагона (Artemisia dracunculus); приурочен к пойменным лесам, лесным, луговым экосистемам

мелкосопочника. Массовый, повсеместно встречающийся, восточнопалеарктический полизональный мезо-ксерофильный вид.

Titanosiphon minkiewiczi Judenko, 1931 — узкий олигофаг, живёт на стеблях полыни Маршалла (*Artemisia marschalliana*); приурочен к кустарниковым степям мелкосопочника. Редкий, западноскифский степной ксерофильный вид, найденный в мелкосопочнике, в 35 км западнее станции Атасу, также в горах Бесшокы, Космурын, Улытау. Для Центрального Казахстана указывается впервые.

Volutaphis karatavica Kadyrbekov, 2007 — узкий олигофаг, живёт на стеблях смолевки (Silene sp.); приурочен к кустарниковым степям мелкосопочника. Редкий, казахстано-каратавский степной ксерофильный вид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Microlophium carnosum (Buckton, 1876) — узкий олигофаг, живёт на стеблях и нижней стороне листьев крапивы (*Urtica dioica*); приурочен к луговым экосистемам. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Бугылы и Улытау.

Metopolophium (s.str.) dirhodum (Walker, 1849) — гетерецийный вид, живёт на нижней стороне листьев шиповника (Rosa laxa), летом мигрирует на стебли и соцветия различных мятликовых (Calamogrostis epigeios, Dactylis glomerata); приурочен к лесным и луговым экосистемам. Редкий, космополитный полизональный мезофильный вид, найденный в горах Бугылы и Улытау.

Amphorophora catharinae (Nevsky, 1928) — узкий олигофаг, живёт на побегах шиповника (Rosa acicularis, R. laxa); приурочен к кустарниковым степям мелкосопочника. Редкий, переднеазиатскотуркестано-тарбагатайско-внутреннетяньшанский монтанно-степной мезо-ксерофильный вид, найденный в горах Бектау-Ата, Космурын и в г. Балхаш. Для Центрального Казахстана указывается впервые. Серьёзный сельскохозяйственный вредитель.

Amphorophora rubi (Kaltenbach, 1843) — монофаг, живёт на стеблях ежевики (Rubus caesius); приурочен к лесным и луговым экосистемам мелкосопочника. Обычный, западнопалеарктический полизональный мезофильный вид, найденный в горах Бектау-Ата, Бугылы, Улытау. Серьёзный сельскохозяйственный вредитель.

Hyperomyzus (s. str.) *lactucae lactucae* (Linnaeus, 1758) – гетерецийный вид, живёт на нижней стороне листьев смородины каменной (*Ribes saxatile*), мигрирует на латук (*Lactuca tatarica*); приурочен к лесным и луговым экосистемам мелкосопочника. Редкий, космополитный полизональный мезофильный подвид, найденный в горах Улытау.

Hyperomyzus (Neonasonovia) picridis (Börner et Blunck, 1916) – гетерецийный вид, живёт на нижней стороне слегка свернутых листьев на черной смородине (Ribes nigrum), летом факультативно мигрирует на основание стеблей и корни некоторых астровых (Asteraceae); приурочен к населённым пунктам и лесным формациям. Редкий, западнопалеарктический неморально-монтанный мезофильный вид, найденный в городе Шахтинске.

Acyrthosiphon (s.str.) boreale Hille Ris Lambers, 1952) — узкий олигофаг, живёт на стеблях лапчатки (Potentilla anserina); приурочен к лесным и луговым экосистемам мелкосопочника. Редкий, циркумбореальный борео-монтанный мезофильный вид, найденный в 40 км северо-восточнее п. Актогай, в горах Кызылтас.

Acyrthosiphon (s.str.) caraganae (Cholodkovsky, 1908) — узкий олигофаг, живёт на нижней стороне листьев караганы (Caragana arborescens, C. frutex, C. pumila); приурочен к кустарниковым степям мелкосопочника, а также к населённым пунктам. Редкий, транспалеарктический, полизональный, ксеромезофильный вид, найденный в мелкосопочнике, в 35 км западнее станции Атасу, в горах Космурын, Улытау, а также в Долинке, Жана-Арке, Караганде.

Acyrthosiphon (s.str.) gossypii Mordvilko, 1914 — полифаг, живёт на стеблях брунца (Psedosophora alopecuroides) и адраспана (Peganum harmala); приурочен к засолённым стациям. Редкий, сетийский пустынный ксерофильный вид, найденный в мелкосопочнике, в 35 км западнее станции Атасу, в окр. ст. Теректы, в окрестностях города Сатпаева и в горах Улытау. Для Центрального Казахстана указывается впервые.

Acyrthosiphon (s.str.) malvae geranii (Kaltenbach, 1862) — узкий олигофаг, живёт на стеблях герани (Geranium collinum, G. sp.); приурочен к лесным и луговым экосистемам мелкосопочника. Редкий, евразиатский борео-монтанный мезофильный вид, найденный в горах Космурын и Улытау.

Acyrthosiphon (s.str.) pisum (Harris, 1776) — широкий олигофаг, живущий на стеблях растений семейства бобовых (Fabaceae); встречается во всех степных экосистемах. Массовый, повсеместно встречающийся, космополитный полизональный мезо-гигрофильный вид. Серьёзный сельскохозяйственный вредитель.

Acyrthosiphon (s.str.) soldatovi Mordvilko, 1914 – узкий олигофаг, живёт на нижней стороне листьев таволги зверобойнолистной (Spiraea hypericifolia); приурочен к кустарниковым степям. Обычный,

туркестано-алатавско-восточноскифский, монтанно-степной мезо-ксерофильный вид, найденный в горах Арганаты, Бектау-Ата, Космурын и Улытау. Для Центрального Казахстана указывается впервые.

Staticobium (s.str.) latifoliae (Bozhko, 1950) — олигофаг, живёт на стеблях кермека Гмелина (Limonium gmelini); приурочен к солончакам в степной зоне. Обычный, восточнотетийский аридный ксерофильный вид, найденный в горах Бектау-Ата, Улытау, в мелкосопочнике в 50 км северо-западнее ст. Атасу и в нескольких местах по трассе Атасу — Жезказган.

Staticobium (s.str.) longisetosum Kadyrbekov, 2003 — монофаг, живёт на корневой шейке кермека Гмелина (Limonium gmelini); приурочен к солончакам в степной зоне. Редкий, казахстано-прибалхашский пустынный ксерофильный вид, найденный в горах Бектау-Ата. Для Центрального Казахстана указывается впервые.

Staticobium (s.str.) smailovae Kadyrbekov, 2003 — олигофаг, живёт на стеблях кермека Гмелина (Limonium gmelini); приурочен к солончакам в степной зоне. Редкий, казахстано-северотуранский пустынный ксерофильный вид, найденный в окрестностях г. Сатпаева. Для Центрального Казахстана указывается впервые.

Staticobium (s.str.) suffruticosum Kadyrbekov, 2003 — монофаг, живёт на стеблях кермека кустарникового (Limonium suffruticosum); приурочен к солончакам в степной зоне. Редкий, казахстано-северотуранский пустынный ксерофильный вид, найденный по трассе Акшатау — Агадырь. Для Центрального Казахстана указывается впервые.

S. (Tuberculaminatus) gmelini Bozhko, 1953 – олигофаг, живёт на корневой шейке кермека Гмелина (Limonium gmelini); приурочен к солончакам в степной зоне. Обычный, причерноморско-казахстанский степной ксерофильный вид, найденный по трассе Акшатау – Агадырь и в окрестностях Джезказгана. Для Центрального Казахстана указывается впервые.

Microsiphum giganteum Nevsky, 1928 — монофаг, живёт на стеблях эстрагона (*Artemisia dracunculus*); приурочен к луговым экосистемам мелкосопочника. Редкий, причерноморско-казахстано-алатавско-туркестанский монтанно-степной ксеро-мезофильный вид, найденный в горах Бугылы и Космурын. Для Центрального Казахстана указывается впервые.

Metopeurum fuscoviride Stroyan, 1950 – узкий олигофаг, живёт на стеблях пижмы (*Tanacetum vulgare*); приурочен к луговым экосистемам мелкосопочника. Обычный, западноевразиатский бореомонтанный мезофильный вид, найденный в горах Бектау-Ата, Бугылы и Улытау.

Metopeurum matricariae Bozhko, 1959 — олигофаг, живёт на стеблях пижмы (*Matricaria inodora, Pyrethrum tanacetoides*); приурочен к луговым экосистемам мелкосопочника. Редкий, причерноморско-казахстанский степной вид, найденный к востоку от станции Кызылжар. Для Центрального Казахстана указывается впервые.

Sitobion avenae (Fabricius, 1775) — полифаг, живёт на наземных частях многих мятликовых (*Poa angustifolia, Leymus ramosus, Millium effusum*), ситниковых (*Juncus* sp.), гречишных (*Polygonum* sp.); отмечен во всех степных экосистемах. Обычный, повсеместно встречающийся, космополитный полизональный мезо-ксерофильный вид. Серьёзный сельскохозяйственный вредитель.

Macrosiphum euphorbiae (Thomas, 1878) – полифаг, живёт на стеблях растений различных семейств (Ligularia sp., Echium vulgare); приурочен к луговым экосистемам мелкосопочника и пойменным лесам. Редкий, космополитный полизональный мезофильный вид, найденный в окрестностях станции Жана-Арка и в пойме реки Талдыманак. Серьёзный сельскохозяйственный вредитель.

Macrosiphum rosae rosae (Linnaeus, 1758) — гетерецийный вид, живёт на молодых побегах шиповника (Rosa acicularis, R. platyacantha, R. spinosissima), факультативно мигрирует на лапчатку (Potentilla sp.), и иван-чай (Chamaenerion angustifolium); приурочен к кустарниковым степям, пойменным лесам и лесным экосистемам мелкосопочника. Массовый, повсеместно встречающийся, космополитный полизональный мезофильный подвид. Серьёзный сельскохозяйственный вредитель.

Ramitrichophorus jankei (Börner, 1939) — монофаг, живёт в соцветиях бессмертника (Helichrysum arenarium); приурочен к зональным равнинным и кустарниковым степям мелкосопочника. Обычный, западноскифский степной ксерофильный вид, найденный в нескольких точках по трассе Атасу-Жезказган и в горах Улытау. Для Центрального Казахстана указывается впервые.

Ramitrichophorus hillerislambersi Ossiannilsson, 1954 — монофаг, живёт в соцветиях бессмертника (Helichrysum arenarium); приурочен к зональным равнинным и кустарниковым степям мелкосопочника. Редкий, восточноевропейско-западноскифский степной ксерофильный вид, найденный в 10 км северовосточнее ст. Кызылжар (555 м н.у.м.). Для Центрального Казахстана указывается впервые.

Turanoleucon jashenkoi Kadyrbekov, 2002 — узкий олигофаг, живёт на стеблях мордовника (Echinops ritro); приурочен к кустарниковым степям мелкосопочника. Обычный, северотурано-казахстанский аридный ксерофильный вид, найденный в пойме реки Нуры и в горах Бектау-Ата, Космурын, Улытау. Для Центрального Казахстана указывается впервые.

Turanoleucon mitjaevi Kadyrbekov, 2002 — узкий олигофаг, живёт на стеблях кузинии (Cousinia alata); приурочен к равнинной зональной степи. Редкий, северотурано-казахстанский аридный ксерофильный вид, найденный в окрестностях с. Захаровка. Для Центрального Казахстана указывается впервые.

Obtusicauda moldavica moldavica (Bozhko, 1957) — монофаг, живёт на стеблях полыней подрода Seriphidium (Artemisia pauciflora, A. terrae-alba); приурочен к равнинной зональной степи и кустарниковым степям мелкосопочника. Обычный, западноскифско-алатавско-внутреннетяньшанский монтанно-степной ксерофильный вид, найденный в горах Коксенгир и Улытау.

Paczoskia paczoskii ruthenica Holman, 1981 — узкий олигофаг, живёт на стеблях мордовника (Echinops ritro); приурочен к кустарниковым степям мелкосопочника. Обычный, западноскифскосеверотуранский аридный ксерофильный вид, найденный в мелкосопочнике в 50 км северо-западнее ст. Атасу (474 м н.у.м.), по реке Нура и в горах Терсакан. Для Центрального Казахстана указывается впервые.

Uroleucon (s.str.) chondrillae (Nevsky, 1929) — узкий олигофаг, живёт на стеблях хондриллы (Chondrilla canescens, C. laticoronata); приурочен к равнинной зональной степи и кустарниковым степям мелкосопочника. Обычный, западнотетийский аридно-монтанный ксеро-мезофильный вид, найденный в нескольких точках по трассе Атасу — Жезказган и в горах Бектау-Ата, Бесшокы, Бугылы, Улытау.

Uroleucon (s. str.) *cirsii* (Linnaeus, 1758) — узкий олигофаг, живёт на стеблях бодяка (*Cirsium arvense*); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Редкий, западноевразиатский борео-монтанный мезофильный вид, найденный в горах Каркаралы.

Uroleucon (s.str.) *inulicola* (Hille Ris Lambers, 1939) – узкий олигофаг, живёт на стеблях девясила (*Inula britanica*); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Обычный, западноевразиатский борео-монтанный мезофильный вид, найденный в горах Бесшокы, Бектау-Ата и Космурын. Для Центрального Казахстана указывается впервые.

Uroleucon (s.str.) *obscurum* – узкий олигофаг, живёт на стеблях ястребинки (*Hieracium virosum*); приурочен к луговым экосистемам мелкосопочника. Редкий, евразиатский борео-монтанный мезофильный вид, найденный в горах Улытау.

Uroleucon (s.str.) *pseudobscurum* (Hille Ris Lambers, 1967) — узкий олигофаг, живёт на стеблях ястребинки (*Hieracium echioides*); приурочен к луговым экосистемам мелкосопочника. Редкий, южнопалеарктический полизональный мезофильный вид, найденный в горах Бесшокы, Бугылы. Для Центрального Казахстана указывается впервые.

Uroleucon (s.str.) sonchi (Linnaeus, 1767) — олигофаг, живёт на стеблях некоторых астровых (Sonchus arvensis, S. oleraceus, S. sp., Lactuca tatarica); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Обычный, повсеместно встречающийся, космополитный полизональный мезофильный вид.

Uroleucon (Uromelan) acroptilidis Kadyrbekov, Renxin et Shao, 2002 — узкий олигофаг, живёт на стеблях горчака (*Acroptylon australe, A. repens*); приурочен к равнинной зональной степи и глинистым полупустыням. Обычный, северотурано-джунгарский пустынный ксерофильный вид, найденный в окр. г. Балхаш, в горах Бектау-Ата и в нескольких точках по трассе Атасу — Джезказган. Для Центрального Казахстана указывается впервые.

Uroleucon (Uromelan) aeneum (Hille Ris Lambers, 1939) — узкий олигофаг, живёт на стеблях чертополоха (Carduus nutans, C. schischkinii); приурочен к равнинной зональной степи и кустарниковым степям мелкосопочника. Редкий, транспалеарктический полизональный мезо-ксерофильный вид, найденный в горах Бектау-Ата и Космурын. Для Центрального Казахстана указывается впервые.

Uroleucon (Uromelan) jaceae jaceae (Linnaeus, 1758) – узкий олигофаг, живёт на стеблях василька (Centaurea adspersa, C. ruthenica); приурочен к равнинной зональной степи и кустарниковым степям мелкосопочника. Массовый, повсеместно встречающийся, западнопалеарктический полизональный мезо-ксерофильный подвид.

Uroleucon (Uromelan) jaceae reticulatum (Hille Ris Lambers, 1939) — монофаг, живёт на стеблях василька (Centaurea squarrosa); приурочен к кустарниковым степям мелкосопочника. Обычный, западносредиземноморско-западноскифско-алатавский аридно-монтанный ксерофильный подвид, найденный в горах Бугылы, Бесшокы, Космурын, Улытау. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) abrotani abrotani (Walker, 1852) — олигофаг, живёт на стеблях полыни (Artemisia vulgaris, A. absinthium) и ромашки (Matricaria inodora, M. perfoliata); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Обычный, повсеместно встречающийся, западнопалеарктический полизональный мезофильный подвид. Серьёзный сельскохозяйственный вредитель.

Macrosiphoniella (s.str.) absinthii (Linnaeus, 1758) — монофаг, живёт на стеблях полыни горькой (Artemisia absinthium); приурочен к луговым экосистемам мелкосопочника. Редкий, западнопалеарктический полизональный мезофильный вид, найденный в горах Коксенгир.

Macrosiphoniella (s. str.) altaica Ivanovskaja, 1971 — монофаг, живёт на стеблях полыни холодной (Artemisia frigida); приурочен к кустарниковым степям мелкосопочника. Редкий, казахстано-западномонгольский монтанно-степной ксерофильный вид, найденный в горах Каркаралы. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) artemisiae (Boyer de Fonscolombe, 1841) — монофаг, живёт на стеблях полыни (Artemisia absinthium, A. vulgaris); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Обычный, голарктический полизональный мезофильный вид, найденный в горах Бугылы, Бесшокы, Космурын, Улытау.

Macrosiphoniella (s.str.) atra atra (Ferrari, 1872) — монофаг, живёт на стеблях полыни номинативного подрода (Artemisia pontica); приурочен к кустарниковым степям мелкосопочника. Редкий, западноскифский степной ксеро-мезофильный подвид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) dimidiata Börner, 1942 — монофаг, живёт на стеблях и цветоносах полыней подрода Oligosporus (Artemisia scoparia); приурочен к кустарниковым степям мелкосопочника. Редкий, западнопалеарктический полизональный мезо-ксерофильный вид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) frigidae Ivanovskaja, 1971 – монофаг, живёт на стеблях полыни холодной (Artemisia frigida); приурочен к равнинным зональным и кустарниковым степям мелкосопочника. Редкий, казахстано-алтайский монтанно-степной ксерофильный вид, найденный в окрестностях п Осакаровка. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) kirgisica Umarov, 1964 — монофаг, живёт на стеблях и цветоносах полыней подрода Seriphidium (Artemisia pauciflora, A. serotina, A. schrenkiana, A. terrae-alba); приурочен к равнинной зональной степи и кустарниковым степям мелкосопочника. Обычный, турано-казахстанский аридно-монтанный ксерофильный вид, найденный в горах Бектау-Ата, Космурын и в нескольких точках по трассе Атасу - Джезказган. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) nitida Börner, 1950 — монофаг, живёт на стеблях и цветоносах эстрагона (Artemisia dracunculus); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Обычный, широкоскифский монтанно-степной мезо-ксерофильный вид, найденный в окрестностях Караганды, а также в горах Бесшокы, Коксенгир, Космурын.

Macrosiphoniella (s.str.) *procerae* Bozhko, 1953 — монофаг, живёт на стеблях и цветоносах полыни высокой (*Artemisia procera*); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Редкий, причерноморско-казахстанский степной мезо-ксерофильный вид, найденный в поймах рек Нура, Талдыманак, в окрестностях г. Темиртау, в горах Коксенгир. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) pulvera pulvera (Walker, 1848) — монофаг, живёт на стеблях полыней подрода Seriphidium (Artemisia serotina); приурочен к зональным равнинным и кустарниковым степям мелкосопочника, глинистым полупустыням. Редкий, широкоскифский монтанно-степной ксеромезофильный вид, найденный в 35 км южнее п. Саяк, а также в горах Коксенгир, Иманак, Улытау.

Macrosiphoniella (s.str.) seriphidii Kadyrbekov, 2000 — монофаг, живёт на стеблях полыней подрода Seriphidium (Artemisia nitrosa, A. pauciflora, A. serotina, A. schrenkiana, A. terrae-alba, A. sp.); приурочен к равнинной зональной степи и кустарниковым степям мелкосопочника. Массовый, повсеместно встречающийся, турано-казахстанский аридный ксерофильный вид. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) sieversianae Holman et Szelegiewicz, 1974 — монофаг, живёт на стеблях полыней номинативного подрода (Artemisia sieversiana, A. sp.); приурочен к луговым стациям и кустарниковым степям мелкосопочника. Редкий, восточноскифский монтанно-степной ксеромезофильный вид, найденный в горах Космурын. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s. str.) taesongsanensis Szelegiewicz, 1980 – монофаг, живёт на стеблях полыней номинативного подрода (Artemisia sp.); приурочен к кустарниковым степям мелкосопочника. Редкий, восточноскифский монтанно-степной ксерофильный вид, найденный в горах Бугылы. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) tanacetaria (Kaltenbach, 1843) — олигофаг, живёт на стеблях пижмы (Tanacetum vulgare) и ромашки (Matricaria perfoliata); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Редкий, голарктический полизональный мезофильный вид, найденный в горах Коксенгир. Серьёзный сельскохозяйственный вредитель.

Macrosiphoniella (s.str.) tapuskae tapuskae (Hottes et Frison, 1931) – олигофаг, живёт на стеблях ромашки (Matricaria inodora), тысячелистника (Achillea millefolium) и пижмы (Tanacetum vulgare); приурочен к кустарниковым степям и луговым экосистемам мелкосопочника. Обычный, голарктический полизональный мезофильный вид, найденный в горах Бесшокы и Космурын. Для Центрального Казахстана указывается впервые. Серьёзный сельскохозяйственный вредитель.

Macrosiphoniella (s.str.) teriolana Hille Ris Lambers, 1931 — монофаг, живёт на стеблях и цветоносах полыней подрода Oligosporus (Artemisia scoparia); приурочен к кустарниковым степям мелкосопочника. Редкий, западносредиземноморско-причерноморско-казахстанский монтанно-степной ксерофильный вид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) terraealbae Kadyrbekov, 2000 — монофаг, живёт на стеблях и цветоносах полыней подрода Seriphidium (Artemisia terrae-alba); приурочен к кустарниковым степям мелкосопочника. Редкий, приаральско-прибалхашско-джунгарский пустынный вид, найденный в горах Бектау-Ата, Коксенгир, Космурын. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (s.str.) *turanica* Narzikulov et Umarov, 1969 – узкий олигофаг, живёт на полынях подрода *Oligosporus* (*Artemisia scoparia*); приурочен к кустарниковым степям мелкосопочника. Редкий, туранский пустынный ксерофильный вид, найденный в окрестностях п. Актогай.

Macrosiphoniella (Asterobium) galatellae Bozhko, 1953 — узкий олигофаг, живёт на стеблях солонечника (*Galatella biflora*, *G. punctata*); приурочен к кустарниковым степям мелкосопочника. Обычный, западноскифско-алатавско-северотуркестанский аридный ксеро-мезофильный вид, найденный в горах Бектау-Ата, Бесшокы, Бугылы, Космурын, Улытау.

Macrosiphoniella (Asterobium) soosi Szelegiewicz, 1966 — узкий олигофаг, живёт на стеблях солонечника (Galatella biflora, G. sp.); приурочен к кустарниковым степям мелкосопочника. Обычный, западноскифско-алтайско-алатавский монтанно-степной ксеро-мезофильный вид, найденный в горах Улытау. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (Phalangomyzus) antennata antennata Holman et Szelegiewicz, 1978 — узкий олигофаг, живёт на стеблях эстрагона (Artemisia dracunculus); приурочен к кустарниковым степям мелкосопочника. Редкий, казахстано-монгольский степной ксерофильный вид, найденный в горах Бесшокы, Бугылы, Коксенгир и Космурын. Для Центрального Казахстана указывается впервые.

Macrosiphoniella (Phalangomyzus) oblonga (Mordvilko, 1901) — узкий олигофаг, живёт на стеблях полыни обыкновенной (Artemisia vulgaris); приурочен к пойменным лесам и луговым экосистемам мелкосопочника. Редкий, транспалеарктический полизональный мезо-ксерофильный вид, найденный в горах Коксенгир.

В Карагандинской области выявлено 242 вида и подвида тлей из 82 родов, 8 подсемейств семейства Aphididae: Phloeomyzinae (1 вид, или 0.4%), Eriosomatinae (17, 7.0%), Lachninae (6, 2.5%), Calaphidinae (10, 4.1%), Macropodaphidinae (1, 0.4%), Saltusaphidinae (3, 1.2%), Chaitophorinae (15, 6.2%), Aphidinae (190, 78.2%).

Наиболее богато представлены следующие роды: Pemphigus (6 видов), Eriosoma (3), Forda (3), Cinara (3), Therioaphis (3), Sipha (3), Chaitophorus (10), Pterocomma (6), Rhopalosiphum (3), Brachyunguis (6), Protaphis (3), Xerobion (7), Aphis (43), Dysaphis (6), Brachycaudus (5), Coloradoa (3), Hydaphias (4), Cryptomyzus (3), Capitophorus (4), Acyrthosiphon (6), Staticobium (5), Uroleucon (10), Macrosiphoniella (23). В остальных 59 родах отмечено по 1 – 2 видам и подвидам. Обращает на себя внимание, что среди наиболее представленных присутствует целый ряд ксеробионтных родов: Brachyunguis, Protaphis, Xerobion, Staticobium.

Большинство выявленных видов тлей имеют обширные ареалы, однако высока также доля степных (скифских) (35 видов, или 14.5%), пустынных видов (25, 10.3%), видов, общих с горами Азии (4, 1.7%), тетийских (17, 7.0%), восточнопалеарктических (4, 1.7%), узко локальных (8, 3.3%) видов. Вместе они составляют 38.5 % от всего выявленного видового разнообразия тлей.

Впервые для Центрального Казахстана указано 85 видов и подвидов тлей (35.1%). Из них впервые для фауны Казахстана приведено 6 видов и подвидов: Neosaltusaphis bodenheimeri, Sipha burakowskii, Aphis acetosae rumicivora, Coloradoa campestris, Coloradoa tanacetina, Pleotrichophorus persimilis afghanensis.

Литература

Кадырбеков Р.Х. К фауне тлей (Homoptera, Aphididae) Западного Казахстана//Tethys Entomological Research. 2004. V.10. P. 5-8. **Кадырбеков Р.Х.** Пути формирования афидофауны (Homoptera, Aphidinea) на залежных землях в Северном Казахстане//Труды Института зоологии МОН Республики Казахстан. 2005. T. 49. C. 85-92.

Смаилова Н.Е. К фауне дендрофильных тлей (Homoptera, Aphidoidea) Центрального Казахстана//Труды Института зоологии АН КазССР. 1968. Т. 30. С. 96-101. Смаилова Н.Е. Стациальное распределение тлей (Homoptera, Aphidoidea) в Центральном Казахстане//Труды Института зоологии АН КазССР. 1971. Т. 32. С. 21-23. Смаилова Н.Е. Фаунистический обзор тлей (Homoptera, Aphidoidea) Западного Казахстана//Равнокрылые хоботные (Insecta, Homoptera) Западного Казахстана. Алматы, 1974: Депонировано в ВИНИТИ, № 1565. С. 94-122. Смаилова Н.Е. Дополнение к фауне тлей (Homoptera, Aphididae) Западного Казахстана//Труды Института зоологии АН КазССР. 1980. Т. 39. С. 44-48. Смаилова Н.Е. Эколого-фаунистический обзор тлей Восточного Казахстана//Насекомые востока и юга Казахстана. Алма-Ата, 1985: Деп. ВИНИТИ, № 2661-85. С. 52-102.

Юхневич Л.А. К фауне тлей хвойных пород Центрального и Юго-Восточного Казахстана//Труды Института зоологии АН КазССР. 1962. Т. 18. С. 150-154. **Юхневич** Л.А. Тли (Homoptera, Aphidinea) Восточного Казахстана//Труды Института зоологии АН КазССР. 1968. Т. 30. С. 58-95.

Blackman R.L., Eastop V.F. Aphids on the World's Trees. Wallingford: CAB, 1994. 1003 p. Blackman R.L., Eastop V.F. Aphids on the World's Herbaceous Plants and Shrabs. Wiley. London, 2006. V. 1-2. 1439 p. Blackman R.L., Eastop V.F. Additions and amendments to "Aphids on the World's Plants"//Zootaxa. 2011. No. 0000. P. 1-12.

Favret C. Infraorder Aphidomorpha. Таха hierarchy. 2016//[Электронный ресурс]. Режим доступа: http://aphid.speciesfile.org. Дата обновления. – 2016.

Remaudiere G., Remaudiere M. Catalogue des Aphididae du Monde. Paris: INRA, 1997 473 pp.

Summary

Rustem Kh. Kadyrbekov. To the Aphids fauna (Hemiptera, Aphidoidea) of Karaganda region (Central Kazakhstan)

242 species and subspecies of aphids from 82 genera and 8 subfamilies Aphididae family: Phloeomyzinae (1 species, 0.4%), Eriosomatinae (17, 7.0%), Lachninae (6, 2.5%), Calaphidinae (10, 4.1%), Macropodaphidinae (1, 0.4%), Saltusaphidinae (3, 1.2%), Chaitophorinae (15, 6.2%), Aphidinae (190, 78.2%) are revealed in Karaganda region. The following genera: Pemphigus (6 species), Eriosoma (3), Forda (3), Cinara (3), Therioaphis (3), Sipha (3), Chaitophorus (10), Pterocomma (6), Rhopalosiphum (3), Brachyunguis (6), Protaphis (3), Xerobion (7), Aphis (43), Dysaphis (6), Brachycaudus (5), Coloradoa (3), Hydaphias (4), Cryptomyzus (3), Capitophorus (4), Acyrthosiphon (6), Staticobium (5), Uroleucon (10), Macrosiphoniella (23) are most abundantly presented. Remaining 59 genera were recorded with 1 – 2 species and subspecies. 85 species and subspecies of aphids (35.1%) are registered in Central Kazakhstan for the first time. Out of those 6 species and subspecies: Neosaltusaphis bodenheimeri, Sipha burakowskii, Aphis acetosae rumicivora, Coloradoa campestris, Coloradoa tanacetina, Pleotrichophorus persimilis afghanensis are listed for fauna of Kazakhstan for the first time.

УДК 595.7 (574): 503.74

Особенности фауны и экологии насекомых (Insecta) степной зоны Павлодарской области (Северный Казахстан)

Кадырбеков Р.Х., Чильдебаев М.К., Жданко А.Б., Тлеппаева А.М., Колов С.В. Институт зоологии МОН Республики Казахстан, Алматы

Павлодарская область находится на северо-востоке Казахстана и занимает площадь 127.5 тыс. км². С севера она граничит с Омской областью России, с востока — с Новосибирской областью России и Восточно-Казахстанской областью, с юга — Карагандинской областью, с запада — с Акмолинской и Северо-Казахстанской областями. Большая часть области лежит в пределах юга Западносибирской равнины. Лишь на крайнем юго-западе и юге имеются отдельные массивы Казахского мелкосопочника. Мелкосопочник представляет собой сильно разрушенную горную систему, которая в результате длительного действия процессов выветривания превратилась в холмистую страну. Общая приподнятость территории мелкосопочника над уровнем моря — 350-500 м. Самые крупные обособленные горные массивы в пределах Павлодарской области: Баянаул с самой высокой точкой — горой Акбет (1022 м н.у.м.) и Кызылтау с самой высокой точкой — горой Аулие (1055 м).

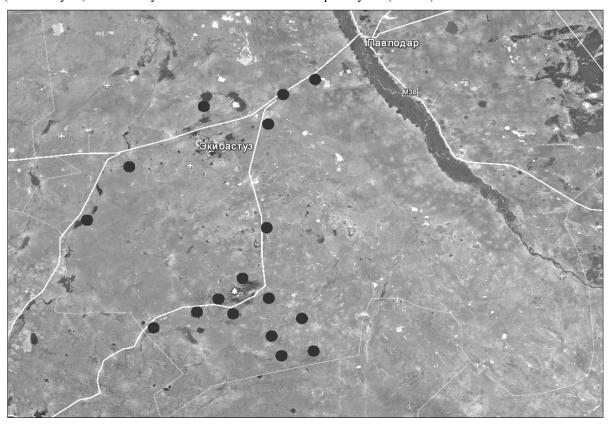


Рис. 1. Места полевых энтомологических работ в степной зоне Павлодарской области в 2016 г.

В 2016 году в степной зоне Павлодарской области проведены исследования фауны насекомых, которые финансировались за счет грантового проекта № 1838/ГФ4 Комитета науки Министерства образования и науки Республики Казахстан. В июле – августе 2016 г. все участники проекта осуществили экспедиционный выезд в южную часть Павлодарской области (рис. 1).

По результатам полевых исследований 2016 г., материалам коллекции Института зоологии и результатам просмотра литературных источников (Айбасов, Жданко, 1982; Жданко, 2005; Кадырбеков, 2005; Копанева и др, 1980; Коршунов, Горбунов, 1995; Костин, 1973; Лопатин, 2010; Насекомые Северного Казахстана, 1977; Насырова, 1981, 1987, 1990; Николаев, Колов, 2005; Николаев, Козьминых, 2002; Савойская, 1983; Сергеев, 1986; Сергеев и др., 2001, 2002; Смаилова, 1978; Стебаев, Молодцов, 1999; Стебаев, Козловская, 1979, 1980; Чильдебаев, 2002; Щербаков и др., 2013; Jendek, Grebennikov, 2011) в степной зоне Павлодарской области выявлено 395 видов насекомых, относящихся к 6 отрядам, 22 семействам, 223 родам (таблица).

отряды	число (количество):		
	семейств	родов	видов
Orthoptera	5	37	58
Mantoptera	1	1	1
Dermaptera	1	1	1
Homoptera	1	58	151
Coleoptera	8	83	127
Lepidoptera	6	45	57

Таксономическое разнообразие насекомых

Виды насекомых, характерные только для степной зоны, не столь многочисленны среди выявленных таксонов. Два вида саранчовых: Myrmeleotettix pallidus, Sphingonotus coerulipes uvarovianus обладают степными ареалами, ограниченными степями Казахстана и прилегающими территориями. Пять видов тлей имеют сравнительно узкие ареалы: казахстаноджунгарский Macropodaphis dzhungarica — общий с аридными низкогорьями гор Джунгарского Алатау, казахстаносеверотуранский Turanoleucon jashenkoi — общий с пустынями Северного Турана, а также Brachyunguis nurikamalae, Cryptosiphum mordvilkoi, Microsiphum diversisetosum — узко

локальные эндемики казахстанских степей.

Большинство выявленных видов жуков имеют либо широкие панпалеарктические, либо широкие средиземноморско-среднеазиатские ареалы. Только для степной зоны востока Евразии характерны: жужелицы (Carabus hungaricus cribellatus, Cymindis binotata), жуки-листоеды (Theone silphoides, Chrysolina purpurata, Chrysochus goniostoma), жуки-чернотелки (Oodescelis polita, Pedinus femoralis, Platyscelis hypolitha, P. rugifrons, Tentyria nomas, Scythis angusticollis, Cteniopus sulphureus). Из них самыми узкими ареалами (т. е. фактически являются эндемиками казахстанских степей) обладают чернотелки Platyscelis rugifrons и Scythis angusticollis, ареалы которых охватывают полосу степей от Мугоджар на западе до предгорий Алтая на востоке. Выявлено также 2 краснокнижных вида (Красная книга Казахстана, 2006) кузнечиков: степная дыбка (Saga pedo), один экземпляр которой был отмечен в горах Баянаул, и севчук Сервилля (Onconotus servillei), который в единичном количестве был отмечен в горах Кызылтау.

В Павлодарской области представлены следующие природные экосистемы:

Равнинная или зональная степь. Охватывает северную и центральную части Павлодарской области. В этой экосистеме выявлено 13 видов ортоптероидных насекомых (Insecta, Orthopteroidea), 38 видов тлей (Hemiptera, Aphidoidea), 63 вида жуков (Coleoptera), 25 видов дневных бабочек (Lepidoptera, Rhopalocera). Всего отмечено 139 видов насекомых.

Кустарниковые степи мелкосопочника. Они распространены в мелкосопочных массивах и флористически богаче зональной степи. На обследованной территории мы исследовали их в пределах гор Баянаул и Кызылтау. Для них характерно богатое травянистое разнотравье с преобладанием злаков и полыней. Из кустарников встречаются хвойники (Ephedra intermedia, E. strobilaceum), карагана (Caragana frutex, C. pumila), шиповники (Rosa R. laxa, R. spinosissima), таволга зверобойнолистная (Spiraea hypericifolia), курчавка (Atraphaxis spp.), кизильник (Cotoneaster melanocarpus), смородина (Ribes heterotrichum), курильский чай (Pentaphylloides parviflora), стелющаяся арча (Juniperus sabina). В этой экосистеме выявлено 25 видов ортоптероидных насекомых, 69 видов тлей, 103 вида жуков, 13 видов дневных бабочек. Всего отмечено 210 видов насекомых.

Пойменные леса. Азональная экосистема, слабо выраженная на обследованной территории изза недостатка больших рек. В древесном ярусе преобладают различные виды ивы (Salix spp.), тополь чёрный (Populus nigra). В подлеске жостер (Rhamnus cathartica), черёмуха (Padus racemosa), боярышник (Crataegus altaica), шиповники (Rosa acicularis, R. laxa), жимолость татарская (Lonicera tatarica), ежевика (Rubus caesius). В этой экосистеме выявлено 9 видов ортоптероидных насекомых, 41 вид тлей, 34 вида жуков, 29 видов дневных бабочек. Всего отмечено 113 видов насекомых.

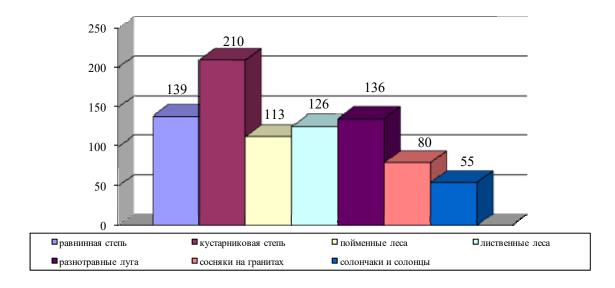
Лиственные леса мелкосопочника. Выражены в горах Баянаул и Кызылтау. В древесном ярусе преобладают осина (*Populus tremula*) и берёза (*Betula pendula, B. kirgizorum*), есть также боярышник (*Crataegus altaica*), жостер (*Rhamnus cathartica*), черемуха (*Padus racemosa*). В подлеске шиповники (*Rosa laxa, R. spinosissima*), жимолость татарская (*Lonicera tatarica*), кизильник (*Cotoneaster melanocarpus*), ежевика (*Rubus caesius*), смородина чёрная (*Ribes nigrum*). На опушках и под пологом леса развито лесное и луговое травянистое разнотравье. В этой экосистеме выявлено 14 видов ортоптероидных насекомых, 46 видов тлей, 45 видов жуков, 21 вид дневных бабочек. Всего отмечено 126 видов насекомых.

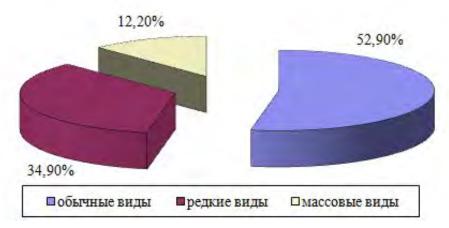
Сосняки на гранитах. Выражены только в горах Баянаул. В древесном ярусе доминирует сосна обыкновенная (*Pinus silvestris*) с добавлением берёзы киргизской (*Betula kirghizorum*). В подлеске кое-где кизильник (*Cotoneaster melanocarpus*), шиповник (*Rosa laxa, R. spinosissima*), жимолость мелколистная (*Lonicera microphylla*), каменная смородина (*Ribes saxatile*). На опушках и под пологом леса развито лесное и луговое травянистое разнотравье. В этой экосистеме выявлено 5 видов ортоптероидных насекомых, 28 видов тлей, 26 видов жуков, 21 вид дневных бабочек. Всего отмечено 80 видов насекомых.

Разнотравные луга. Самостоятельная экосистема, имеющаяся во всех обследованных горных массивах, отличающаяся богатым луговым разнотравьем. Здесь выявлено 18 видов ортоптероидных насекомых, 50 видов тлей, 37 видов жуков, 31 вид дневных бабочек. Всего отмечено 136 видов насекомых.

Солончаки внутри степной зоны. Встречаются мозаично на всей обследованной территории. Из кустарников произрастают тамариски (*Tamarix elongata*, *T. gracilis*, *T. ramosissima*), кокпек (*Atriplex cana*, *A. verucifera*), селитрянка (*Nitraria schoberi*), кермек кустарниковый (*Limonium suffruticosum*). Из полукустарников и травянистой растительности распространены тасбиюргун (*Nanophyton strobilaceum*), ежовник (*Anabasis salsa*), кермек Гмелина (*Limonium gmelini*), полыни (*Artemisia nitrosa*, *A. pauciflora*, *A. schrenkiana*), ажрек (*Aeluropus littoralis*), адраспан (*Peganum harmala*), брунец (*Pseudosphora alopecuroides*), верблюжья колючка (*Alchagi kirghizorum*), шведа (*Suaeda* spp.), бассия (*Bassia sedoides*), петросимония (*Petrosimonia* spp.). В этой экосистеме выявлено 8 видов ортоптероидных насекомых, 17 видов тлей, 24 вида жуков, 6 видов дневных бабочек. Всего отмечено 55 видов насекомых.

Таким образом, самым большим видовым разнообразием насекомых характеризуются кустарниковые степи мелкосопочника (210 видов), обладающие богатой флорой. Заметно меньше видов выявлено в зональной равнинной степи (139 видов) и на влажных разнотравных лугах мелкосопочника (136 видов). В интразональных лесных экосистемах (пойменные леса, лиственные леса мелкосопочника) выявлено ещё меньше видов (113 и 126). Меньше всего видов — в сосновых борах (80) и другой интразональной экосистеме солончаков (55). Во всех перечисленных экосистемах природные условия благоприятны для существования многочисленных экологических них, пригодных для заселения насекомыми (рис. 2). Причиной несколько обеднённой по сравнению с более северными территориями энтомофауны лесных ценозов в Павлодарской области является их территориальная изолированность от основных лесных массивов и наличие всего одной крупной реки (Иртыш) с хорошо выраженной обширной речной поймой. Невысокое разнообразие насекомых в сосняках можно объяснить их заметной ксерофильностью из-за произрастания на гранитах. В гораздо более жёстких в отношении засолённости условиях солончаков, даже в пределах пустынной зоны обитает сравнительно небольшой набор видов насекомых, однако этот набор видов достаточно своеобразен.




Рис. 2. Количество видов насекомых в различных экосистемах Павлодарской области

Относительную численность выявленных видов насекомых мы определяли по трёхбальной шкале. В результате, среди выявленных видов тлей оказалось 19 массовых (12.6 % от всего видового разнообразия), 62 (41.1%) обычных и 70 (46.3 %) редких. Почти половину фауны составляют редкие виды, что характеризует степную фауну тлей, как достаточно уязвимую при природных и техногенных катаклизмах. У ортоптероидных насекомых из 58 отмеченных для Павлодарской области видов в качестве массовых указано 6 (10.3%), обычных – 31 (53.4%), редких – 21 (36.2%) вид. У жесткокрылых насекомых среди 105 выявленных видов к массовым отнесено 14 (13.4%), к обычным – 53 (50.4%), к редким – 38 (36.2%) видов. По относительной численности выявленные в 2016 году виды жуков-златок

разделены на три группы: массовые (3 вида, 13.6%), обычные (13 видов, 59.1%) и редкие (6 видов, 27.3%). Среди 57 видов булавоусых чешуекрылых в 2015 г. к массовым отнесены 6 (10.5%) видов, к обычным – 49 (86.0%), к редким – 2 (3.5%).

Как видно, процентное соотношение массовых, обычных и редких видов по разным таксонам насекомых значительно колеблется. Более или менее сравнимый процент по разным таксономическим группам насекомых только для массовых видов (от 10.3 до 13.6). Особенно заметные колебания наблюдаются у обычных и редких видов. Процент обычных видов от 41.1 у тлей до 59.1 у жуков-златок и 86.0 у булавоусых чешуекрылых. То же можно сказать о проценте редких видов. Например, у тлей (46.3%), некоторых семейств жесткокрылых и ортоптероидных насекомых (по 36.2%) редкие виды составляют более 30% выявленной фауны, а у дневных булавоусых чешуекрылых – всего 3.5%.

Если суммировать все количественные данные по относительной численности насекомых, то среди 395 выявленных видов насекомых 48 (12.2%) отнесены к массовым, к обычным - 208 (52.9 %), к редким – 137 (34.9 %) (рис. 3).

Рис. 3. Процентное соотношение видов насекомых из заявленных в проекте таксонов по относительному обилию

Таким образом, чуть более половины выявленных видов насекомых оказались обычными, около 35% — редкими и более 10% - массовыми (рис. 3). Следует отметить, что в первый и второй годы исследований наиболее полно выявляются массовые и обычные виды, а количество редких видов существенно меняется в процессе исследований в течение всех трёх лет. Ведь именно такие виды выявить гораздо труднее.

Литература

Айбасов Х.А., Жданко А.Б. Фауна чешуекрылых (Lepidoptera) Северного Казахстана//Насекомые (Полужесткокрылые, Жесткокрылые, Чешуекрылые) Сев. Казахстана. Алма-Ата: деп. ВИНИТИ, 1982. № 360-82. 35 с.

Жданко А.Б. Дневные бабочки (Lepidoptera, Papilionoidea, Hesperioidea) Казахстана//Tethys Entomological Research. 2005. Vol. XI. C. 85-152.

Кадырбеков Р.Х. Пути формирования афидофауны (Homoptera, Aphidinea) на залежных землях в Северном Казахстане//Труды Института зоологии МОН Республики Казахстан. 2005. Т. 49. С. 85-92.

Копанева Л.М., Надворный В.Г., Стебаев И.В. Распределение прямокрылых в долинах рек в связи с комплексным подходом к охране энтомофауны и защите растений на примере Днепра и Иртыша//Исследования по энтомофауне и акарологии на Украине. Тез. докл. 2-го съезда УЭО, Ужгород, 1-3 окт., 1980 г. Киев, 1980. С. 36-38.

Коршунов Ю., Горбунов П. Дневные бабочки азиатской части России. (Справочник). Екатеринбург: Уральский государственный университет, 1995. 202 с.

Костин И.А. Жуки-дендрофаги Казахстана. Алма-Ата: Наука, 1973. 288 с.

Красная книга Казахстана. Беспозвоночные. Алматы: Онер, 2006. Т. 1. Ч.2. 232 с.

Лопатин И.К. Жуки-листоеды (Insecta, Coleoptera, Chrysomelidae) Центральной Азии. Минск: БГУ, 2010.

Насекомые Северного Казахстана (под редакцией И.Д. Митяева, Г.Я. Матесовой). Алма-Ата, 1977. Деп.: КазГосНИТИ. № 1878-79. 196 с.

Насырова С.Р. Отличительные черты биотопического распределения и популяционные структуры некоторых видов саранчовых в условиях агроландшафта степной зоны Прииртышского плато//Вопросы экологии поведения насекомых, связанных с агробиоценозами. Новосибирск, 1981. С. 97-115. **Насырова С.Р.** Влияние выпаса на фауну прямокрылых насекомых пастбищ степного Прииртышья//Борьба с насекомыми-вредителями кормовых 94

культур и пастбищных растений. Алма-Ата, 1987. С. 72-86. **Насырова** С.Р. Влияние сельскохозяйственного освоения степей Прииртышского плато на распределение и численность саранчовых (Orthoptera, Acrididae)//Труды Института зоологии АН Казахской ССР. 1990. Т. 45. С. 93-103.

Николаев Г.В. Пластинчатоусые жуки Казахстана и Средней Азии. Алма-Ата: Наука, 1987. 232 с. **Николаев Г.В., Козьминых В.О.** Жуки-мертвоеды Казахстана, России и ряда сопредельных стран. Определитель. Алматы: Қазақ университеті, 2002. 159 с.**Николаев Г.В., Колов С.В.** Жуки-нарывники (Coleoptera, Meloidae) Казахстана: биология, систематика, определитель. Алматы: Қазақ Университеті, 2005. 166 с.

Савойская Г.И. Коккинеллиды: систематика, применение в борьбе с вредителями сельского хозяйства. Алма-Ата: Кайнар, 1983. 248 с.

Сергеев М.Г. Закономерности распространения прямокрылых насекомых Северной Азии. Новосибирск: Наука. 1986. 237 с. Сергеев М.Г., Ванькова И.А., Денисова О.В. Итальянский прус в агроландшафтах Кулунды и Прииртышья//Защита и карантин растений. 2001. № 5. С. 11. Сергеев М.Г., Ванькова И.А., Денисова О.В. Итальянский прус *Calliptamus italicus* L. (Orthoptera, Acrididae) в степях Кулунды и Прииртышья//12-й съезд Русск. энтомол. о-ва. Тез. докл., С.- Петербург, 19-24 авг., 2002 г. Санкт-Петербург, 2002. С. 315.

Смаилова Н.Е. Фаунистический обзор тлей (Homoptera, Aphidoidea) Северного Казахстана//Обзор насекомых Северного Казахстана (тли, кокциды, полужесткокр., листоеды). Алма-Ата: Деп. ВИНИТИ, № 1924-78. 1978. С. 3-41.

Стебаев И.В., Козловская Е.Б. Ландшафтно-популяционная структура географического ареала белополосой кобылки (*Chorthippus albomarginatus De G.*) в сопредельных частях Западной Сибири и Казахстана//Вопросы экологии. Новосибирск, 1979. № 5. С. 3-55. Стебаев И.В., Козловская Е.Б. Закономерности количественного распределения комплексов вредных степных и луговых саранчовых Прииртышья и Юго-Восточного Казахстана в связи с районированием их потенциальной вредоносной деятельности//Вопросы экологии. Сообщества и биогеоценотическая деятельность животных в природе — Новосибирск, 1980. № 6. С. 31-51.Стебаев И.В., Молодцов В.В. Закономерности количественного распределения зонально-ареалографических групп видов и пространственной дифференциации аут- и синэкологического разнообразия Acrididae на меридиане р. Иртыш//Изв. РАН, серия биол. 1999. № 2. С. 183-190.

Чильдебаев М.К. К фауне и экологии саранчовых (Orthoptera: Acridoidea, Tetrigoidea) Прииртышского плато//Tethys Entomological Research. Almaty, 2002. Т. 6. С. 5-12.

Щербаков Е.О., Яковлев Р.В., Титов С.В. О фауне богомолов (Insecta: Mantodea) Кулундинской степи//Амурский зоологический журнал. 2013. № V(1). С. 16-20.

Jendek E., Grebennikov V. Agrilus (Coleoptera, Buprestidae) of East Asia. Prague: Jan Farka, 2011. 362 pp.

Summary

Rustem Kh. Kadyrbekov., Murat K. Childebaev, Alexandr B. Zhdanko, Aizhan M. Tleppaeva, Sergey V. Kolov. Features of fauna and ecology of insects (Insecta) in the steppe zone of Pavlodar region (Northern Kazakhstan)

395 species of insects belonging to 6 orders, 22 families, 223 genera are revealed in the steppe zone of Pavlodar region according to the results of field research in 2016, the collection of materials of the Institute of Zoology of the Republic of Kazakhstan and the results of literature analysis. Species of insects specific to the steppe zone are not so numerous among the identified taxa. 19 such taxa are revealed in the steppe zone of Pavlodar region: 2 species of grasshoppers (Orthoptera, Acrididae), 5 species of Aphids (Hemiptera, Aphidoidea), 12 species of beetles (Coleoptera: Carabidae, Chrysonelidae, Tenebrionidae). Two species of grasshoppers listed in the Red Book of Kazakhstan: *Saga pedo* and *Onconotus servillei* were recorded. The data on habitat distribution and relative abundance of species is analyzed.

УДК 598.2/9 (575.2)

Результаты орнитологической поездки во Внутренний Тянь-Шань в июне 2016 г.

Белялов Олег Вячеславович, Михайлов Константин Евгеньевич, Торопов Сергей Акиндинович Мензбировское орнитологическое общество, Союз охраны птиц Казахстана, Алматы, Казахстан Палеонтологический институт им. А.А. Борисяка РАН, Москва, Россия ОО НАБУ Кыргызстан, Бишкек, Кыргызстан

В период с 17 по 27 июня 2016 г. нами собраны сведения о птицах Внутреннего Тянь-Шаня (Кыргызстан). Организатором поездки был С.А. Торопов (Бишкек), работающий над иллюстрированной книгой о птицах гор Средней Азии. Основной целью была фотосъёмка птиц и ландшафтов, однако попутно регистрировались все встреченные птицы с привязкой к ландшафтам и биотопам. В местах всех стоянок в утренние часы регулярно проводилась оценка видового состава птиц в островных лесках у верхней границы елового леса. Поскольку средством передвижения были автомобили (два внедорожника) и каждый день менялось место ночёвки, то за 10 дней удалось охватить наблюдениями достаточно большую территорию региона. В экспедиции также принимали участие фотограф-анималист О. Першин (Москва) и водитель Д. Гогулин (Бишкек). За 10 дней мы прошли по горным дорогам 2450 км по следующему маршруту.

17 июня выехали из Бишкека в сторону Иссык-Куля, после Боомского ущелья поднялись на перевал Кувакы (высота 2150 м – здесь и далее – "над уровнем моря"), спустившись к Орто-Токойскому вдхр., и двигались по долине р. Чу через посёлки Семизбель и Кочкор. Далее маршрут проходил по р. Каракуджур до пос. Сары-Булак, после на пер. Долон (3030 м) в ущелье р. Кичи-Каракуджур, откуда на перевал в долину р. Коргоо (левый приток р. Сон-Куль), где была устроена первая ночёвка в урочище Уч-Кош-Кон (41°42′ с.ш., 75°30′ в.д., 2600 м) с островными еловыми лесками на склонах.

18 июня обследовали каньон Итолгандун-Суу р. Сон-Куль ($41^{\circ}40'$ с.ш., $75^{\circ}31'$ в.д., 2600 м), и поднялись через перевал Терскей-Торпок ($41^{\circ}44'$ с.ш., $75^{\circ}25'$ в.д., 3133 м) в котловину оз. Сон-Куль. Вторая ночёвка на берегу озера – $41^{\circ}51'$ с.ш., $75^{\circ}17'$ в.д.; 3050 м.

19 июня на автомобилях обследовали прилежащие к озеру равнины с галечниковыми долинами речек, испещрённые сетью грунтовых дорог. Позже перевалили хребет Молдо-Тоо через перевал Молдо-Ашу (41°53′ с.ш., 75°12′ в.д., 3346 м) в ущелье р. Куртка, заночевав в ущелье р. Суулу-Куртка (41°40′ с.ш., 75°00′ в.д., 2350 м) возле елового леска.

20 июня спустились по ущелью р. Куртка в долину р. Нарын и пересекли Нарын по мосту возле пос. Джаны-Талап. Далее следовали по пойме Нарына с чапами (лёссовыми береговыми обрывами) через посёлки Угут, Байтёчёк, Байетово (Дюрбельджин). Из пос. Байетово поднялись на перевал Бёрюлю (3268 м) в хребте Байбиче и спустились с него в долину р. Акбейт на Орто-Сырте. Ночёвка в пустующей "зимовке" $-41^{\circ}03'$ с.ш., $75^{\circ}04'$ в.д., 2700 м).

21 июня переправились через р. Калкагар в районе пос. Орто-Сырт и поднялись на перевал Кулак-Ашу (40°59′ с.ш., 75°10′ в.д., 3370 м). Далее спустилась по Карасуу, и по долине р. Кара-Коюн через пос. Карабулун, Дыйкан достигли г. Ат-Баши (2000 м). Ночевали в пойме р. Ат-Баши (41°14′ с.ш., 75°44′ в.д., 1800 м) в 10 км ниже города. Выраженная полоса пойменного леса, где преобладают тополя, ивы, облепиха и шиповник. На правом берегу к полосе леса близко подходят обрывы (чапы), плоский левый берег – с широкой полосой влажных лугов.

22 июня возвратились по вчерашней трассе, идущей из г. Ат-Баши на пер. Туругарт, до ущ. р. Ичке в западной части хр. Ат-Баши, и вновь поднялись под пер. Кулак-Ашу, после чего вернувшись в г. Ат-Баши, проехали по левому берегу р. Ат-Баши, вверх по течению, через посёлки Баш-Каинды, Озгёргуш и Босого. Пересекли р. Джалждир (левый приток Ат-Баши) и поднялись до высоты 3000 м. На ночёвку вернулись в ущ. Балыкты хр. Джалджир (41°15′ с.ш., 76°31′ в.д., 2775 м), встав возле реки под склоном с еловым лесом.

23 июня проехали через Беш-Бель-Чир на перевал Кынды (41°09′ с.ш., 76°27′ в.д., 3413 м) и спустившись снова вниз к р. Джалджиру, ночевали в ущ. Аки-Булак в восточной части хребта Ат-Баши, (41°14′ с.ш., 76°22′ в.д., 2810 м).

24 июня обследовав ущ. Аки-Булак (вверх до скальных цирков) проехали по правому берегу реки Ат-Баши до пос. Акмуз и далее через перевал Кызыл-Бель в г. Нарын. Далее проследовали вверх по Нарыну по его левому берегу до пос. Добелу и ночевали в ущелье р. Тёо-Джайлоо на северном склоне Нарынского хребта (41°27′ с.ш., 76°20′ в.д., 2347 м).

25 июня продолжили маршрут вверх по р. Нарын и затем, переехав его, двигались вверх по его правому притоку Малому Нарыну между хребтами Нура и Джетим, через пос. Еки-Нарын. Осмотрев боковое ущелье р. Сарыкунгей, вернулись в долину Нарына, проследовали через пос. Оттук в сторону

перевала Долон, и, не доезжая его, повернули в ущ. р. Тюлёк в сторону Сон-Куля, где поднялись под перевал Калмак-Ашу. Ночёвка в пойме притока р. Тюлёк с зарослями караганы гривастой (41°57′ с.ш., 75°26′ в.д., 2850 м).

26 июня спустились по р. Тюлёк и через перевал Долон проехали на южный берег Иссык-Куля, где осмотрели урочище Оттук (42°16′ с.ш., 76°14′ в.д., 1863 м) в останцовых горках Алабель на западной оконечности хребта Терскей Ала-Тоо. Далее, посетив мыс Акбулун, проследовали вдоль южного берега Иссык-Куля через посёлки Кара-Тоо и Боконбаев. Ночёвка в урочище Каджи-Сай (42°09′ с.ш., 77°09′ в.д., 1717 м) в предгорьях Терскей Ала-Тоо, в сухих глинистых холмах, с зарослями тамриска по низу ущелий.

27 июня снова посетив урочище Оттук в горках Алабель, проследовали вдоль берега Иссык Куля в сторону Боомского ущелья и далее по трассе до Бишкека.

Всего за время поездки было отмечено **139 видов** птиц, аннотированный список которых приводим.

Большая поганка (*Podiceps cristatus*). Трёх птиц отметили 19 июня в заливе оз. Сон-Куль и одиночку — 20 июня на пруду в пойме р. Нарын возле пос. Угут.

Большой баклан (*Phalacrocorax carbo sinensis*). Встречен в двух местах – одиночка 26 июня возле мыса Акбулун на южном берегу оз. Иссык-Куль и 15 птиц 27 июня в пойме р. Чу в районе г. Токмак.

Кваква (Nycticorax nycticorax). Пять птиц встречены 27 июня в пойме р. Чу возле Токмака.

Большая белая цапля (*Casmerodius albus*). Одиночку видели 19 июня на косе оз. Сон-Куль.

Серая цапля (*Ardea cinerea*). Четырёх птиц отметили 19 июня на оз. Сон-Куль.

Чёрный аист (Ciconia nigra). Один пролетел 22 июня над поймой р. Ат-Баши у пос. Озгёргуш.

Лебедь-шипун (Cygnus olor). Один 26 июня у мыса Акбулун на южном берегу Иссык-Куля.

Огарь (*Tadorna ferruginea*). Две встречи выводков с взрослыми на оз. Сон-Куль: 18 июня – выводок из 13 птенцов (величиной с перепела) на южном берегу озера; 19 июня – из 12 птенцов (величиной в половину взрослой птицы) на косе северного берега озера. Пары взрослых 18 июня в урочище Уч-Кош-Кон на р. Сон-Куль, 19 июня – возле озерка на подъёме от южного берега оз. Сон-Куль на перевал Молдо-Ашу, 22 июня – у дороги по левому берегу Ат-Баши возле пос. Босого и в долине р. Джалджир. Одиночная птица отмечена 26 июня на южном берегу Иссык-Куля возле мыса Акбулун.

Кряква (*Anas platyrhynchos*). В котловине оз. Сон-Куль 18 июня встречена пара, а на пруду в пойме р. Нарын, у пос. Угут, 20 июня наблюдали трёх птиц.

Шилохвость (*Anas acuta*). Пару видели 19 июня на оз. Сон-Куль и самца в гнездовом наряде – 20 июня на пруду возле пос. Угут, в пойме Нарына.

Красноносый нырок (*Netta rufina*). Одну птицу видели 26 июня возле мыса Акбулун на южном берегу Иссык-Куля.

Большой крохаль (*Mergus merganser comatus*). 18 июня дважды наблюдали пролетающих самцов над р. Сон-Куль (2600 и 3000 м).

Чёрный коршун (Milvus migrans lineatus). Скопление (около 50 птиц) отмечено 17 июня в районе придорожных кафе на подъёме по Байдамталу. Одиночных птиц в полёте наблюдали неоднократно: 18 июня на р. Сон-Куль (ур. Уч-Кош-Кон, всего 2); 19 июня — на оз. Сон-Куль; 20 июня — в пойме р. Нарын (между пос. Джаны-Талап и Угут); 21 июня — в городе Ат-Баши (две птицы) и в 10 км южнее, в пойменном лесу реки Ат-Баши (по сообщению С.А. Торопова в прежние годы коршун гнездился в лесу на реке Ат-Баши); 22 июня — Ат-Баши — Карабулун (1), по левому берегу Ат-Баши от Баш-Кайинды до Озгёргуша (6), в долине р. Джалджир (4). 24 июня в долине р. Ат-Баши по правому берегу до пос. Акмуз (4). Одиночных коршунов также наблюдали 23 июня в ельниках ущ. Балыкты, у моста Беш-Бель-Чир под пер. Кынды и на пер. Кынды и 24 июня — на подъёме к перевалу Кызыл-Бель и в ущ. Тёо-Джайлоо в Нарынском хребте, а 25 июня — на р. Малый Нарын и по дороге из Нарына в пос. Оттук. 27 июня на южном берегу Иссык-Куля коршуны отмечены в Каджи-Сае и Ак-Тереке.

Болотный лунь (*Circus aeruginosus*). Самка парила над тростниками 26 июня на мысе Акбулун южного берега Иссык-Куля.

Курганник (*Buteo rufinus*). 21 июня одна птица над поймой р. Ат-Баши (в 10 км ниже г. Ат-Баши) и 2 одиночки – в ущ. Ичке хр. Ат-Баши. Одиночки также встречены: 22 июня – в долине р. Джалджир, 24 июня – в долине р. Ат-Баши возле пос. Акмуз и 27 июня – в ур. Оттук на западной оконечности Терскей Ала-Тоо.

Канюк (*Buteo buteo ssp.*). В долине р. Ат-Баши (10 км ниже города) 22 июня – одна тёмная птица. Пару птиц наблюдали 22 и 23 июня на гнездовом участке в ельнике ущ. Балыкты (2800 м). Гнездо находилось в густом массиве леса, откуда были слышны голоса птенцов, при появлении взрослых птиц с добычей. В ущелье Тёо-Джайлоо (2400 м), на северном склоне Нарынского хребта, 24 и 25 июня пару

канюков наблюдали у гнезда, построенного на боковой ветви в центре тяншанской ели, на высоте 20 м. В гнезде видны два оперённых птенца. В обоих случаях птицы из гнездовых пар были очень тёмной окраски. В каньоне р. Нарын (2300 м), ниже впадения в него Малого Нарына, 25 июня наблюдали ещё одну пару тёмных птиц, а встреченный в этот же день в ельнике по Малому Нарыну (2400 м) канюк имел общую рыжеватую окраску. [Систематическое замечание: поскольку вопрос о таксономическом статусе обитающих в хребтах Тянь-Шаня канюков на сегодня остаётся не решённым, встреченные нами тёмные птицы могут трактоваться либо как недавно предложенная особая тянь-шанская форма korelovii, (Коваленко, 2007) или же как цветовая морфа традиционно выделяемой гималайской расы – refectus].

Орёл-карлик (*Hieraaetus pennatus*). 21 июня птица светлой морфы кружила над пойменным лесом р. Ат-Баши (1800 м), в 10 км ниже города.

Беркут (*Aquila chrysaëtos*). Взрослых птиц видели 18 июня в каньоне Итолгандун-Суу на р. Сон-Куль и 19 июня — на перевале Молдо-Ашу. Пара отмечена 22 июня в ущ. Ичке хр. Ат-Баши. Молодой беркут 23 июня пролетел над ельником в ущ. Балыкты.

Бородач (*Gypaetus barbatus*). Взрослые птицы отмечены 21 июня по р. Калкагар на подъёме на пер. Кулак-Ашу (3000 м) и на спуске с него в долину Карасу (2400 м). Так же взрослого видели 22 июня в ущ. Ичке хр. Ат-Баши.

Чёрный гриф (*Aegypius monachus*). Две птицы были встречены 21 июня на подъёме и спуске с пер. Кулак-Ашу (3000 м). В этот же день двух птиц видели в 10 км ниже по реке от г. Ат-Баши. Четыре грифа парили 23 июня в ущелье Балыкты (3000м).

Кумай (*Gyps himalayensis*). Несколько раз 18 июня видели парящих птиц (от одной до четырех вместе) в урочище Уч-Кош-Кон на р. Сон-Куль. В ущ. Суулу-Куртка (2800 м) 20 июня отмечена одна птица. 21 июня пять кумаев парили над долиной р. Калкагар под пер. Кулак-Ашу. 22 июня в ущелье Ичке хр. Ат-Баши отмечены две и затем три птицы. 23 июня в долине р. Ат-Баши встречены две птицы.

Чеглок (*Falco subbuteo*). Территориальные пары на гнездовых участках отмечены в двух местах: 18 июня в ельнике урочища Уч-Кош-Кон на р. Сон-Куль (2600 м), птицы держались рядом со старым гнездом чёрной вороны и 21 июня в пойменном лиственном лесу на р. Ат-Баши (1800 м), в 10 км ниже г. Ат-Баши, где в лесу на высоком тополе располагалось старое воронье гнездо.

Пустельга (Falco tinnunculus). Одиночные птицы в полёте наблюдались в разных местах, на высотах 1800-3400 м: 19 июня — на перевале Молдо-Ашу и на спуске с перевала в ущ. Куртка (одна); 20 июня — в ущ. Суулу-Куртка (две) и на подъёме от пос. Дюрбельджин на перевал Бёрюлю 2700 м (одна); 21 июня в пойменном лесу на р. Ат-Баши, в 10 км ниже города (одна); 22 июня по дороге от г. Ат-Баши — Арча-Кайинды — Озгёргуш (четыре); 23 июня — в долине Атбаши (одна); 24 июня — в ущ. Аки-Булак хр. Ат-Баши (одна); 25 июня — на р. Сарыкунгей притоке Малого Нарына (одна) и на р. Тюлёк (одна).

Гималайский улар (*Tetraogallus himalayensis*). Голоса уларов слышали со стороны хребтов 18 июня в урочище Уч-Кош-Кон на р. Сон-Куль и 24 июня в ущелье Аки-Булак хр. Ат-Баши. Четыре улара пролетели 19 июня через ущелье на спуске с перевала Молдо-Ашу.

Кеклик (*Alectoris chukar*). Встречен только в предгорьях Терскей Ала-Тоо где 26 и 27 июня в урочище Оттук держалось несколько птиц и были слышны голоса с окрестных холмов.

Перепел (*Coturnix coturnix*). Брачные крики были слышны 21 июня на лугах в долине р. Ат-Баши.

Фазан (*Phasianus colchicus*). Токующий самец встречен 21 июня в 10 км ниже города Ат-Баши в пойменном лесу реки Ат-Баши.

Лысуха (Fulica atra). Стая из 10 птиц отмечена 26 июня у мыса Акбулун на берегу Иссык-Куля.

Малый зуёк (Charadrius dubius). Одна 26 июня на мысе Акбулун на южном берегу Иссык-Куля.

Монгольский зуёк (*Charadrius mongolus pamirensis*). При специальном обследовании галечников мелких рек сырта оз. Сон-Куль (3015-3100 м), на северном берегу, у впадения р. Джаман-Ичке 19 июня найдены четыре пары. Две пары проявляли территориальное беспокойство, но гнёзд с кладками или птенцов обнаружить не удалось. У одной пары было два крупных птенца, величиной в половину взрослой птицы, у другой – два птенца, в треть взрослой птицы. Выводки держались на галечнике русла реки либо в прилегающей к галечнику полосе злаковой степи.

Кулик-сорока (Haematopus ostralegus). Пара 27 июня на галечнике р. Чу у с. Красная Речка.

Серпоклюв (*Ibidorhyncha struthersii*). Один встречен 18 июня ниже моста в урочище Уч-Кош-Кон в пойме р. Сон-Куль (2600 м).

Черныш (*Tringa ochropus*). Один отмечен 19 июня на берегу озерка на подъёме от южного берега оз. Сон-Куль на перевал Молдо-Ашу. Стайку из 11 птиц видели 26 июня на южном берегу Иссык-Куля возле мыса Акбулун.

Травник (*Tringa totanus*). Обычен в обводнённых травянистых участках сырта оз. Сон-Куль (3015 м). 18 июня несколько территориальных пар волновались у придорожного озерка на южном берегу озера. 19 июня около десятка птиц отмечено на косе северного берега (токовали) и ещё одна территориальная пара — у впадения р. Джаман-Ичке в озеро. На мысе Акбулун (Иссык-Куль) 26 июня встречены две птицы.

Перевозчик (*Actitis hypoleucos*). Пару с 2-3-дневными пуховичками наблюдали 18 июня у моста на р. Сон-Куль в урочище Уч-Кош-Кон (2600 м). Одиночных перевозчиков видели: 21 июня в 10 км ниже города Ат-Баши, в пойме р. Ат-Баши; 25 июня — возле пос. Кайынды в долине Нарына и на р. Кичи-Каракуджур под перевалом Долон.

Озёрная чайка (*Larus ridibundus*). На сырте оз. Сон-Куль (3015 м) 18 июня отмечены 20 птиц. На южном берегу Иссык-Куля, у мыса Акбулун, двух птиц видели 26 июня.

Хохотунья (*Larus cachinnans*). 18 и 19 июня на песчаной отмели оз. Сон-Куль (3000 м) наблюдали 10 особей.

Чёрная крачка (*Chlidonias niger*). 20 июня пара птиц отмечена у моста через р. Нарын возле пос. Джаны-Талап.

Речная крачка (*Sterna hirundo*). Двух птиц видели 19 июня на сырте у впадения р. Джаман-Ичке в оз. Сон-Куль (3000 м) и одиночку -20 июня на пруду возле пос. Угут в пойме р. Нарын. На южном берегу Иссык-Куля возле мыса Акбулун 26 июня держалось около десяти птиц.

Вяхирь (*Columba palumbus*). Небольшие стайки и одиночки отмечены в нескольких местах маршрута: 17 июня – в лесополосе окрестностей Бишкека и в Кочкорской долине (всего за день учтено 11 птиц); 19 июня (одиночка) – в еловом лесу на спуске с перевала Молдо-Ашу в ущелье Куртка (2600 м); 22 июня – две одиночки по дороге из г. Ат-Баши в пос. Босого; 23 июня – пара птиц в ущелье Аки-Булак хр. Ат-Баши (2800 м); 25 июня – в каньоне Нарына (несколько птиц); 27 июня – в пос. Ак-Терек на южном берегу Иссык-Куля. Токовые полёты вяхиря наблюдали 20 июня в ущелье Суулу-Куртка (2800 м) и 25 июня в двух местах ущелья Тёо-Джайлоо (Нарынский хребет, 2400 м).

Сизый голубь (Columba livia). Был обычен во многих местах, в том числе встречен на удалении от городков и поселков. По паре птиц видели 21 июня в кошаре на подъёме на пер. Кулак-Ашу (2800 м) и в 10 км ниже города Ат-Баши в пойменном лесу на р. Ат-Баши (1800 м). Стайки отмечены в пос. Карабулун и его окрестностях (22 июня), в пос. Баш-Кайинды и Озгёргуш (22 июня) и в ущ. Аки-Булак, пос. Акмуз (24 июня). В долине Нарына птиц видели в городе Нарын и его окрестностях (24 июня). возле посёлков Кайынды, Добелу и Кенеш (25 июня). В долине р. Тюлёк 25 и 26 июня встречались небольшие стайки, вплоть до 2850 м под перевалом Калмак-Ашу. Также сизари отмечены 26 июня в западных предгорьях Терскей Ала-Тоо и на южном берегу Иссык-Куля.

Скальный голубь (*Columba rupestris*). Встречен только в трёх местах: 18 июня 3 птицы в глубоком каньоне Итолгандун-Суу на р. Сон-Куль (2600 м), птицы залетели в нишу высоких обрывов; самец токовал; 20 июня — на хр. Байбиче при подъёме от пос. Дюрбельджин на перевал Бёрюлю (3000 м) три пары кормились у дороги; 25 июня — пара птиц в ущелье р. Малый Нарын (2500 м).

Кольчатая горлица (*Streptopelia decaocto*). Встречена в нескольких населённых пунктах: 17 июня – в окрестностях Бишкека; 21 июня – в пос. Карабулун; 22 июня – в посёлках Карасуу, Арча-Каинды и Озгёргуш; 24 июня – в городе Нарын и пос. Добелу; 26 июня – на южном берегу Иссык-Куля в пос. Кара-Тоо; 27 июня – в Ак-Тереке.

Большая горлица (*Streptopelia orientalis*). Одиночные встречены 21 и 22 июня – в лиственном лесу по р. Ат-Баши, в 10 км ниже города, и 23 июня – в ельниках Балыкты (2800 м) и Аки-Булак (2800 м).

Малая горлица (*Streptopelia senegalensis*). Одна встречена 25 июня в пос. Кенеш около г. Нарына.

Кукушка (*Cuculus canorus*). Отмечена (кукование или визуально) в нескольких местах; 20 июня в пос. Дюрбельджин; 21 июня – в Орто-Сырте (2700 м) хр. Байбиче и в пойменном лесу на р. Ат-Баши (1800 м); 22 июня – у пос. Озгёргуш; 24 июня – в ущ. Аки-Булак хр. Ат-Баши (2800-3300 м) и выше пос. Добелу (2200 м); 27 июня на южном берегу Иссык-Куля возле Каджи-Сая.

Ушастая сова ($Asio\ otus$). Одна встречена 24 июня в арчевнике ущ. Аки-Булак (2800 м) хр. Ат-Баши.

Сплюшка (*Otus scops*). В пойменном лесу р. Ат-Баши (1800 м) в 10 км ниже г. Ат-Баши 21 июня был слышен голос в сумеречное время.

Домовый сыч (*Athene noctua*). 27 июня выводок из четырёх молодых птиц отмечен в урочище Оттук (1860 м) в западной оконечности Терскей Ала-Тоо.

Чёрный стриж (*Apus apus*). На территории Внутреннего Тянь-Шаня стаи отмечены несколько раз: 20 июня – у моста через р. Нарын за пос. Джаны-Талап (около 10 птиц); 21 июня – в пойме р. Ат-Баши (5 птиц), 22 июня – в ущ. Ичке хр. Ат-Баши (10 птиц); 25 июня – в пос. Кайынды в долине Нарына (10 птиц) и возле скал в ущелье р. Малый Нарын (2500 м, 10 птиц); 26 июня – на южном берегу Иссык-

Куля возле мыса Акбулун (2 птицы) и в Каджи-Сае (2 птицы); 27 июня – в пос. Ак-Терек (2 птицы) и в урочише Оттук на западной оконечности Терскей Ала-Тоо (6 птиц). Гнездовая колония стрижей в Бишкеке, возле здания Политехнического института, состоит примерно из 100 птиц.

Сизоворонка (*Coracias garrulus*). Несколько птиц видели 20 июня в пойме р. Нарын возле пос. Джаны-Талап, Дюрбельджин и Байтёчёк и 27 июня у пос. Ак-Бекет в пойме р. Чу.

Золотистая щурка (*Merops apiaster*). По несколько птиц отмечено 20 июня возле посёлков Дюрбельджин и Байтёчёк в пойме р. Нарын и 24 июня в долине реки выше города Нарын.

Удод (*Upupa epops*). Встречался регулярно как возле жилых поселений, так и на удалении от посёлков, до 2700 м. Пара жила под крышей дома «зимовки» в Орто-Сырте, на хр. Байбиче (20-21 июня). Выводок хорошо летающих молодых держался 21 июня в пойменном лесу р. Ат-Баши (1800 м) в 10 км ниже города. Одиночных птиц отмечали: 20 июня в пос. Джаны-Талап (пойма р. Нарын), 21 июня – в пос. Карабулун и в г. Ат-Баши. 22 июня по дороге Ат-Баши – Баш-Кайинды – Озгёргуш (3); 24 июня в городе Нарын (1) и в ущелье Тёо-Джайлоо в Нарынском хребте (1); 25 июня – в пос. Добелу (1) и в долине р. Тюлёк (1); 27 июня – в Каджи-Сае (1700 м) на южном берегу Иссык-Куля (1); 27 июня – в урочище Оттук на западной оконечности Терскей Ала-Тоо (2).

Бледная береговушка (*Riparia diluta diluta*). Небольшие стайки, до 10 птиц, встречены в пойме р. Нарын возле пос. Угут (20 июня), на окраине г. Ат-Баши (21 и 22 июня); в ущелье р. Ичке (22 июня) и на южном берегу Иссык-Куля возле Ак-Терека (27 июня).

Скальная ласточка (*Ptyonoprogne rupestris*). Гнездовые пары отмечены в каньоне Итолгандун-Суу на р. Сон-Куль (2600 м, 18 июня), в ущелье р. Куртка на хр. Молдо-Тоо (2200 м; 20 июня), на пер. Кынды (3400 м) 23 июня, и в ущелье р. Малый Нарын (2500 м) 25 июня. В каньоне р. Нарын, выше пос. Кайынды 25 июня видели более 10 птиц (гнездовая колония). В урочище Оттук (1860 м) в западных предгорьях Терскей Ала-Тоо обнаружено 3 пары — 26 и 27 июня птицы строили гнёзда у основания 50 метровой отвесной скалы. Два гнезда были сделаны на высоте около 2 м от земли (почти достроены) и одно — на высоте 5 м (в начале строительства). За глиной птицы летали на родник, находящийся в 500 м выше по ушелью.

Деревенская ласточка (*Hirundo rustica rustica*). Отмечена в следующих населённых пунктах: Угут, Дюрбельджин и Байтёчёк (20 июня); Карабулун (21 июня); Ат-Баши, Карасуу и Арча-Кайнары (22 июня); Оттук и Кара-Тоо (26 июня).

Воронок (*Delichon urbica*). Встречен только в нескольких местах: две птицы – в каньоне Итолгандун-Суу на р. Сон-Куль (2900 м; 18 июня), около 50 птиц в устье ущ. Балыкты (2775 м; 23 июня) и пять птиц в каньоне Нарына, выше пос. Кайынды (2300 м; 25 июня) и две у скал в ущелье Малого Нарына (25 июня).

Хохлатый жаворонок (*Galerida cristata iwanowi*). Редкий вид. Одна птица встречена только на севере региона, – на окраине пос. Ак-Терек на южном берегу Иссык-Куля (26 и 27 июня).

Тонкоклювый жаворонок (Calandrella acutirostris). В поисках этого вида целенаправленно осматривались подходящие для него участки везде в высокогорье; 22 июня проведены тщательные поиски в остепнённой равнине верховий р. Кара-Коюн, где птиц встречали шесть лет назад 19 июля 2000 г. (Ковшарь и др., 2004). Обнаружить вид не удалось: возможно птицы появляются здесь только в июле, спускаясь с гнездовий на высоте более 3000 м.

Рогатый жаворонок (*Eremophila alpestris albigula*). В целом немногочислен в высокогорье. Встречен на выположенных склонах и в горных долинах в пределах высот от 2700 до 3300 м: на подъёме к перевалу в Корго (2700 м, одна птица, 17 июня); на хр. Байбиче, на спуске с перевала Бёрюлю (2900 м; три птицы в разных местах и слёток, 20 июня); на Орто-Сырте в долине р. Акбейт; две птицы по одиночке, 21 июня) и на подъёме по р. Калкагар на пер. Кулак-Ашу (3370 м; 8 птиц по одиночке, одна птица с кормом, один слёток, 21 июня); на спуске с пер. Кулак-Ашу (4 птицы, 21 июня); на остепнённых долинах в районе пос.

Кара-Булун (2700 м; одна птица, 22 июня). Единственное место, где этот вид оказался фоновым, была высокогорная котловина, с каменистой степью, озера Сон-Куль (3020 м, 18-19 июня): всего на автомобильном маршруте 18 июня здесь учтено 15 взрослых птиц по одиночке и один выводок, а 19 июня – 11 взрослых птиц, включая гнездовую пару с кормом.

Полевой жаворонок (Alauda arvensis almasyi). Немногочисленный вид равнинных степных участков в диапазоне высот 1800-3000 м. Песни регистрировались в следующих местах: на перевале в Корго (3000 м, 17 июня); в котловине оз. Сон-Куль (3050 м, 18 и 19 июня); на чапах в окрестностях пос. Дюрбельджин (20 июня); на р. Калкагар (2800 м; 21 июня), под пер. Кулак-Ашу, в долине р. Карасу и на пойменном лугу на р. Ат-Баши, в 10 км ниже города (1800 м; 21 июня); в долине Ат-Баши у пос. Баш-Кайинды (22 июня); в долина Ат-Баши выше Балыкты (3000 м; 23 июня); в долине р. Ат-Баши в

районе пос. Акмуз и на подъёме к пер. Кызыл-Бель (24 июня); в долине Нарына возле пос. Кайынды, на слиянии Малого Нарына с Нарыном и в долине Малого Нарына у пос. Кичи-Нарын (25 июня).

Полевой конёк (*Anthus campestris griseus*). Поющие самцы регистрировались в нескольких местах: в предгорьях Молдо-Тоо (20 июня), у слияния р. Куртка и Нарын (1700 м; 20 июня), в окрестностях пос. Дюрбельджин на подъёме перевалу Бёрюлю (2000 м; 20 июня); на р. Калкагар под пер. Кулак-Ашу (2800 м, 21 июня, птица с кормом); в долине Ат-Баши в районе впадения р. Балыкты (23 июня). Также птиц видели возле пос. Акмуз (24 июня), на южном берегу Иссык-Куля в Каджи-Сае (1700 м) и в сухих горушках урочища Оттук в западной оконечности Терскей Ала-Тоо (27 июня).

Лесной конёк (*Anthus trivialis haringtoni*). Немногочисленный вид еловых редколесий на склонах горных ущелий. В середине июня самцы пели уже не очень активно, встречались взрослые с кормом. Отмечены в ущелье Куртка на спуске с перевала Молдо-Ашу (3000 м; 19 июня), в ущелье Суулу-Куртка (2800 м; 20 июня), в ущелье Балыкты (2800 м, 23 июня) и в долине р. Ат-Баши (3000 м, 23 июня); в ельниках каньона Малого Нарына (2400 м, 25 июня). В ущелье Аки-Булак самцы пели 24 июня как в островных ельниках (2800-3200 м), так и в зоне стелющийся арчи (3300 м), где пересекались с также поющими горными коньками.

Горный конёк (*Anthus spinoletta blakistoni*). Занимает зону выше еловых редколесий. Птицы с кормом и ещё поющие самцы отмечены: на перевале Молдо-Ашу (3346 м, 19 июня); на спуске с перевала Бёрюлю в Орто-Сырт (3000 м, 20 июня); на пер. Кулак-Ашу (3370 м, 21 июня); в ущелье Ичке, хр. Ат-Баши (2900 м; 22 июня); на пер. Кынды (3400 м, 23 июня); в ущелье Аки-Булак, хр. Ат-Баши (3300-3400 м, 24 июня); на правом притоке р. Тюлёк под перевалом Калмак-Ашу (наиболее низкогорное гнездование, 2850 м, 25-26 июня).

Черноголовая трясогузка (*Motacilla feldegg melanogrisea*). Несколько птиц встречены 26 июня на южном берегу Иссык-Куля, в окрестностях пос. Оттук и на мысе Акбулун.

Черноспинная желтоголовая трясогузка (Motacilla citreola calcarata). Характерный вид межгорных речных пойм с редкими кустами караганы и заболоченных участков высокогорных долин. По соотношению встреч полов (всего отмечено 62 самца и 3 самки), у большинства пар в середине июня уже шло насиживание яиц. Большинство встреч приходится на высоты 2600-3000 м, но также трясогузки были обычны в пойме реки Ат-Баши (районе г. Ат-Баши, 1800 м) и в небольшом числе на берегу Иссык-Куля (1600 м). Перечисляем места встреч: на подъёме по Сары-Булаку на пер. Долон (3000 м, 17 июня); в котловине оз. Сон-Куль (3050 м, 18 и 19 июня); в пойме р. Нарын, между пос. Джаны-Талап — Угут (1800 м, 20 июня); на спуске с перевала Бёрюлю в Орто-Сырт (2900 м, 20 июня); на подъёме по р. Калкагар на пер. Кулак-Ашу (3000 м, 21 июня), по дороге от пос. Карабулун — до г. Ат-Баши (1800 м, 21 июня); на пойменных лугах в 10 км ниже г. Ат-Баши (1800 м, 22 июня), на р. Ичке (2800 м, 22 июня); выше г. Ат-Баши у пос. Арча-Каинды и Озгёргуш, в долине р. Джалджир (22 июня); возле моста на р. Балыкты (2775 м, 23 июня); у пос. Акмуз, на подъёме на перевал Кызыл-Бель (24 июня); в долина Нарына, возле пос. Кайынды, на слиянии Малого Нарына с Нарыном, в ущ. Малого Нарына, возле пос. Оттук (все — 25 июня); в долине р. Тюлёк под перевалом Калмак-Ашу (2600-2850 м, 26 июня); на южном берегу Иссык-Куля возле пос. Кара-Тоо и Аксай (27 июня).

Горная трясогузка (*Motacilla cinerea melanope*). Оказалась не столь обычной, как ожидалось. Отмечена только в нескольких местах: в урочище Уч-Кош-Кон у реки на р. Сон-Куль (2600 м, 18 июня); на спуске с перевала Молдо-Ашу в ущ. Куртка (2400 м, 19 июня); в ущ. р. Куртка (2200 м, 20 июня); на р. Балыкты (2800 м, 22 и 23 июня); в ущ. Тёо-Джайлоо (2400 м, 25 июня), на слиянии Малого Нарына с Нарыном и у моста в Малом Нарыне (2400 м, 25 июня).

Маскированная трясогузка (Motacilla personata). Обычный вид, как вдоль побережий горных рек, так и в посёлках. Учтено 35 особей. Встречена: на р. Сон-Куль (пара под мостом, 18 июня); в пос. Угут и Дюрбельджин (20 июня); в зимовке в Орто-Сырт на хр. Байбиче (2700 м, 21 июня, пара под крышей); в пос. Карабулун, в г. Ат-Баши, у зимовки на р. Ат-Баши в 10 км ниже города, 21 июня); на р. Ичке (пара у юрты), в пос. Арча-Каинды и Озгёргуш (22 июня); у моста на р. Балыкты (23 июня); на подъёме к перевалу Кызыл-Бель, в г. Нарын, в пос. Добелу (24 июня); в пос. Эки-Нарын, у моста на Малом Нарыне, в пос. Алыш (25 июня); в долине р. Тюлёк (2600 м) и в пос. Аксай (26 июня). Специально обращалось внимание на поиски черноспинных птиц alboides, которые выявлены не были.

Туркестанский жулан (*Lanius phoenicuroides phoenicuroides*). Большинство из 22 встреченных птиц наблюдались в больших долинах крупных межгорных рек: в пойме р. Нарын (20 июня), между пос. Джаны-Талап и Угут и возле пос. Дюрбельджин (20 июня); возле пос. Карабулун и в пойме р. Ат-Баши в 10 км ниже города (21и 22 июня); в ущ. Балыкты (23 июня); возле пос. Акмуз и под пер. Кызыл-Бель (24 июня); возле пос. Кайынды и Кичи-Нарын (25 июня); в Каджи-Сае (26 июня).

Длиннохвостый сорокопут (*Lanius schach erythronotus*). Отмечен только 27 июня в долине р. Чу в пос. Быстровка и Ак-Бекет.

Чернолобый сорокопут (*Lanius minor*). На участке трассы между пос. Джаны-Талап — Дюрбельджин — Байтёчёк 20 июня учтено 11 особей.

Иволга (*Oriolus oriolus kundoo*). Одна встреча: поющий самец в г. Ат-Баши (2000 м, 21 июня).

Скворец (Sturnus vulgaris porphyronotus). Стаи взрослых птиц с молодыми (до 50 и 100 птиц в стае) неоднократно встречались в горных долинах: возле пос. Дюрбельджин (20 июня); на трассе от пос. Карабулун до г. Ат-Баши (21и 22 июня); по дороге по левому берегу Ат-Баши между пос. Баш-Каинды и Озгёргуш (22 июня); на правом берегу в районе пос. Акмуз и на подъёме на перевал Кызыл-Бель (24 июня; взрослая птица с кормом залетела в одиночную нору обрыва); возле пос. Кайынды, Эки-Нарын, Оттук и Тюлёк (25 июня); на южном берегу Иссык-Куля на трассе между пос. Аксай – Торткуль – Бокомбаев (26 июня).

Розовый скворец (*Sturnus roseus*). Стаи отмечены 17 июня на подъёме по Байдамталу и 27 июня в пойме р. Чу у Быстровки.

Майна (*Acridotheres tristis*). Отмечена только на южном берегу Иссык-Куля в пос. Кара-Тоо, Аксай и Бокомбаев (26 июня).

Сорока (*Pica pica bactriana*). Встречалась повсеместно, до высоты 3000 м: в Уч-Кош-Коне на р. Сон-Куль (18 июня); в ущ. Куртка (2600 м, 19 июня); в ущелье Суулу-Куртка (2800 м, 20 июня) и под пер. Бёрюлю (2900 м 20 июня); возле пос. Карабулун, в г. Ат-Баши, в пойменном лесу р. Ат-Баши (21 июня); возле пос. Баш-Кайинды и Озгёргуш (22 июня); в ельниках ущелья Балыкты (3000 м, 23 июня); в ущ Аки-Булак (2950 м, 24 июня), возле пос. Акмуз и в ущ. Тёо-Джайлоо (2400 м, 24 июня); в ущ. Малого Нарына и пос. Тюлёк (25 июня); на мысе Акбулун (южный берег Иссык-Куля, 26 июня).

Клушица (*Pyrrhocorax pyrrhocorax*). Стаи до 10-20 птиц и пары встречены: на р. Сон-Куль (2600м; 18 июня); в ущ. Суулу-Куртка (2800 м; 20 июня); возле зимовки в Орто-Сырт в долине р. Акбейт (2700 м; 21 июня); на подъёме по р. Калкагар (21 июня); в долине Ат-Баши (2800 м; 23 июня); в ущ. Аки-Булак (3000 м; 24 июня); на р Сарыкунгей (2500 м; 25 июня); под пер. Калмак-Ашу (2850 м; 26 июня). На южном берегу Иссык-Куля, в ур. Каджи-Сай (1700 м) взрослые кормили летающих слётков 26 и 27 июня.

Альпийская галка (*Pyrrhocorax graculus*). Пары встречены в двух местах – в каньоне Итолгандун-Суу на р. Сон-Куль (2900 м; 18 июня) и в ущ. Аки-Булак хр. Ат-Баши (3400 м; 24 июня).

Галка (*Corvus monedula*). Наблюдались в стаях с грачами в долине Ат-Баши 22 июня возле пос. Озгёргуш и 24 июня – возле пос. Акмуз.

Грач (Corvus frugilegus frugilegus). Жилые колонии отмечены 21 июня в пос. Карабулун (2400 м, 100 пар) и в г. Ат-Баши (1800 м, 50 гнёзд) и 24 июня в, пос. Добелу (долина Нарына, 2200 м, 100 пар). Стаи взрослых и хорошо летающей молодёжи до 50-100 птиц встречены: 21 июня на пойменном лугу на р. Ат-Баши, в 10 км ниже города; 22 июня — возле пос. Арча-Кайнары и Баш-Каинды; 24 июня — на подъёме к перевалу Кызыл-Бель; 25 июня — у моста на Малом Нарыне; 27 июня — на южном берегу Иссык-Куля в Каджи-Сае и Ак-Тереке.

Чёрная ворона (Corvus corone orientalis). Встречена в нескольких местах, вплоть до высот 3000 м. Выводок отмечен 18 июня в ур. Уч-Кош-Кон на р. Сон-Куль (2600 м). Скопление около 20 птиц наблюдалось 19 июня при подъёме от южного берега оз. Сон-Куль на перевал Молдо-Ашу. Также птицы отмечены: 20 июня в ущ. Суулу-Куртка (2800 м), возле пос. Джаны-Талап (1700 м), под перевалом Бёрюлю (2600 м); 22 июня — возле пос. Озгёргуш и долине р. Джалджир; 23 июня — в ельниках ущ. Балыкты и у моста Беш-Бель-Чир под пер. Кынды; 24 июня — в ущ. Аки-Булак хр. Ат-Баши; 25 июня — на слиянии Малого Нарына с Нарыном и по ущелью Малого Нарына.

Ворон (*Corvus corax*). Оказался достаточно редким и отмечен только на спуске с пер. Долон в Кичи-Каракуджур (17 июня), на оз. Сон-Куль отмечен выводок из 4 слётков (19 июня), в пойме р. Ат-Баши, 10 км ниже города (21 июня), под пер. Кулак-Ашу (22 июня), в ущ. Малый Нарын (25 июня), в предгорьях Терскей Ала-Тоо (26 июня).

Оляпка (Cinclus cinclus). На р. Сон-Куль (2600 м) пара 18 июня носила корм в щель бетонного основания моста. Одиночка встречена 20 июня в ущ. Суулу-Куртка (2600 м). Выводок (6 птиц) видели 21 июня на р. Калкагар при подъёме на пер. Кулак-Ашу. Несколько раз птиц отмечали 25 и 26 июня на притоке р. Тюлёк (2850) под перевалом Калмак-Ашу (2850).

Крапивник (*Troglodytes troglodytes tienscanicus*). Поющие отмечены 24 июня в ельниках ущ. Аки-Булак (хр. Ат-Баши) в трёх местах на высоте 2800-3000 м и 25 июня – в ущ. Малого Нарына (2500 м).

Альпийская завирушка (*Prunella collaris rufilata*). Самец пел 24 июня на осыпи в цирке верховий ущ. Аки-Булак хр. Ат-Баши (3400 м).

Бледная завирушка (*Prunella fulvescens*). Двух птиц видели 18 июня в скалах ур. Уч-Кош-Кон на р. Сон-Куль (2600 м).

Черногорлая завирушка (*Prunella atrogularis huttoni*). Немногочисленна. Встречалась в разреженных еловых лесах от 2400 м, до высоты верхней границы леса — на 3200 м. Поющие самцы

отмечены 18 июня на р. Сон-Куль (2600 м) и 19 июня – в ущ. Куртка на спуске с перевала Молдо-Ашу (3000 м). В ущ. Суулу-Куртка (хр. Молдо-Тоо, 2400 м) кроме поющих самцово20 июня найдено гнездо с 4 пуховыми птенцами (глаза открыты, пеньки маховых), расположенное в кусте стелющейся арчи, а в ельнике у реки наблюдался выводок. В других местах поющие самцы отмечены: 23 июня в ельнике ущ. Балыкты (2800 м) и на р. Ат-Баши (3000 м). В ущ. Аки-Булак 24 июня поющих самцов видели в ельнике (3000-3200 м), в ивняке (3100 м) и в зарослях караганы (3300 м); 24 июня – ущ. Тёо-Джайлоо (Нарынский хр., 2300 м); 25 июня – в ельнике по р. Малый Нарын (2500 м).

Широкохвостка (*Cettia cetti*). Пение отмечено в трёх местах: 20 июня в пойме р. Нарын, возле моста у пос. Джаны-Талап (1600 м); 21 и 22 июня – в пойменном лесу на р. Ат-Баши, в 10 км ниже города (1800 м); 26 июня – на мысе Акбулун (южный берег Иссык-Куля, 1600 м).

Обыкновенный сверчок (*Locustella naevia*). Только в одном месте отмечен поющий самец – 21 и 22 июня – на пойменных лугах, в 10 км ниже г. Ат-Баши.

Дроздовидная камышевка (*Acrocephalus arundinaceus*). Пение слышали 26 июня на мысе Акбулун (южный берег Иссык-Куля) и 27 июня – в пойма р. Чу, на объездной трассе г. Бишкек.

Ястребиная славка (*Sylvia nisoria*). Два территориальных самца наблюдались 25 июня в зарослях кустарников по долине Нарына выше пос. Кайынды (2300 м).

Серая славка (Sylvia communis rubicola). Все наблюдения относятся к поющим самцам, которых видели: 18 июня в каньоне Итолгандун-Суу на р. Сон-Куль (2600 м); 19 июня – в ущ. Куртка (хр. Молдо-Тоо, 2400 м); 20 июня – ущ. Куртка (2200 м); 21 и 22 июня – на пойменных лугах р. Ат-Баши (1800 м); 23 июня – в долине р. Ат-Баши (2800 и 3000 м); 24 июня – в ущ Аки-Булак (хр. Ат-Баши, 2800-3000 м), в районе пос. Акмуз (2000 м); 25 июня – в ущ. Тёо-Джайлоо (Нарынский хребет, 2400 м) и каньоне Нарына (2300 м); 26 июня – в западных предгорьях Терскей Ала-Тоо (1900 м).

Горная славка (Sylvia althaea). В Бишкеке 17 июня самец пел в живой изгороди на оживлённой аллее Политехнического института. Поведение указывало, что это скорее всего территориальный самец на гнездовом участке. Также поющего самца видели 20 июня в кустарнике поймы р. Нарын в окрестностях пос. Угут. 26 июня встречен выводок в зарослях кустарника по сухому руслу в урочище Каджи-Сай (1700 м) в предгорьях Терскей Ала-Тоо. Для этих мест Л.С. Степанян (1959) указывает гнездование славки-завирушки (Sylvia curruca halimodendri), с указанием о добыче 1 июля 1954 г. самца с хорошо развитыми семенниками. Поскольку горная славка в этой публикации не упоминается, то предполагалось, что возможно произошла ошибка определения. По нашей просьбе Е.А. Коблик посмотрел упомянутый экземпляр, хранящийся в коллекции Зоомузея МГУ, и сообщил, что В.М. Лоскот переопределил птицу, она оказалась горной славкой Sylvia althaea. Выражаем Евгению Александровичу благодарность за помощь в решении этого принципиального вопроса.

Зелёная пеночка (Phylloscopus trochiloides viridanus). Одна из самых многочисленных птиц встреченных на маршруте. Была фоновым видом как еловых лесов, так и других биотопов. Именно её и обыкновенную чечевицу можно считать одними из самых успешных птиц Тянь-Шаня на рубеже ХХ и XXI веков. Можно предположить, что на таком общем пике численности, часть самцов "выжимаются" в самые разнообразные нетипичные для вида гнездовые биотопы, от куртин тополей в посёлках, до жаркой долины Нарына (где они были обычны), вплоть до горной степи с зарослями кустов караганы под перевалом Калмак-Ашу (единичные пары). Самыми низкими были встречи в лиственном пойменном лесу р. Ат-Баши (1800 м), самыми высокими – верхние ели в ущ. Аки-Булак (3200 м) в хр. Ат-Баши. Встречена в следующих пунктах: 18 июня в ельнике Уч-Кош-Кон на р. Сон-Куль (2600 м); 19 июня – в ущ. Куртка на спуске с перевала Молдо-Ашу (3000 и 2400 м) – поёт. 20 июня – в ельниках ущ. Суулу-Куртка (2400 м) и ущ. р. Куртка (2400-2200 м); 21 июня – в посадках деревьев г. Ат-Баши (1800 м), в лиственном пойменном лесу р. Ат-Баши, ниже города (1800 м); 22 июня – в пойме р. Кара-Коюн и пос. Карабулун, Карасуу, в пойме Ат-Баши выше города и пос. Арча-Каинды и Босого; 23 июня – в ельниках ущ. Балыкты (2800-2900 м) и Джалджира (3000 м); 24 июня – в ельниках ущ Аки-Булак (хр. Ат-Баши, 2800-3200 м); 25 июня – в ельниках ущ. Тёо-Джайлоо (Нарынский хребет, 2400 м), в пос. Кайынды, в пойме v слияния Малого Нарына с Нарыном и вверх по Малому Нарыну притока Сарыкунгей (2500 м); 26 июня – в караганнике по долине р. Тюлёк под перевалом Калмак-Ашу (2850 м).

Тусклая зарничка (*Phylloscopus humei*). Численность несопоставимо меньше, чем у зелёной пеночки. Если последняя встречалась почти везде и в большом количестве, а пение её было слышно постоянно, то тусклая зарничка отмечена только в нескольких местах, по опушкам ельников, и её пение отмечалось редко: 18 июня в ур. Уч-Кош-Кон на (р. Сон-Куль, 2600 м); 19 июня — в ущ. Куртка (хр. Молдо-Ашу, 3000 м); 20 июня — ущ. Суулу-Куртка (Молдо-Тоо, 2600 и 2800 м); 23 июня — в ущ. Балыкты (2800 м), в долине Ат-Баши (2800 м) и Джалджира (3000 м); 24 июня — ущ. Аки-Булак (хр. Ат-Баши, 2800-3200 м); 25 июня — ущ. Тёо-Джайлоо (Нарынский хр., 2400 м) и ущ. Малого Нарына (2500 м).

Индийская пеночка (*Phylloscopus griseolus*). Птиц видели в зарослях стелющейся арчи в скальниках, самцы активно пели: 18 июня — на р. Сон-Куль в ур. Уч-Кош-Кон (2600 м) и в каньоне Итолгандун-Суу (2600 м); 20 июня — в ущ. Суулу-Куртка (хр. Молдо-Тоо, 2800 м); 24 июня — в ущ. Аки-Булак (хр. Ат-Баши, 3300); 25 июня — в ущ. Малый Нарын (2500 м).

Желтоголовый королёк (Regulus regulus tristis). Встречался в старых ельниках, самцы периодически пели: 18 июня — в ур. Уч-Кош-Кон на р. Сон-Куль (2600 м); 20 июня — в ущ. Суулу-Куртка (2800 м); 23 июня — в ущ. Балыкты (2700 м); 24 июня — в ущ. Аки-Булак (3000 и 3200 м).

Черноголовый чекан (*Saxicola torquata maura*). Встречен только в нескольких местах: 21 июня — на пойменных лугах р. Ат-Баши, в 10 км ниже города (выводок, 1800 м); 24 июня — в долине Нарына, выше пос. Добелу (самец, 2200 м) и в ущ. Тёо-Джайлоо в Нарынском хребте (самец, 2300 м). Две пары и взрослые с короткохвостыми слётками наблюдались 26 июня в долине р. Тюлёк под перевалом Калмак-Ашу (2850 м). Две пары встречены 26 июня на мысе Акбулун (южный берег Иссык-Куля).

Обыкновенная каменка (*Oenanthe oenanthe*). Встречалась спорадично, в отличие от широко распространённой плясуньи. В урочище Уч-Кош-Кон на р. Сон Кёль 18 июня самец кормил короткохвостого слётка. На южном берегу оз. Сон-Куль 19 июня пара держалась возле юрт. В долине р. Джалджир (2700 м) самца видели 22 июня. Также самцы отмечены 23 июня в ущ. Балыты у моста (2775 м) и 25 июня в долине Нарына возле пос. Кайынды. Явно гнездящиеся птицы (три одиночных самца и самка) отмечены 25 июня в пос. Эки-Нарын. В долине р. Тюлёк 25 и 26 июня самцы отмечены пяти местах (2600-2850 м)

Каменка-плешанка (*Oenanthe pleschanka*). Встречалась только в нескольких местах, с характерными биотопами сухих пустынных гор. Двух самок и слётка видели 17 июня в районе Орто-Токойского вдхр. В пойме Нарына на чапах 20 июня двух самцов отметили возле пос. Джаны-Талап и 4 самца и 3 самки у трассы не доезжая пос. Дюрбельджин. Самцы отмечены 22 июня в пос. Карабулун (2200 м) и 25 июня — в долине р. Тюлёк (2500 м). По несколько птиц видели 26 июня в Каджи-Сае (южный берег Иссык-Куля, 1700 м) и 27 июня — в ур. Оттук (западная часть Терскей Ала-Тоо, 1900 м).

Каменка-плясунья (Oenanthe isabellina). Было многочисленна, только в тех местах, где обитали серые сурки (Marmota baibacina). Отмечено более 120 особей на высоте до 3000 м – одиночки и пары возле колоний сурков. В нескольких случаях встречались слётки. Места встреч: 7 июня – подъём на перевал в Корго (2); 18 июня – р. Сон-Куль (выводок в норе, птенцы короткохвостые, выходят за кормом на встречу взрослым); 19 июня – в котловине оз. Сон-Куль встречена только в одном месте, в районе истока р. Сон-Куль, где есть несколько жилых нор серых сурков; 20 июня – окрестности пос. Джаны-Талап (1), пос. Дюрбельджин (1), подъём на перевал Бёрюлю (4), Орто-Сырт, хр. Байбиче (10); 21 июня слётки встречены у зимовки в Орто-Сырте, в долине реки Акбейт (3), на подъёме по р. Калкагар на пер. Кулак-Ашу (7), в долине р. Карасуу (2); 22 июня – у дороги вдоль чапов на р. Ат-Баши (18), остепнённые долины за пос. Карабулун (8), долина р. Ичке в хр. Ат-Баши (15), под пер. Кулак-Ашу (4), долина р. Джалджир (2); 23 июня – в долине Ат-Баши (выводок, 2800 м), мост Беш-Бель-Чир под пер. Кынды (3), 24 июня – подъём на перевал Кызыл-Бель (4); 25 июня – в долине р. Тюлёк (3); 27 июня – Каджи-Сай и Ак-Терек и ур. Оттук.

Пёстрый каменный дрозд (*Monticola saxatilis turkestanicus*). Пара встречена 20 июня на подъёме от пос. Дюрбельджин на первал Бёрюлю (2700 м). В других случаях видели самцов: 18 июня в ур. Уч-Кош-Кон на р. Сон-Куль (2600 м); 22 июня – на левом берегу Ат-Баши, ущ. Балыкты (2800 м); 23 июня – возле моста Беш-Бель-Чир под пер. Кынды (2700 м); 25 июня – на р. Тюлёк (2850 м); 26 и 27 июня – в ур. Оттук (предгорьяя Терскей Ала-Тоо, 1900 м).

Синий каменный дрозд (*Monticola solitarius pandoo*). В урочище Оттук (горы Алабель, западная оконечность Терскей Ала-Тоо, 1900 м) 27 июня отмечен самец.

Седоголовая горихвостка (*Phoenicurus caeruleocephalus*). Поющих самцов видели 25 июня в ельниках ущ. Тёо-Джайлоо (Нарынский хребет, 2500 м) и на Малом Нарыне (2500 м).

Горихвостка-чернушка (*Phoenicurus ochruros phoenicuroides*). Пару видели 17 июня на подъёме по Сары-Булаку на пер. Долон, рядом с самкой был поющий самец (2600 м) и самца на перевале в Корго. В ур. Уч-Кош-Кон (2600 м) на р. Сон-Куль 18 июня отмечено два выводка. Самок видели 21 июня на р. Калкагар (3300 м) под пер. Кулак-Ашу и 24 июня – в долине Нарына возле пос. Добелу (2200 м). Пару со слётками отметили 24 июня в ущ. Тёо-Джайлоо (Нарынский хребет, 2300 м) и также птицы отмечены в этот день в двух местах по Малому Нарыну (2400 и 2500 м). Поющий самец держался 26 и 27 июня возле лагеря в Каджи-Сае (южный берег Иссык-Куля, 1700 м).

Красноспинная горихвостка (*Phoenicurus erythronotus*). Встречалась редко. Пение отмечено только несколько раз. Слётки в сопровождении взрослых отмечены: 18 июня в ельнике в ур. Уч-Кош-Кон на р. Сон-Куль (2600 м); 23 июня – в ельнике ущ. Балыкты (3000 м) и в лесу по долине Ат-Баши

(2800 м); 24 июня – ущ. Аки-Булак (хр. Ат-Баши, 3000м). Также птиц видели в ельниках: 22 июня – возле пос. Босого (самец), 23 июня – под пер. Кынды (самец, 2800 м) и на Малом Нарыне (пара, 2500 м).

Краснобрюхая горихвостка (*Phoenicurus erythrogastrus grandis*). Встречена 24 июня в верховьях ущ. Аки-Булак (хр. Ат-Баши, 3400 м).

Южный соловей (*Luscinia megarhynchos hafizi*). Песни были отмечены: 20 июня в пойме р. Нарын, у пос. Джаны-Талап; 21 и 22 июня – в пойменном лесу на р. Ат-Баши, в 10 км ниже города (1800 м); 26 июня – на мысе Акбулун (южный берег Иссык-Куля, 1600 м).

Черногрудая красношейка (Luscinia pectoralis ballioni). В основном встречались самцы, чаще поющие. Их видели 18 июня — под перевалом на оз. Сон-Куль (с кормом, 3000 м); 20 июня — в ущ. Суулу-Куртка (2800 м); 23 июня — на Ат-Баши ниже слияния с Джалджиром (3000 м), у моста Беш-Бель-Чир под пер. Кынды (2800 м). Лучше всего удалось увидеть вертикальное распределение этого вида в ущ. Аки-Булак (хр. Ат-Баши) на экскурсии 24 июня в разных высотных поясах, поднимаясь из ельников, растущих на высоте 2800 м до осыпей и скальников на 3400 м. Нижние самцы пели в стелющемся арчевнике, растущем по опушке леса на высотах 2800-3000 м. Очень интересным в данном районе оказался пояс непролазных зарослей кустарниковой ивы, расположенный на высоте 3100 м, и здесь тоже встречались явно гнездящиеся птицы, так как отмечен самец с кормом. Последние ели, как в основном и везде на Внутреннем Тянь-Шане, здесь растут на высоте 3200 м. Выше распространены заросли караганы гривастой и альпийские луга, где тоже были встречены поющие самцы (3300 м). Самец с кормом встречен в последних кустах арчи среди скал гребня хребта (3400 м). В зарослях арчи на склоне ущелья р. Малый Нарын 25 июня рядом отмечены три самца, один из которых был с кормом (2500 м). Поющего самца и самку, кормившую слётка, наблюдали 26 июня в долине р. Тюлёк под перевалом Калмак-Ашу (2850 м).

Варакушка (*Luscinia svecica tianschanica*). Встречна только в одном месте – самец активно пел 21 и 22 июня в пойменном лиственном лесу на р. Ат-Баши, в 10 км ниже города (1800 м).

Чёрный дрозд (*Turdus merula intermedia*). Немногочисленный вид. Во время поездки самцы ещё достаточно часто пели. Птиц видели: 18 июня в каньоне Итолгандун-Суу на р. Сон-Куль (2900 м); 19 июня – в ущ. Куртка (2400 м); 20 июня – в ущ. Суулу-Куртка (2400 м); 21 июня – в пойменном лесу на р. Ат-Баши, 10 км ниже города (1800 м); 23 июня – Балыкты (2800 м) и на р. Ат-Баши, ниже слияния с Джалджиром (3000 м); 24 июня – в ущ. Аки-Булак (хр. Ат-Баши, 2800 и 3200 м); 25 июня – в ущ. Тёо-Джайлоо (Нарынский хр., 2400 м) и на р. Малый Нарын (2500 м). Также птицы отмечены в населённых пунктах: 20 июня в пос. Дюрбельджин; 21 июня – в пос. Карабулун и г. Ат-Баши; 24 июня – в пос. Акмуз; 25 июня – в г. Нарын; 26 июня – в пос. Торт-Куль (южный берег Иссык-Куля).

Деряба (*Turdus viscivorus bonapartei*). Немногочисленный вид ельников. В основном встречались одиночные птицы, реже пары. В период нашего посещения почти во всех местах встреч, отмечалось и пение. Птиц наблюдали: 18 июня – в каньоне Итолгандун-Суу на р. Сон-Куль (2900 м); 19 июня – спуск с перевала Молдо-Ашу в ущ. Куртка (3000 м); 20 июня – в ущ. Суулу-Куртка (2800 м), носит корм с южного склона в ельник и в ущ. р. Куртка (2200 м); 23 июня – вущ. Балыкты (хр. Джалджир, 2800 м) и долина Ат-Баши ниже слияния с Джалджиром (2800 и 3000 м); 24 июня – в ущ Аки-Булак (хр. Ат-Баши, 3000 и 3200 м); 25 июня – в ущ. Тёо-Джайлоо (Нарынский хребет, 2400 м) и в ущ. Малого Нарына, 2500). Вдали от елового леса деряба встречен 26 июня у пос. Аксай (южный берег Иссык-Куля, 1600 м).

Синяя птица (*Myophonus caeruleus turkestanicus*). Оказалась не очень обычна, как ожидалось. В каньоне Итолгандун-Суу на р. Сон-Куль 18 июня одиночка встречена возле гнезда на скале. Поющего самца отметили 19 июня на спуске с перевала Молдо-Ашу в ущ. Куртка (2400 м). В ущ. Суулу-Куртка (2600 м) 20 июня видели самку. В этот же день двух одиночек и пустое гнездо отметили у р. Куртка (2200 м). Единственным местом где синие птицы встречались более регулярно, были ущелья Нарына и Малого Нарына, где 25 июня птиц видели у пос. Кайынды (самец, 2200 м), у моста в ущ. Малого Нарына (пара, 2400 м), в ущ. Сарыкунгей (поющий самец и старое гнездо, 2500).

Усатая синица (*Panurus biarmicus*). Самца видели 26 июня в тростниках на мысе Акбулун (южный берег Иссык-Куля)

Джунгарская гаичка (*Parus songarus*). Пары наблюдались 23 июня только в ельниках Джалджира – в ущ. Балыкты (2700 м) и на склоне, спускающемся в долину Ат-Баши (3000 м).

Московка (*Parus ater rufipectus*). Встречена в нескольких метах. Иногда было слышно пение. В ущ. р. Куртка (хр. Молдо-Тоо, 2200 м) поющего самца отметили 20 июня в старом ельнике. В ущ. Балыкты (2900 м) 23 июня одиночка кормилась на ели. В ущ Аки-Булак (хр. Ат-Баши, 3000 м) 24 июня видели пару (3000 м) и поющего самца (3200 м). В ущ. Тёо-Джайлоо (Нарынский хр., 2500 м) 25 июня встречен выводок из четырёх короткохвостых слётков.

Желтогрудый князёк (*Parus flavipectus*). Молодых с доросшими хвостами, выпрашивающих у взрослых корм, наблюдали 21 июня в пойменном лесу на р. Ат-Баши, в 10 км ниже города (1800 м).

Стенолаз (*Tichodroma muraria*). В скалах каньона Итолгандун-Суу на р. Сон-Куль (2600 м) встречена пара птиц, которые 18 июня носили корм в щель на вертикальной скале над дорогой. От основания скалы до места расположения гнезда было около 20 м. Самец часто приносит пучки насекомых, а самка, принося корм, подолгу задерживалась в гнезде, – видимо, обогревала птенцов.

Домовый воробей (*Passer domesticus*). Отмечен в населённых пунктах: 20 июня в Дюрбельджине и Байтёчёке; 21 июня – в Карабулуне; 22 июня – Озгёгуше; 24 июня – в Акмузе, Нарыне и Добелу, 25 июня – в Тюлёке; 26 июня – в Кара-Тоо и Аксае.

Полевой воробей (*Passer montanus dilutus*). Встречался 20 июня в пойме р. Нарын, между пос. Джаны-Талап и Угут; 21 июня у зимовки в пойме р. Ат-Баши, в 10 км ниже города и 22 июня – в пос. Карабулун и Эки-Нарын.

Каменный воробей (*Petronia petronia intermedia*). Встречался очень спорадично и был немногочисленным. Птиц наблюдали: 20 июня — на чапах возле пос. Дюрбельджин (1); 21 июня — зимовка в Орто-Сырт (хр. Байбиче, 2700 м), пара, кормят птенцов, а в долине реки Акбейт (2); 22 июня — чапы в пойме р. Ат-Баши (1800 м), в 10 км ниже города (2), в пос. Карабулун (живут в старом доме), в долине р. Ичке (3); 25 июня — в пос. Кайынды (6), на слиянии Малого Нарына с Нарыном (4); 27 июня — в Каджи-Сае (1700 м), птицы с кормом.

Снежный воробей (Montifringilla nivalis alpicola). Немногочисленный вид высокогорья. На подъёме по Сары-Булаку (2600 м) на пер. Долон 17 июня наблюдали самка с кормом, которая залетела в трещину скалы на обочине дороги. При подъёме по р. Калкагар на пер. Кулак-Ашу 21 июня встретили четыре пары, одну из них у норки в обрыве (3200 м), куда птицы носили корм. Четыре пары наблюдались возле нор в придорожном обрыве на спуске с пер. Кулак-Ашу в Кара-Коюн (3200 м), здесь 21 и 22 июня взрослые носили корм в гнёзда и в одном случае кормили двух короткохвостых слётков, уже покинувших гнездовую нору. В ущ. Ичке (западная часть хр. Ат-Баши, 2900 м) 22 июня отмечено три гнездовые пары. В долине правого притока р. Тюлёк под перевалом Калмак-Ашу (2850 м) 26 июня взрослые носили корм в старую нору сурка под камнем.

Зяблик (*Fringilla coelebs*). Нами не встречен, но в июне 2006 г. в роще чёрных тополей у моста через р. Чу выше Орто-Токойского вдхр. С.А. Торопов наблюдал поющего самца.

Красношапочный вьюрок (*Serinus pusillus*). На маршруте нигде не был многочисленным, всего встречено меньше 50 особой. Встречались поющие самцы, одиночки, пары и небольшие стайки. Птиц видели: 18 июня — Уч-Кош-Кон на р. Сон-Куль (2600 м); 19 июня — в ущ. Куртка (хр. Молдо-Тоо, 3000 м); 20 июня — в ущ. Суулу-Куртка (2800 м) и ущ. Куртка (2200 м); 22 июня — г. Ат-Баши, пос. Озгёргуш и Босого; 23 июня — по долине Ат-Баши (2800 и 3000 м), в ущ Балыкты (2800 м), под пер. Кынды (2800 м); 24 июня — в ущ. Аки-Булак (хр. Ат-Баши, 2950 м), возле пос. Акмуз и Добелу (2200 м); 25 июня — в ущ. Тёо-Джайлоо (Нарынский хр., 2400 м), в ущ. Сарыкунгей и по Малому Нарыну (2500 м).

Зеленушка (*Chloris chloris turkestanicus*). Поющие самцы отмечены 20 июня в пос. Дюрбельджин и 26 июня – в пос. Торт-Куль на южном берегу Иссык-Куля.

Седоголовый щегол (Carduelis caniceps parapanisi). Обычен, но не многочислен (всего отмечено менее 50 особей). Довольно часто встречались поющие самцы. Птиц видели: 17 июня — в Бишкеке и окрестностях; 19 июня — в ущ. Куртка (Молдо-Тоо, 3000 м); 20 июня — в пос. Дюрбельджин и на подъёме на пер. Бёрюлю (2900 м); 21 июня — в г. Ат-Баши (2000 м); 22 июня — в пойменном лесу на р. Ат-Баши (выводок, 1800 м), долина р. Джалджир; 23 июня — в ущ. Балыкты (2900 м), в долине р. Ат-Баши (2800 и 3000 м), мост Беш-Бель-Чир (2700 м); 24 июня — в г. Нарын; 25 июня — по Малому Нарыну (2400 и 2500 м), 26 июня — в пос. Кара-Тоо и Торт-Куль (южный берег Иссык-Куля, 1600 м).

Коноплянка (Acanthis cannabina fringillirostris). Одиночек, пары и группы отмечали в следующих местах: 18 июня в пойме р. Сон-Куль (2900 м); 21 июня – у зимовки в Орто-Сырт (хр. Байбиче, 2700 м); 22 июня – на пойменном лугу р. Ат-Баши (1800 м), в пос. Кара-Суу, Баш-Кайинды и 1 мая (2400 м); 23 июня – в арчевнике долины Ат-Баши (2800 м); 24 июня – в ущ. Тёо-Джайлоо (Нарынский хребет, (2300 м); 25 июня – возле пос. Кайынды (долина Нарына); 26 июня – в долине р. Тюлёк под перевалом Калмак-Ашу (2850).

Горная чечётка (Acanthis flavirostris montanella). Специально было запланировано посещение верховий р. Тюлёк, в районе пер. Калмак-Ашу, где в зарослях караганы гривастой в прежние годы находили гнёзда этого вида. Здесь 26 июня мы наблюдали пять пар. Самцы периодически пели. В одной паре самец сопровождает самку, собирающую овечью шерсть на стволах караганы. По поведению птиц можно сделать предположение, что это было только начало гнездового периода

Гималайский вьюрок (*Leucosticte nemoricola*). Пары и одиночки встречены 19 июня в ущ. Куртка на спуске с перевала Молдо-Ашу (3000 м); 23 июня – в ущ. Балыкты (2800 м) и на Ат-Баши ниже слияния с Джалджиром (3000 м). Стая до 50 птиц, и отдельные пары, наблюдались 24 июня в верховьях

ущ. Аки-Булак (хр. Ат-Баши, 3400 м). Также пара отмечена 26 июня в долине р. Тюлёк под перевалом Калмак-Ашу (2850 м).

Монгольский пустынный снегирь (*Bucanetes mongolicus*). Встречен только в трёх местах. Самку видели 22 июня на чапах в пойме р. Ат-Баши, ниже города (1800 м). В Каджи-Сае (южный берег Иссык-Куля, 1700 м) самец пел 27 июня сидя на глиняном останце и в этот же день четыре птицы отмечено на водопое ур. Оттук (горы Алабель, западная оконечность Терскей Ала-Тоо, 1860).

Обыкновенная чечевица (Carpodacus erythrinus ferghanensis). Самая многочисленная птица, наряду с зелёной пеночкой. Встречалась на маршруте практически во всех биотопах – от речных долин, посёлков, и вплоть до высокогорья выше 3300 м. (отсутствие в котловине оз. Сон-Куль можно объяснить отсутствием подходящей растительности). Самцы много пели, образуя по утрам настоящий хор. Видимо, в настоящее время это один из самых успешных видов певчих птиц Тянь-Шаня. Птицы встречались: 18 июня в ельниках на р. Сон-Куль (2600-2900 м); 19 июня – ельники в ущ. Куртка (хр. Молдо-Тоо, 2400-3000 м); 20 июня – ущ. Суулу-Куртка (хр. Молдо-Тоо, 2400-2800 м, здесь наблюдалась самка, строившая гнездо – носила стебли злаков), в ущ. Куртка, вниз к Нарыну (2200 м), в пос. Дюрбельджин (2000 м), под пер. Бёрюлю (2700 м); 21 июня – в пос. Карасуу и Карабулун, в пойме р. Кара-Коюн, в г. Ат-Баши; 22 июня – в пойменном лесу на р. Ат-Баши (1800 м), в пос. Арча Каинды и Озгёргуш, в долине р. Джалджир; 23 июня – в ущ. Балыкты (2800), в долине р. Ат-Баши (2800-3000); 24 июня – в ущ. Аки-Булак (хр. Ат-Баши, ельники и стелющиеся арчевники, 2800-3370); 24 июня – на подъёме к пер. Кызыл-Бель, в городе Нарын и в пос. Добелу (2200 м); 25 июня – в ущ. Тёо-Джайлоо (Нарынский хребет, 2400 м), в пос. Кайынды (долина Нарына), на слиянии Малого Нарына с Нарыном, по Малому Нарыну до Сарыкунгея (2400-2500 м); 26 июня – в долине р. Тюлёк (под перевалом Калмак-Ашу, самка со злаком, строительство, спаривание с серым самцом, 2900 м). Самой низкой по высоте, была встреча поющего самца 26 июня на мысе Акбулун (южный берег Иссык-Куля).

Арчовая чечевица (*Carpodacus rhodochlamys*). Встречена в нескольких местах: 18 июня самец наблюдался в ельнике Уч-Кош-Кон на р. Сон-Куль (2600 м); 23 июня — самец в ельнике ущ. Балыкты (3000 м) и в арчовом стланнике в долине Ат-Баши (2800 м); 24 июня в ущ. Аки-Булак (хр. Ат-Баши, 2800 м). По голосу отмечены 25 июня — в ущ. Тёо-Джайлоо (Нарынский хребет, 2400 м) и на Малом Нарыне (2500 м).

Клёст-еловик (*Loxia curvirostra*). Птицы отмечены в ельниках 23 июня в ущ. Балыкты (2700 м) и 24 июня в ущ Аки-Булак (3000 м).

Арчовый дубонос (*Mycerobas carnipes*). Встречен в местах с зарослями стелющейся арчи на высотах 2500-3300 м: под перевалом Молдо-Ашу в ущ. Куртка (19 июня); в долине р. Джалджир (22 июня); в ущ. Балыкты и на подъёме к пер. Кынды (23 июня); в ущ. Аки-Булак (24 июня); в ущ. Малого Нарына (25 июня).

Просянка (*Emberiza calandra*). Встречена в речных долинах Нарына, Ат-Баши и её притока Кара-Коюн, где есть участки с луговой растительностью на высотах 1800-2200 м. Поющие самцы и сидящие на проводах (всего около 50) отмечены 20 июня — в районе пос. Дюрбельджин; 21и 22 июня — в долине р. Кара-Коюн по дороге от пос. Карабулун до г. Ат-Баши и на пойменных луга на р. Ат-Баши; 22 июня — в долине Ат-Баши в районе посёлков Арча Кайинды, Баш Кайинды и Озгёргуш; 24 и 25июня — в долине Нарына выше города в районе пос. Кайынды.

Белошапочная овсянка (*Emberiza leucocephala*). Поющие самцы встречены только в двух местах: 22 июня на левом берегу р. Ат-Баши у впадения в неё р. Балыкты (2800 м) и 25 июня — в долине Нарына в окрестностях пос. Кайынды (2300 м).

Горная овсянка (*Emberiza cia par*). Оказалась малочисленной — отмечено всего 12 особей. Поющих самцов видели: 18 июня на р. Сон-Куль (2600 м); 20 июня — в ущ. р. Куртка, хр. Молдо-Тоо (1900 м); 24 июня — подъём на перевал Кызыл-Бель (2200 м); 25 июня — в ущ. Тёо-Джайлоо (Нарынский хребет, 2400 м); 25 июня — в каньоне Нарына (2300 м) и в ущ. Малого Нарына (2500 м); 27 июня — ур. Оттук (1800 м), на западной оконечности Терскей Ала-Тоо.

Кашгарская овсянка (*Emberiza godlewskii decolorata*). Несмотря на специальные поиски в биотопически подходящих местах, нигде не обнаружена. Везде, где можно было ожидать встречи этого вида, регистрировались горные овсянки.

Толстоклювая тростниковая овсянка (*Emberiza schoeniclus pyrrhuloides*). Самец встречен 26 июня на мысе Акбулун (южный берег Иссык-Куля).

Скальная овсянка (*Emberiza buchanani*). Поющих самцов наблюдали: в чапах на подъёме от пос. Дюрбельджин к перевалу Бёрюлю (2000-2200 м, 20 июня); в чапах в пойме р. Ат-Баши в 10 км ниже города (1800 м, 22 июня); в Каджи-Сае на южном берегу Иссык-Куля (1700 м, 26 июня). В урочище Оттук (1860 м) в Терскей Ала-Тоо 27 июня на водопое отмечено около 20 птиц, в том числе поющие самцы и большие слётки.

Желчная овсянка (*Emberiza bruniceps*). Встречена в нескольких местах: в ущелье р. Куртка (1800 м) в районе слияния с Нарыном и между пос. Байтёчёк и Дюрбельджин (20 июня); у пос. Дыйкана (21 июня); возле пос. Кайынды, Кенеш и Оттук (25 июня).

Литература

Коваленко А.В. О таксономических формах обыкновенного канюка в Казахстане//Казахст. орнитол. бюлл. – 2006. Алматы, 2007. С. 186-188.

Ковшарь А.Ф., Ланге М., Торопова В.И. Орнитологические наблюдения во Внутреннем, Центральном и Южном Тянь-Шане и в пограничных хребтах Алайской горной системы в пределах Кыргызстана//Selevinia 2004. С. 65-96.

Степанян Л.С. Птицы Терскей Алатау (Тянь-Шань)//Уч. зап. Моск. обл. пед. ин-та им Н.К. Крупской. Т. 71, труды каф. зоол., вып. 4. М., 1959. С. 24-141.

Summary

Oleg V. Belyalov, Konstantin E. Mikhailov, Sergey A. Toropov. The results of ornithological trip to Inner Tien Shan in June, 2016

The article provide an annotated list of 139 bird species registered at the route of 2450 km, carried out by the authors in June 17-27, 2016 on the ridges of Inner Tien Shan (Kyrgyzstan).

УДК 599.32+599.383+599.742.4 (574.11)

Материалы по фауне мелких млекопитающих степных районов Северного Прикаспия

Танитовский Валерий Анатольевич, Аязбаев Тимур Зекенович, Майканов Нурбек Смагулович, Бидашко Фёдор Григорьевич Кдырсих Берик Гайсиевич, Берденов Мейрам Жумагазиевич Уральская ПЧС, Уральск, Казахстан, e-mail: pchum@mail.ru

Введение. Статей по фауне млекопитающих степных районов Северного Прикаспия немного и касаются они в основном отдельных видов или представлены в виде общей фаунистической сводки (Демяшев, 1964; Шевченко, 1967). В настоящей работе сделана попытка рассмотреть современную фауну мелких наземных млекопитающих, обитающих в степных районах указанной территории, расположенной в пределах Западно-Казахстанской области. Особенностью работы является то, что используемый материал основан исключительно на добытых в последние годы животных, что позволяет, при сравнении с предыдущими данными, определить тенденцию изменения фаунистического состава млекопитающих.

Описываемая территория простирается с запада на восток на 600 км и с севера на юг на 250 км и расположена в двух зонально-климатических зонах — полупустыне и пустыне. Приблизительно посередине, с севера на юг территорию пересекает река Урал, разделяя её на две части: Волго-Уральское и Урало-Уильское междуречья (рисунок). Для этого района характерен равнинно-волнистый рельеф местности. На большей части участка преобладают светлокаштановые суглинистые почвы с доминированием в растительном покрове полынно-злаковых ассоциаций. На юге глинистые степи переходят в песчаные массивы, которые относятся уже к другим ландшафтно-экологическим районам.

Материал и методы. Материал собран специалистами Уральской противочумной станции в ходе планового обследования территории области на чуму, туляремию и некоторые другие природноочаговые инфекции. Животные добывались в природных стациях с помощью давилок Геро, выставленных на ночь со стандартной приманкой (хлеб с подсолнечным маслом), и капканами № 0. Талова В. Озинки Б. Озинки Б. Озинкова Одинки Б. Одинки

В работе обобщены данные последних 6 лет (2010-2015 гг.), в течение которых добыто 143 520 млекопитающих. Все зверьки определены до вида.

Рисунок. Тёмным цветом выделена территория полупустыни и пустыни степной части Западно-Казахстанской области

Следует отметить, что не на всех пунктах вылова животных выставлялись одновременно капканы $Ne \ 0$ и давилки Γ еро. При этом способ добычи с помощью давилок Γ еро не является универсальным, и при поимке мелких хищников, сусликов и некоторых других видов являются малоэффективным. Однако, на наш взгляд, учитывая чередование используемых орудий лова и достаточно большой накопленный материал, полученная информация позволяет определить фаунистический состав мелких млекопитающих и оценить их относительную численность. Отсутствие в сборах тех или иных видов позвоночных может свидетельствовать об их очень низкой численности или даже об отсутствии на данный период времени на рассматриваемой территории.

Всего добыты представители 37 видов млекопитающих, относящихся к 4 отрядам. Основу (30 видов, или 81%) составили грызуны: 3 вида сусликов – малый (Spermophilus pygmaes), желтый (S. fulvus), большой (S. major); 7 видов тушканчиков – степная мышовка (Sicista subtilis), большой тушканчик (Allactaga jaculus), малый тушканчик (A. elater), тарбаганчик (Alactagulus acontion), емуранчик (Scirtopoda telum), мохноногий тушканчик (Dipus sagitta), толстохвостый (Pygerethmus platyurus), 1 вид слепышей – гигантский (Spalax giganteus); 3 вида мышей – домовая (Mus musculus), лесная (Apodemus sylvaticus), малютка (Micromys minutus); 3 вида хомяков — Эверсманна (Cricetulus eversmanni), серый хомячок (С. migratorius), обыкновенный (С. cricetus); 4 вида песчанок – гребенщиковая (Meriones tamariscinus), полуденная (M. meridianus), краснохвостая (M. erythrourus), большая (Rhombomys opimus); 8 видов полевок - обыкновенная (Microtus arvalis), общественная (M. socialis), рыжая (Clethrionomus glareolis), экономка (M. oeconomus), водяная (Arvicola terrestris), слепушонка обыкновенная (Ellobius talpinus), пеструшка степная (Lagurus lagurus), ондатра (Ondatra zibethica). Из отряда насекомоядных (4 вида) добыты: бурозубка обыкновенная (Sorex araneus), бурозубка малая (S. minutus), белозубка малая (Crocidura suaveolens), пегий путорак (Diplomesodon pulchellum); из отряда зайцеобразных – 1 вид пищух – степная (Ochotona pusilla); из отряда хищники (3 вида – куньи) – хорь степной (Mustela eversmani), ласка (M. nivalis), перевязка (Vormela peregusna).

Среди грызунов наибольшее разнообразие у полевок -8 видов (22%) и тушканчиков -7 видов (19%). По индексу доминирования в сборах, мы условно разделили зверьков на четыре группы: многочисленные - выше 10%, обычные - от 1 до 10%, малочисленные - от 0.9 до 0.1% и редкие - 0.09% и ниже.

В группу многочисленных вошли 2 вида (в порядке снижения показателя) — суслик малый (64.7%) и мышь домовая (13.7%). Обычными являются 6 видов: песчанка гребенщиковая (5.8%), полевка обыкновенная (5.2%), мышь лесная (4.5%), песчанка большая (1.8%), белозубка малая (1.3%), полевка общественная (1.1%). К малочисленным принадлежат так же 6 видов: полевка водяная (0.6%), пеструшка степная (0.4%), суслик большой (0.2%), песчанка полуденная (0.2%), песчанка краснохвостая (0.2%) и емуранчик (0.2%). Остальные животные (23 вида — 62.0% от всех добытых) отнесены к группе редких.

Среди полёвок доминирует обыкновенная (75.0%). С существенным отставанием за ней следуют общественная (16.0%) и водяная (8.0%) полёвки. Наиболее многочисленной среди песчанок является гребенщиковая (72.0%). В группе тушканчиков лидирует емуранчик (54.0%). Большая часть добытых землероек представлена белозубкой малой (95.0%). Среди хищников преобладает степной хорь (85.0%).

Беря во внимание то обстоятельство, что территория Северного Прикаспия приблизительно по середине разделена широкой, труднопреодолимой для мелких млекопитающих, водной преградой, мы решили рассмотреть фауну животных Волго-Уральского и Урало-Уильского междуречья. Это позволяет сравнить видовые группировки позвоночных, обитающих по обоим берегам реки Урал. При этом на левобережье и правобережье, промысловые усилия и количество добытых зверьков приблизительно равны (соответственно – 78 390 и 65 130 экз.), что дает возможность объективно провести это сравнение.

Таблица. Индексы доминирования мелких наземных млекопитающих в выловах на различных участках степной территории Северного Прикаспия

№ п/п	Оценка числ- сти	Волго- Уральское междуречье	Индекс доминир.	№ п/п	Оценка числ- сти	Урало- Уильское междуречье	Индекс доминир.
1	i	Суслик малый	70.0	1	oi.	Суслик малый	58.3
2	Многочис.	Мышь домовая	16.2	M _H		10.8	
3	e	Песчанка греб.	4.8	3		Полевка обык.	7.4
4	Обычные	Полевка обыкн.	3.3	4		Мышь лесная	7.3
5	ы	Мышь лесная	2.1	5	ပ	Песчанка греб.	7.0
6	90	Белозубка малая	1.8	6	Обычные	Песчанка больш.	4.0
7	i,	Полевка общест.	0.8	7	Pid	Полевка общест.	1.4
8	Малочис.	Песчанка полуд.	0.4	8	90	Полевка водяная	1.0
9	OIO	Полевка водяная	0.2	9		Белозубка малая	0.9
10	Ma	Суслик желтый	0.1	10]	Песчанка красн.	0.4
11		Пеструшка степ.	0.07	11	eie	Емуранчик	0.4
12		Хорь степной	0.05	12	H	Суслик большой	0.3
13		Тушканчик мал.	0.05	13	элс	Бурозубка обык.	0.2
14		Тушканчик бол.	0.04	14	ДH	Пищуха степная	0.1
15		Ондатра	0.03	15	Малочисленные	Мышовка степн.	0.1
16		Тарбаганчик	0.01	16	Ms	Хорь степной	0.1
17		Слепушонка об.	0.01	17		Хомяк Эверсм.	0.06
18		Мышовка степ.	0.01	18		Тушканчик бол.	0.05
19		Серый хомячок	0.006	19		Тушканчик мал.	0.04
20		Емуранчик	0.005	20		Хомяк обыкнов.	0.02
21		Полевка эконом.	0.003	21		Слепушонка об.	0.02
22		Хомяк Эверсм.	0.003	22		Суслик желтый	0.02
23		Бурозубка малая	0.001	23]	Песчанка полуд.	0.01
24		Бурозубка обык.	0.001	24]	Тушканчик толс.	0.01
25		Мышь малютка	0.001	25		Мышь малютка	0.01
26		Тушканчик мох.	0.001	26		Пеструшка степ.	0.01
27	စ္	Пегий путорак	0.001	27		Ондатра	0.003
28	Редкие	Хорь перевязка	0.001	28		Хорь перевязка	0.003
29	Ред	Ласка	0.001	29	يو.	Ласка	0.003
				30	едкие	Полевка рыжая	0.002
				31	Ред	Слепыш гигант.	0.002

Примечание: виды, выделенные серым цветом, добыты только на данном участке территории.

В Волго-Уральском междуречье добыто 29 видов, а в Урало-Уильском 31 вид млекопитающих (см. таблицу). Во втором списке, в сравнении с предыдущим, отсутствуют 6 видов животных: полёвка экономка, серый хомячок, тарбаганчик, тушканчик мохноногий, бурозубка малая и пегий путорак. В то же время появились 8 других видов: рыжая полевка, хомяк обыкновенный, суслик большой, песчанка краснохвостая, песчанка большая, тушканчик толстохвостый, пищуха степная и слепыш гигантский. Как видно, восточнее реки Урал шире видовой состав песчанок и сусликов, но меньше число видов землероек.

На обеих территориях к многочисленным относятся два вида грызунов — малый суслик и мышь домовая. При этом обращают на себя внимание существенные различия индексов доминирования в сборах одних и тех же животных на разных участках. Так в Волго-Уральском междуречье малый суслик доминирует с большим отрывом — 70%. В то же время в Урало-Уильском междуречье доля этого вида от всех добытых заметно уменьшается — 58.3%. Аналогичная ситуация наблюдается и с домовой мышью — соответственно 16.2% и 10.8%. Однако дальше картина меняется на противоположную и индексы доминирования большинства других видов млекопитающих на восточном берегу р. Урал значительно превосходят аналогичные показатели западного побережья: песчанка гребенщиковая — соответственно 7.0% и 4.8%, полевка обыкновенная — 7.4% и 3.3%, мышь лесная — 7.3% и 2.1%, полевка водяная — 1.0% и 0.2% и т.д. В целом в Урало-Уильском междуречье индексы доминирования млекопитающих (за редким исключением) распределены между собой более равномерно и поэтому имеют более высокие значения.

Однозначно указать причину различий в численности одних и тех же видов животных на двух близко расположенных участков территории затруднительно. В то же время можно констатировать, что восточней р. Урал влаголюбивых видов млекопитающих добывается больше, чем на западе. Так, например, доля водяной полёвки в доставках полевого материала в Урало-Уильском междуречье в 4 раза, лесной мыши почти в 3 раза, полевки обыкновенной в 2 раза выше, чем в Волго-Уральском. Предположительно это явление связано с различной обводнённостью территорий.

Индекс общности фаун мелких наземных млекопитающих Волго-Уральского и Урало-Уильского междуречья, рассчитанный по формуле Жаккара (Песенко, 1982), равен 0.73, что говорит о достаточно высоком видовом сходстве и одновременно об их заметном различии.

Среди мышевидных грызунов более стабильной, хотя и небольшой численностью, отличается лесная мышь. За 6 лет наблюдений, судя по добытым грызунам, соотношение минимальных и максимальных значений численности этого грызуна в Волго-Уральском междуречье составляет 1.8, а в Урало-Уильском -2.8. В то же время для домовой мыши эти показатели соответственно равны 6.0 и 5.7, а обыкновенной полевки -8.5 и 15.0.

При сравнении полученных данных с материалами прошлых лет (Демяшев, 1964), следует указать на появление на левобережье Урала большой и краснохвостой песчанок, представителей пустынной фауны Казахстана и Средней Азии. Нередко на колониях этих грызунов стали отмечать поимки хоря перевязки, хотя длительное время на рассматриваемой территории он нигде не фиксировался. Так же обращает на себя внимание расширение ареала общественной полёвки. В Волго-Уральском междуречье она увеличила свою численность и продвинулась на восток, а в Урало-Уильском междуречье стала обычным, широко распространённым видом. Это говорит о потеплении климата, в частности зимнего периода, так как этот фактор является лимитирующим для большинства теплолюбивых видов (Наумов, 1955).

Одновременно с расширением ареала и увеличением численности одних видов наблюдается сокращение численности других. В первую очередь это касается малого суслика, который существенно сократил свою численность, особенно на южных участках описываемой территории. Отмечено также снижение численности мыши-малютки, полёвки-экономки, хомяка Эверсманна, что можно объяснить усилением аридности территории.

Заключение. В степной части Северного Прикаспии отмечено присутствие 37 видов мелких наземных млекопитающих относящихся к 4 отрядам: насекомоядные, грызуны, зайцеобразные и хищники. Подавляющее число видов (81% от общего количества) относятся к отряду грызунов. В группу многочисленных вошли малый суслик и домовая мышь. В Волго-Уральском междуречье добыто 29, а в Урало-Уильском — 31 вид млекопитающих. Существуют различия в видовом составе и индексах доминирования в сборах животных, обитающих по обе стороны реки Урал. Индекс общности фаун мелких млекопитающих правобережья и левобережья р. Урал (по Жаккару) составил 0.73. В Урало-Уильском междуречье численность влаголюбивых видов выше, чем в Волго-Уральском междуречье. Наблюдается тенденция расширения ареалов и увеличения численности пустынных видов и одновременное снижение этих показателей у влаголюбивых видов животных.

Литература

Демяшев М.П. Видовой состав и распространение диких млекопитающих в Уральской области//Материалы юбилейной конференции Уральской противочумной станции 1914-1964 гг. Уральск, 1964. С. 111 - 122.

Наумов Н.П. Экология животных. М.: Советская наука, 1955. 534 с.

Песенко Ю.А. Принципы и методы количественного анализа в фаунистических исследованиях. М.: Наука, 1982 288 с

Шевченко В.Л. Влияние особенностей весны 1965 г. на жизнедеятельность малого суслика в Уральской области//Материалы 5-й науч. конфер. противочумн. учрежд. Средней Азии и Казахстана. Алма-Ата, 1967. С. 147 – 148

Summary

Valery A. Tanitovsky, Timur Z. Ayazbayev, Nurbek S. Maykanov, Fedor G. Bidashko, Berik G. Kdyrsikh, Meyram Zh. Berdenov. Materials on the fauna of small mammals in steppe regions of Northern Caspian.

The article gives information on 37 species of small mammals, trapped in the steppe zone of Northern Caspian. Materials were collected during last 6 years, 143,520 animals were trapped.

УДК 562. 569. 73

Новые находки Gazella (Vetagazella) dorcadoides из Зайсанской впадины (Казахстан)

Абдрахманова Ляля Талиповна, Байшашов Болат Уапович

Институт зоологии МОН РК, Алматы, Казахстан

Ископаемые остатки газелей довольно часто встречаются в Казахстане (Дмитриева, 1669; Мусакулова, 1963 а, б). Они представляют немаловажный интерес в решении вопросов определения возраста отложений, из которых был взят материал, стратиграфии, тафономии и палеоэкологии. В результате изучения материала, собранного палеозоологическим отрядом Института зоологии МОН РК во время экспедиционных работ 2015 г. в Зайсанской впадине, в отложениях карабулакской свиты с костями крупных млекопитающих в «insit»-ном слое верхнего миоцена, были обнаружены костные остатки газелей. Ниже приводится описание материала, сбора 2015 г.

Семейство Bovidae Gray, 1821 Подсемейство Gazellinae Coues, 1889 Триба Gazellini Род *Gazella* Blainvile, 1816 Подрод *Vetagazella* Dmitrieva, 1970 *Gazella* (*Vetagazella*) dorcadoides Schlosser, 1903

Материал. Коллекции института зоологии МОН РК, правый роговой стержень с обломленной вершиной – 35(1) 4405; правый роговой стержень, хорошей сохранности с фрагментом теменной кости – 35(1) 4406; левый роговой стержень, хорошей сохранности – 35(1)4407; фрагмент левой ветви нижней челюсти сохранившимися $M_1-M_3-35(1)$ 4399; правая ветвь нижней челюсти с $P_2-M_3-35(1)$ 4400; фрагмент правой ветви нижней челюсти с $M_1-M_3-35(1)$ 4401; левая ветвь нижней челюсти сохранившимися $P_2-M_3-35(1)$ 4402;

Местонахождение: Калмакпай, Зайсанская впадина, верхний миоцен — нижний плиоцен, карабулакская свита.

Описание. 35(1)4405 — правый роговой стержень (рис. 1) с обломанной вершиной, небольшого размера, слегка наклонен назад под углом 65°. Тело рога испещрено мелкими бороздками, наиболее протяжении всего рогового стержня (промеры в таблице 1).

а

Рис. 1. Правый роговой стержень № 35(1)/4405, а – вид с наружной стороны, б – вид с внутренней стороны

Таблица 1. Промеры рогов Gazella (V) dorcadoides, в мм

Промеры	35 (1)4405	35 (1)4406	35 (1)4407
Длина по наибольшей кривизне фрагмент	70	111	110
Длина сзади по прямой	-	94	98
Окружность основания	60	60	60
Продольный диаметр основания	21	21	19
Поперечный диаметр основания	18	18	16
Индекс изогнутости	81	81	81
Индекс массивности	-	54	59
Индекс сплющенности	81	81	91

35 (1)4406 — правый роговой стержень (таблица 1, рис. 2) с фрагментом теменной кости хорошей сохранности, слегка отломанной вершиной. Рог принадлежал мелкой, изящней антилопе. Наклон рога незначительный можно сказать, прямой. Рог на протяжении всей длины имеет в сечении округлую форму. Тело покрыто частыми сравнительно глубокими бороздками, которые резче выражены спереди.

Рис. 2. Правый роговой стержень № 35(1)4406, а – вид спереди; б – вид сзади

35 (1)4407 – левый роговой стержень хорошей сохранности слегка изогнут назад. Тело покрыто множеством мелких бороздок, которые резко выражены на задней стороне рога. Рог резко сужается от основания к вершине, уплощен с боков, сечение эллипсовидное в передне-заднем направлении. К вершине сечение округляется.

35(1)4399 — фрагмент левой ветви нижней челюсти взрослой особи с хорошо сохранившимися M_1 — M_3 , у M_1 сохранилась задняя половина сильно стертого зуба. M_2 — менее стёрт, третья доля имеет округлую форму, поверхность зубов с внутренней стороны почти ровная. Стили и ребра очень слабо выражены. Несколько ярче вырисовываются стили на M_2 на задней половине зуба.

- 35 (1)4400 правая ветвь нижней челюсти (рис. 3) взрослой особи с хорошо сохранившимися P_3 M_3 и диастемой.
- P_2 отсутствует у P_3 параконид хорошо выражена, передняя долинка ярко выражена метоконид ближе к энтокониду за счет чего задняя долинка несколько уменьшена.
- P_4 хорошей сохранности, стерт незначительно, параконид ярко выражен, передняя долинка сравнительно большая, метаконид резко повернут в сторону эндоканида, поэтому задняя долинка сужена, а при сильном старании зуба может исчезнуть.

 M_1 — разрушен, сохранился небольшой осколок задней половины зуба и хорошо сохранившаяся передняя половина, жевательная поверхность передней половины зуба значительно стёрта.

 M_2 — хорошей сохранности, жевательная поверхность стёрта незначительно, больше на передней половине зуба. На внутренней стороне зуба хорошо выражены стили, особенно на передней половине зуба, который тянется вплоть до основания зуба, ребра не выражены, сглажено.

 M_3 – хорошей сохранности, жевательная поверхность менее стёрта, третья доля зуба небольшого размера и имеет округлую форму. Внутренняя сторона зуба имеет хорошо выраженные стили, рёбра сглажены.

Челюстная кость несколько разрушена, отсутствует челюстной угол, с хорошо сохранившейся диастемой.

Высота челюстной кости перед $P_2 - 11$ мм, перед $P_3 - 15$ мм перед $M_1 - 17$ мм, перед $M_2 - 19$ мм. Плиния челюстной кости на уровне $P_3 - 6$ мм. на уровне $P_4 - 8$ мм.

Ширина челюстной кости на уровне P_2-6 мм, на уровне P_3-7 мм, на уровне P_4-8 мм на уровне M_1-8 , на уровне M_2-11 мм. Длина диастемы -32 мм.

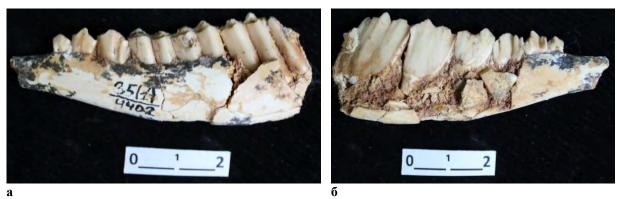



Рис. 3. Левая ветвь нижней челюсти № 35 (1)4400 с $P_2 - M_3$, a – вид с внутренней стороны, 6 – вид с наружной стороны

35(1)4401 — фрагмент правой ветви нижней челюсти взрослой особи с хорошо сохранившимися M_2 , M_3 , M_1 — разрушен M_2 и M_3 стёрты на половину. Зубы с внутренней стороны гладкие, рёбра сглажены, округлой формы, стили хорошо выражены. Челюстная кость частично разрушена, отсутствуют мышечный и суставной отростки и полностью челюсть на уровне M_1 , хорошо сохранилась на уровне M_2 — M_3 . Промеры её на этом уровне следующие: высота челюстной кости перед M_2 — M_3 — M_4 — M_5 — M_5 — M_6 — M_6

Рис. 4. Нижняя челюсть №35 (1)4402 с $P_2 - M_{3,}$ а – вид с внутренней стороны, б – вид с наружной стороны

Нижняя челюсть принадлежала молодому животному с гипсодонтными зубами со следами слабой стертости. Челюстная кость сохранилась от P_2 до конца M_3 .

- Р₂ отличной сохранности, хорошо выражены параканид, метаконид, энтоконид.
- P_3 метаконид несколько направлен в сторону энтоконида, передняя долинка развита сильнее задней.
- P_4 простой, метаконид под углом направлен в сторону энтоконида передняя долинка глубже задней. (Промеры и индексы зубов в таблицах 2, 3, 4).

Моляры нижней челюсти уплощены, особенно ближе к основанию зуба, ребра почти не выражены, стили хорошо видны, особенно в задней половине зуба. Третья доля на M_3 округлой формы, но размерами намного уступает первым двум.

Таблица 3. Промеры моляров нижней челюсти *Gazella (V) dorcadoides*, мм

Таблица 2. Промеры промеляров нижней челюсти *Gazella (V) dorcadoides* в мм

	minuted temocra duzenta (1) des educitões, min						minkinen remoerin Guzetta (1) aoreaactaes B min							
Пј	ромеры	35 (1)4399	35 (1)4400	35 (1)4401	35(1)4402	Г	Іромеры	35 (1)4400	35 (1)4401	35 (1)4402				
	длина	-	10	-	11		длина		-	6				
M_1	ширина	-	8	-	8	P_2	ширина		-	2				
	высота	-	6	-	10		высота		•	5				
	длина	13	11	13	14		длина	8	-	9				
M_2	ширина	9	8	9	11	P_3	ширина	5	-	4				
	высота	10	10	14	16		высота	8	-	8				
	длина	18	18	19	16		длина	11	-	10				
M_3	ширина	8	8	9	6	P_4	ширина	6	-	5				
	высота	9	12	10	19		высота	9	-	9				

Челюстная кость хорошо сохранилась с внешней стороны. Промеры челюстной кости даны по внешней стороне. Высота челюстной кости перед P_2-11 мм, перед P_3-13 мм. Перед P_4-13 , перед M_1-14 мм, перед M_2-17 мм, перед M_3-19 мм. Ширина челюстной кости перед M_2-16 мм, перед M_3-19 мм.

Таблица 4. Промеры и индексы коренных зубов нижней челюсти Gazella (V) dorcadoides, в мм

Промеры	35 (1)4399	35 (1)4400	35 (1)4401	35 (1)4402
Длина $P_2 - M_3$	-	52	1	67
Длина $P_2 - P_4$	-	-	-	27
Длина $M_1 - M_3$	37	40	43	40
Индексы длины P_2 - P_4 к P_2 – M_3	-			40%
Индексы длины M_1 - M_3 к P_2 – M_3				59%

Литература

Дмитриева Е.Л. О газели из Калмакпайской фауны Восточного Казахстана//Реф. докл. бюл. МОИП отд. геол. 1969. № 6. С. 146-147.

Мусакулова Л.Т. Позднемиоценовая газель из Тянь-Шаня//Материалы по истории фауны и флоры Казахстана. Алма-Ата. 1963 а. Т. IV. С. 204-206. **Мусакулова Л.Т.** Нахождение таврической антилопы в гиппарионовой фауне Казахстана//Материалы по истории фауны и флоры Казахстана. 1963 б. Т. IV. С. 206-209.

Summary

Ljalja T. Abdrakhmanova, Bolat U. Bayshashov. New findings of Gazella (Vetagazella) dorcadoides in Zaysan basin.

According to findings of 2015, descriptions of bones (horns and jaw) of *Gazella (Vetagazella) dorcadoides* Schlosser, 1903 from the location of Kalmakpay, Zaysan basin are provided.

3AMETKA

УДК 598.815 (574.12)

Первая находка длиннохвостого сорокопута (Lanius schach erythronotus) на гнездовании в городе Атырау (Северный Каспий)

В Казахстане длиннохвостый сорокопут — синантропный вид, обитающий в посёлках и городах южных и юго-восточных регионов страны. Северо-западная граница его гнездового ареала проходит в низовьях Сырдарьи (Гаврилов, 1999). Самыми западными были встречи птиц 12 августа 1989 г. в посёлке Бейнеу на Северном Устюрте, 11 мая 2005 г. и 22 мая 2012 г. — на побережье залива Киндерли Каспийского моря и 7 мая 2009 г. — на полуострове Бузачи (Губин, 2015). Эти встречи давали повод предполагать начавшееся расселение вида в западном (из низовьев Сырдарьи) и северо-западном (из низовьев Амударьи) направлениях. Обстоятельства встречи в Бейнеу, где Б.М. Губин (2015) 12 августа 1989 г. наблюдал двух птиц — «один издавал позывки и к нему из рядом расположенного парка подлетела ещё одна птица», вполне могут говорить о гнездовании здесь уже более 25 лет назад. Можно представить, что птицы могли постепенно двигаться из Хорезмского оазиса, вдоль построенной через плато Устюрт в 60-е гг. железной дороги, находя подходящие места гнездования в зелёных насаждениях новых посёлков. Поскольку орнитологические исследования здесь носили фрагментарный характер, факты «внезапного» появления вида так далеко от известных мест гнездования объяснить не сложно.

Впервые длиннохвостый сорокопут обнаружен в парке Победы г. Атырау (бывший Гурьев) финским бёрдвотчером Ilkka Sahi 14 июня 2016 г. Через несколько дней, 17 июня его там сфотографировал Аскар Исабеков (www.birds.kz). Автором этой заметки два длиннохвостых сорокопута наблюдались здесь 25 июня и были сфотографированы (www.birds.kz). Птицы держались в отгороженной и заброшенной части парка и активно охотились на прытких ящериц (Lacerta agilis). Сорокопуты таскали ящериц к зарослям лоха серебристого у забора, отделяющего заброшенную часть парка от действующей, и накалывали их на веточки. Гнезда тогда обнаружить не удалось. При повторном посещении парка уже 6 августа отмечены и сфотографированы две взрослые птицы и три слётка (www.birds.kz). Эти же птицы держались там и 14 августа (www.birds.kz), при этом одна из молодых птиц уже пыталась самостоятельно охотиться на мелких ящериц. Следует отметить, что парк Победы находится в правобережной части города Атырау, поэтому это первый случай гнездования длиннохвостого сорокопута не только в европейской части Казахстана, но и вообще в Европе. Эти новые данные указывают на возможность находок длиннохвостого сорокопута и в других населённых пунктах как Северного Прикаспия, так и Устюрта и Мангышлака, на что орнитологам и любителям птиц надо обратить особое внимание.

Гаврилов Э.И. Фауна и распространение птиц Казахстана. Алматы, 1999. 198 с. **Губин Б.М.** Птицы Мангышлака, Устюрта и полуострова Мангышлак//Птицы пустынь Казахстана. Кн.1, ч.1. Алматы, 2015. С. 3-261.

Ф.А. Сараев Атырауская противочумная станция

ЭКОЛОГИЯ, ПОВЕДЕНИЕ

УДК 598.412 (574.2)

Результаты учётов савки на ключевых местообитаниях в Акмолинской, Костанайской и Северо-Казахстанский областях в 2013-2016 гг.

Кошкина Алена Игоревна¹, Кошкин Алексей Валентинович², Тимошенко Алексей Юрьевич¹, Шильцет Хольгер³

¹Казахстанская ассоциация сохранения биоразнообразия (АСБК), Казахстан; <u>alena_shmalenko@mail.ru</u>
²Коргалжынский государственный природный заповедник (КГПЗ), Казахстан
³Йенский университет имени Фридриха Шиллера, Германия

В настоящее время, принято выделять четыре популяции савки *Oxyura leucocephala* в мире: испанскую, северо-африканскую, среднеазиатскую и зимующую в Пакистане. Численность, ареал и пути миграции восточных популяций в настоящее время остаются наименее неизученными. Казахстан – одна из основных стран гнездового ареала самой многочисленной среднеазиатской популяции вида, а также, по результатам учетов последних десятилетий, в период осенней миграции, местом концентрации не менее половины оценочной численности мировой популяции савки, которая на сегодняшний день составляет 7 900 – 13 100 особей (Birdlife International, 2016; Жулий, Кошкин, 2010).

В прошлом веке савка была широко распространена в Казахстане, гнездование было отмечено практически во всех областях, где существовали подходящие условия (Долгушин, 1960), однако, по большей части это были единичные наблюдения, на пролёте до конца прошлого века отмечалось не более 500 особей (Крейцберг-Мухина, 2002). Значительные осенние скопления впервые были обнаружены в 1999 г., при более тщательном и регулярном обследовании озёр Тенгиз-Коргалжынского региона (Шильцет, Кошкин, 2003).

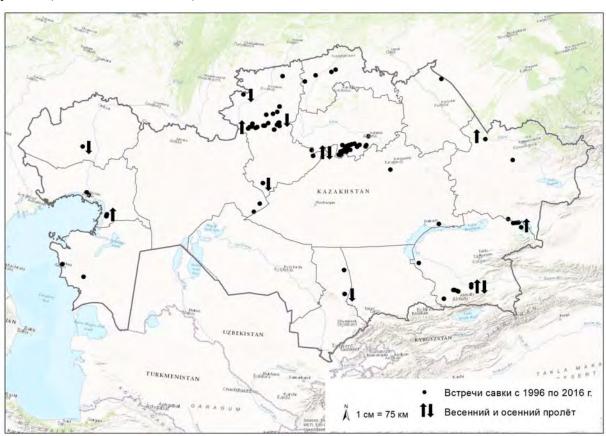


Рис. 1. Карта встреч савки в Казахстане с 1996 по 2016 г.

Для обновления информации о современном состоянии вида в Казахстане мы картировали все опубликованные встречи савки за последние 20 лет, включая недавние встречи, зарегистрированные на веб-сайте «Птицы Казахстана» и в базе данных «AviCA» – всего более 400 наблюдений в пределах 115 участков. За последние два десятилетия савка в разное время года была отмечена в 12 областях Казахстана (рис. 1), её регулярно наблюдали на севере Костанайской области, на озёрах Алакольской котловины, в Северном Прикаспии, в гнездовой период регулярно отмечали на отстойниках вблизи городов Алматы, Астаны, Атырау и Жанаозень, на месторождении Тенгиз в Прикаспии; значительные осенние скопления – в Тенгиз-Коргалжынском регионе и на оз. Кызылколь в Южно-Казахстанской области (Ашби, Анненкова, 2002; Березовиков, 2002; Гаврилов, Колбинцев, 2002; Ковшарь, Карпов, 2012; Белялов, 2013; Розенфельд, Тимошенко, 2013). Несмотря на большое количество регулярных наблюдений, только несколько исследований за истекший период были направленны непосредственно на изучение савки (Кошкин, Жулий, 2007; Шильцет, Кошкин, 2003; Кошкин, 2010). Остальные наблюдения были сделаны попутно с учётами других видов водоплавающих, и не всегда совпадали с наиболее оптимальными периодами для учёта вида. Исходя из этого, представленные данные стоит считать неполными.

Нашей задачей было более полное обследование ключевых местообитаний савки в трёх областях Казахстана, расширение знаний о гнездовом ареале и выяснение динамики численности птиц на миграции посредством сравнения стандартизированных многолетних наблюдений.

Основная территория исследования охватывала известные ключевые местообитания в Акмолинской, Костанайской и Северо-Казахстанской областях. Дополнительно обследовались и другие подходящие участки, где ранее савка не наблюдалась. Всего учётами в разное время с 2013 по 2016 г. (табл. 1) было охвачено более 100 озер (Акмолинская область – 78; Костанайская область – 25; Северо-Казахстанская область – 15).

Область	Год	Ma	ιй	Ию	онь	Ию	ОЛЬ	Ав	густ	Ce	нтяб	рь	Ок	тябр)Ь
	2013														
Акмолинская	2014														
Акмолинская	2015														
	2016														
	2013														
Костанайская	2014														
Костанаиская	2015														
	2016														
СКО	2014														

Таблица 1. График проведенных учетов

Наиболее регулярно и стандартизировано учёты проводили в Тенгиз-Коргалжынском регионе Акмолинской области — на мониторинговых площадках, заложенных в ходе исследования популяций водоплавающих птиц казахстанско-немецкой командой орнитологов в 1999 г. (Шильцет, 2003). Как и при исследованиях десятилетней давности, учёты вели на каждой площадке, как минимум, раз в месяц. В 2013 и 2015 гг. силами многочисленных волонтёров учеты проводили каждую декаду месяца. В 2014 и 2016 г. был охвачен только сезон предотлётных скоплений и миграций с августа по октябрь.

Наблюдения осуществлялись с помощью биноклей с 10-кратным увеличением и зрительных труб с 20-60-кратным увеличением. В некоторых труднодоступных биотопах (озёрах с развитой береговой растительностью, протоках) акваторию обследовали с использованием надувной лодки с твёрдым дном, для удобства наблюдения при помощи зрительной трубы.

Результаты. За указанный период в Костанайской области савка отмечена на 17 озерах, из них на 11 в гнездовой и послегнездовой период и на 14 в период миграции, в том числе на нескольких озёрах, где не наблюдалась ранее. На весеннем пролёте отмечались лишь единичные особи, за исключением скопления в 287 особей на оз. Русский Жарколь в апреле 2014 г. Основными местами встреч в гнездовой период, в количестве от одной до нескольких десятков особей, были озёра Акколь, Батпакколь, Бидайык, Шили, Шошкаколь, Шукырколь, Талдыколь и Тениз. Предотлётные скопления наблюдались в основном во второй и третьей декаде сентября, и достигали от 100 до 600 особей на следующих основных участках: Акколь, Карасор, Русский Жарколь, Талдыколь, Тениз и Узынсор (рис. 2).

В Северо-Казахстанской обл. из 15 обследованных озёр с наиболее подходящими условиями савка была отмечена только на 4: Балыкты, Сарыколь, Жалтыр и Аксуат (Зубань, 2014). Всего встречено 40 118

Демолинская область

Акмолинская область

Летние наблюдения
Осенные наблюдения
Нулевые наблюдения
Ключевые орнитологические территории (КОТ)

Ключевые орнитологические территории (КОТ)

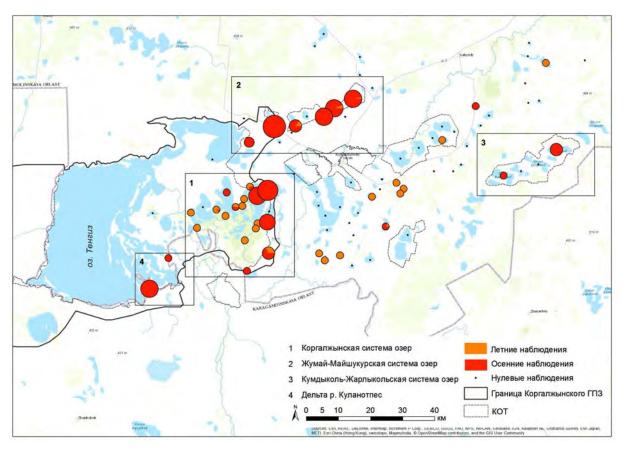
особей, 90% из них самцы. Выводков не отмечали. Для подтверждения факта гнездования, необходимо более детальное обследование региона в различные сезоны.

Рис. 2. Результаты учета савки в трёх областях в 2013 – 2016 гг. Диаграммы отражают максимальные значения численности в летних и осенних наблюдениях по каждому участку.

В Тенгиз-Коргалжынском регионе савка была отмечена на 40 мониторинговых точках (отдельных озёрах или их частях) из 56 регулярно проверяемых. В гнездовой период савка была отмечена на 30 площадках, большинство из которых относится к Коргалжынской системе (плёсы Жаманколь, Малый и Большой Актобе, Табан, Есей, Аблайская протока и др.), в то время как остальные – к более мелким бессточным озёрам или искусственным котлованам на востоке региона. Большинство наблюдений в осенний период относится к Коргалжынской (озёра Есей, Табан, Кызылколь, Султанкельды и др.), Жумай-Майшукурской (Саумалколь, Ащиколь, Кумколь, Жумай, Темирастау), Кумдыколь-Жарлыкольской (Кумдыколь, Жарлыколь) системам озёр и дельте р. Куланотпес (табл. 2).

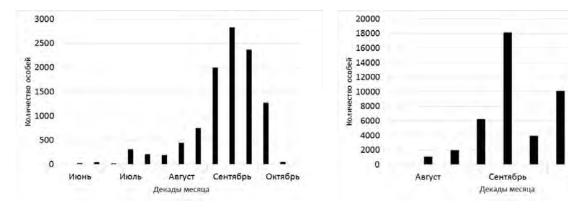
Таблица 2. Максимальные количества савок на озёрах Тениз-Коргалжынского региона в 2013-1016 гг.

2013								
	Июнь	Июль	Август	Сентябрь	Октябрь			
Коргалжынская система	86	508	380	2299	2193			
Жумай-Майшукурская	1	165		3016				
Кумдыколь-Жарлыкольская			19					
Дельта р. Куланотпес								
Другие	47	8	82					
Всего	124	681	481	5315	2193			


		201	4		
	Июнь	Июль	Август	Сентябрь	Октябрь
Коргалжынская система			1156	2823	98
Жумай-Майшукурская		173	440	3553	345
Кумдыколь-Жарлыкольская				366	
Дельта р. Куланотпес					
Другие					
Всего		173	1596	6742	443
		201:	5		
		2013	3		
	Июнь	Июль	Август	Сентябрь	Октябрь
Коргалжынская система	7	7	130	3185	
Жумай-Майшукурская	20	62	589	1511	
Кумдыколь-Жарлыкольская				215	
Дельта р. Куланотпес					
Другие				542	
Всего	27	69	719	5453	
		201	6		
	Июнь	Июль	Август	Сентябрь	Октябрь
Коргалжынская система			•	7700	2380
Жумай-Майшукурская			1960	10349	7730
Кумдыколь-Жарлыкольская				530	3
Дельта р. Куланотпес				2280	
Другие					
Всего			1960	20859	10113
D			1700	20007	10110

В летний период более 60%, а в осенний – более 70% всех савок было учтено в пределах Коргалжынского ГПЗ, большинство остальных наблюдений относились к Ключевым орнитологическим территориям (КОТ) (рис. 3). Благодаря относительно недавнему включению в территорию заповедника нескольких важных миграционных мест остановки савки (оз. Саумалколь, Кызылколь, Сандыкбайсор), этот процент значительно возрос, по сравнению с результатами предыдущих учетов (Schielzeth, 2003).

В дополнение к уже известным мы нашли несколько новых, вероятно гнездовых местообитаний, на востоке региона. По сравнению с учетами 1999-2003 гг., савка ни разу не отмечена на Шолакской группе озёр, что может быть связано с повышением фактора беспокойства (охота, рыбалка) на этих озёрах. В целом же, распространение савки в регионе за 10 лет значительно не изменилось.


В среднем за 2 года (2013, 2015) за весь гнездовой период в регионе учтено не более 300 особей. Все птицы отмечены в характерных для гнездового периода местообитаниях — пресных или слабосоленых озёрах, с развитой береговой растительностью или мозаичными тростниками. В связи с крайне скрытным образом жизни савки в гнездовой период, выводки были отмечены только на нескольких точках, на лодочных маршрутах. Гнёзда не найдены. В тех же местообитаниях к середине июля начинали образовываться скопления, предположительно линные, количеством до 100 птиц в группе. К середине августа отдельные скопления до 300 птиц начинали появляться в характерных миграционных местообитаниях — открытых слабосолёных озёрах, с разреженной береговой растительностью или вовсе без неё. Предотлетные скопления достигали максимальной численности во второй декаде сентября, последние особи отмечались в середине октября (рис. 4).

В 2015 г. наблюдался рекордный уровень обводнённости Коргалжынской системы озер, в связи с быстрым весенним таянием снега и увеличением стока в р. Нура. В этот период образовалось множество дополнительных мелких водоёмов, в связи с чем савка практически отсутствовала в своих обычных летних биотопах.

Рис. 3. Карта мониторинга савки в Тенгиз-Коргалжынском регионе с 2013 по 2016 г. Диаграммы отражают максимальные значения численности в наблюдениях по каждому участку.

Результаты осенних учетов 2016 г. в значительной мере отличаются от всех предыдущих, поэтому были проанализированы отдельно (рис. 5). Первый пик численности предотлётных скоплений пришёлся на середину сентября, когда за 10 дней всего на 4 водоёмах (залив оз. Есей, дельта р. Куланотпес, оз. Саумалколь и Жарлыколь) было учтено рекордное количество савок за всю историю наблюдений – около 20 тысяч особей, из них 17 тысяч было учтено за один день, параллельно на двух водоёмах. При этом надо иметь в виду, что при учёте на некоторых крупных водоёмах, из-за недостаточных условий видимости, подсчитывались, в основном, только хорошо узнаваемые белоголовые самцы. Как было установлено ранее, доля самцов в предотлётных скоплениях савки может составлять в среднем 30-60% (Schielzeth, 2003), поэтому к полученным результатам с большой долей уверенности можно добавить процент самок и молодых.

Рис. 4. Усреднённая сезонная динамика численности савки в ТК регионе за 2013-2015 г

Рис. 5. Динамика численности савки в предотлётных скоплениях в ТК регионе в 2016 г.

К концу сентября на основных водоёмах численность савки резко снизилась (рис. 5), а в первой декаде октября снова возросла до 10 тыс. особей. Причем, доля самцов в скоплениях резко снизилась. Это позволяет предположить, что в начале октября наблюдалась вторая волна миграции. Таким образом, с некоторой уверенностью можно предположить, что количество савок, посетивших Тенгиз-Коргалжынский регион осенью 2016 г., составило от 25 до 30 тыс. особей.

Обсуждение и выводы. С 2000 г. в период осенней миграции в регионе насчитывали в среднем около 5000 савок, с незначительными колебаниями учётной численности в разные годы (Кошкин, Жулий, 2007). При этом, обследовались только самые основные озёра, не чаще чем раз в 10 дней. Одним из объяснений результатов учета 2016 г. может служить увеличение частоты проверки озёр, по сравнению с предыдущими мониторинговыми сезонами, что и позволило обнаружить короткий по продолжительности пик численности. Еще одним объяснением может быть перераспределение миграционных скоплений, в связи с динамикой обводненности региона. Так, в 2016 г. наблюдалась максимальная наполненность озер Жумай-Майшукурской системы, в т.ч. озера Саумалколь, где было учтено 50% всех птиц. О том, что рекордные результаты не являются отражением резкого скачка численности, свидетельствует и высокая доля взрослых самцов в скоплениях.

Таким образом, результаты учета савки только в пределах Тенгиз-Коргалжынского региона за последние десять лет показали, что оценка мировой популяции вида, которая базируется, главным образом, на данных о численности на зимовках, значительно занижена. Предположительно, пути миграции гнездящихся и пролетающих через Центральный Казахстан савок пролегают через Узбекистан и Туркменистан в Юго-Западную Азию и на Средний Восток. Значительная часть этой территории обследуется нерегулярно и неравномерно (Hughes, Robinson et al, 2006) и, как показывает, например, недавнее открытие ранее неизвестных мест крупных миграционных скоплений кречётки Vanellus gregarius в Узбекистане и Туркменистане (Donald et al, 2016), возможность упустить даже значительные скопления конкретного вида в регионе велика. Известно также, что на распределение основных миграционных концентраций савки значительно влияет изменение гидрорежима озер (Кошкин, 2010; Рустамов, 2009; Крейцберг-Мухина, 2002), что затрудняет использование постоянных мониторинговых площадок для выяснения реальной динамики численности. Единственным методом, который помог бы оперативно и достоверно ответить на эти вопросы, на сегодняшний день, является спутниковое мечение. К сожалению, в связи с особенностями морфологии и биологии савки, использование этого высокоэффективного метода сопряжено с рядом технических проблем, которые, мы надеемся, удастся решить в ближайшем будущем.

Благодарности. Исследование проводились при поддержке Комитета лесного хозяйства и животного мира МСХ РК, Программы лидерства в области сохранения природы (СLР) и Орнитологического Общества Ближнего Востока, Кавказа и Центральной Азии (ОЅМЕ). В 2014 г. работу поддержал Клуб «Клуб любителей птиц Востока» (ОВС). АСБК благодарит директорат и сотрудников Коргалжынского государственного природного заповедника за ежегодную поддержку и участие в проекте. В учетах принимали участие: Кошкин А.В., Тимошенко А.Ю., Кошкин А.А., Кошкина А.И., Федулин А.Е., Knight А., Harting Ch., Ullrich B., Klasan S., Blueml V., Koshkar Sh., Gelpke Ch., Зубань И.А., Вилков В.С., Уразалиев Р.С., Калашников М.Н., Агаева Т.Р., Тимошенко К.В. и др. Благодарим Sheldon R., Катр J., Кошкина М.А. и Скляренко С.Л. за помощь в проведении исследования и ценные комментарии к статье.

Авторы встреч савки, опубликованных на сайте «Птицы Казахстана»: Коваленко А., Искаков Т., Дякин Г., Исабеков А., Виляев А., Федоренко В., Ляхов О., Алейникова С., Губин Б., Нурмухамбетов Ж., Катунцев А., Грюнберг В., Нуркабаев М. и др.

Литература

Ашби В., Анненкова С.Ю. Экспедиции//Казахст. орнитол. бюллетень. Алматы, 2002. С. 28.

Белялов О.В., Карпов Ф.Ф. Птицы Сорбулакской системы озёр (Алматинская область)//Selevinia Алматы, 2012. С. 82-108. **Белялов О.В.** Птицы Карагандинской области//Орнитол. вестник Казахстана и Средней Азии, выпуск 2, 2013. С. 65 – 123. **Белялов О.В.** Новые данные по птицам Сорбулакской системы озёр (Алматинская область)//Selevinia Алматы, 2013.

Березовиков Н.Н. Экспедиции//Казахст. орнитол. бюллетень. Алматы, 2002. С. 59.

Веб-сайт «Птицы Казахстана»: http://birds.kz/

Веб-сайт «AviCA»: http://www.avica.kz/

Гаврилов А.Э., Колбинцев В.Г. Экспедиции//Казахст. орнитол. бюллетень. Алматы, 2002. С. 20.

Долгушин И.А. Птицы Казахстана. Т.1. Алма-Ата, 1960.

Жулий В.А., Кошкин А.В. Савка//Планы управл. глобально значимыми видами птиц. Астана, 2010. С. 55-63.

Зубань И.А., Вилков В.С., Калашников М.Н. Результаты учета численности савки *Oxyura leucocephala* на водоёмах Северо-Казахстанской области летом 2014 года//Рус.орнитол. журнал 24 (1116). С. 837 – 841.

Ковшарь В.А. Birdwatching//Казахст. орнитол. бюллетень. Алматы, 2003. С. 120. **Ковшарь В.А.**, **Карпов Ф.Ф.** Савка (*Oxyura leucocephala*) на сбросных водоёмах Северо-Восточного Прикаспия//Selevinia Алматы, 2012.

Кошкин А.В., Жулий В. А., Ерохов С.Н. Динамика численности савки на водоёмах Тенгиз-Коргалжынской впадины за последние 10 лет//Казахст. орнитол. бюллетень. Алматы, 2007. С. 127–128. **Кошкин А.В.** Материалы по биологии савки (*Oxyura leucocephala*) Тенгиз-Кургальджинской впадины//Selevinia. Алматы, 2010.

Крейцберг-Мухина Е.А. Обзор современного состояния восточных популяций савки//Казарка 8(1)//Бюллетень РГГ Северной Евразии. М. 2002. с 277-294.

Розенфельд С.Б., Тимошенко А.Ю. и др. Основные результаты учётов численности савки на миграционных остановках в России и Казахстане в 2005–2010 гг// Казарка 15(1), 2012.

Рустамов Э.А., Щербина А.А., Васильев В.И., Гаузер М.Е., Белоусова А.В. О статусе савки на туркменском побережье Каспия//Казарка 12(1), 2009.

Шильцет Х., Кошкин А.В. Савка Тенгизкого региона//Selevinia, Алматы. 2003. С. 223-224.

Andy J. Green and **Simon Anstey**. The status of the White-headed Duck *Oxyura leucocephala*//Bird Conservation International, 1992, 2, pp. 185-200.

BirdLife International (2016) Species factsheet: Oxyura leucocephala. Downloaded from http://www.birdlife.org on 30/11/2016.

Donald P.F., et al. 2016. A globally important migration staging site for Sociable Lapwings *Vanellus gregarius* in Turkmenistan and Uzbekistan. Sandgrouse 38: 82 – 95

Hughes, B., Robinson, J.A., Green, A.J., Li, Z.W.D. & **Mundkur, T.** (Compilers). (2006) International Single Species Action Plan for the Conservation of the White-headed Duck *Oxyura leucocephala*. CMS Technical Series No. 13 & AEWA Technical Series No. 8. Bonn, Germany.

Schielzeth, H., Eichhorn G., et al. (2008). Waterbird population estimates for a key staging site in Kazakhstan: a contribution to wetland conservation on the Central Asian flyway//Bird Conservation International 18(1): 71-86.

Schielzeth, H., Lachmann L., et al. (2003). The White-headed Duck *Oxyura leucocephala* in the Tengiz-Korgalzhyn region, Central Kazakhstan//Wildfowl 54(1): 115-129, 2003.

Wassink. A., Oreel G. (2008) Birds of Kazakhstan: new and interesting data//Dutch Birding 30 (2): 94-100.

Alyona I. Koshkina, Alexey V. Koshkin, Alexey Yu. Timoshenko, Holger Schielzeth. Results of White-headed Duck monitoring at key sites in Akmola, Kostanai and North Kazakhstan provinces in 2013-2016

The article summarizes the results of White-headed duck counts at key sites in Northern and Central Kazakhstan for the period of 2013-2016. Based on the survey, authors suggest that the world population of this critically endangered species is significantly underestimated. The record concentrations of approximately 25,000-30,000 migrating White-headed ducks only in Tengiz-Korgalzhyn region of Akmola province in 2016 exceed the presently estimated world population almost twice. Meantime the place of origin as well as the wintering grounds of migrating through Kazakhstan White-headed ducks remain unclear.

УДК 599.322.2 (573.11)

Малый суслик (Spermophilus pygmaeus Pallas, 1778) как биоиндикатор глобального изменения климата

Танитовский Валерий Анатольевич, Аязбаев Тимур Зикенович, Майканов Нурбек Смагулович, Ахмеденов Кажмурат Максутович

¹Уральская противочумная станция. Уральск, Казахстан ²Западно-Казахстанский аграрно-технический университет им. Жангир хана. Уральск, Казахстан

В Северном Прикаспии в течение последних нескольких десятилетий наблюдается неуклонное снижение численности малого суслика. Гибель грызунов с превышением рождаемости происходит, в основном, в зимний период. В работе даётся обоснование причины повышенной смертности сусликов – плохая нажировка молодых особей перед залеганием в спячку. Недостаток кормов является результатом раннего выгорания растительности, что связывается с глобальным потеплением климата.

Малый суслик (*Spermophilus pygmaeus* Pallas, 1778) — один из фоновых видов теплокровных животных, обитающих в Северном Прикаспии. Наиболее высокие плотности поселений грызунов приурочены к полупустынной зоне, которая занимает значительную часть этой территории. На севере полупустыня переходит в сухую степь, а на юге — в пустыню. Для этого района характерен резко континентальный климат, с засушливым жарким летом и холодной малоснежной зимой.

На территории Западно-Казахстанской области (ЗКО), расположенной в пределах Северного Прикаспия, наблюдения за численностью грызунов многие десятилетия ведут специалисты Уральской противочумной станцией (УПЧС). Заметное снижение численности сусликов началось в начале 70-х гг. XX столетия на юге ЗКО, в пустынной зоне. Этот процесс, постепенно охватывая новые поселения зверьков, двигался в северном направлении. Особенно значительные изменения численности грызунов произошли в расположенных в пустынной зоне Волго-Уральских песках, где к концу 80-х гг. малые суслики практически исчезли (Гражданов и др., 2003). К этому времени процесс сокращения численности грызунов охватил южную часть территории полупустынных районов.

За период с середины 60-х гг. ХХ в. и до 2013 г. в целом в полупустынной зоне Волго-Уральского междуречья численность малого суслика сократилась на 50.0%. Если в начале указанного периода средняя численность грызунов составляла 36 особей на гектар, то в первом десятилетии ХХІ века — около 18 особей. Восточнее реки Урал (в Урало-Уильском междуречье) численность сусликов уменьшилась на 35%. Но приведенные цифры даны как средние по этим территориям. В то же время на юге этих районов снижение численности зверьков достигло критических значений (близких к нулевым).

Сокращение численности малых сусликов произошло не только на территории ЗКО, но и в других районах Прикаспийской низменности и началось оно значительно раньше. Так в работе А.А. Лавровского с соавторами (1970) указывается, что в Волго-Уральских песках, расположенных в пределах территории Российской Федерации, произошло полное выключение из биоценоза малого суслика. Авторы пишут, что глубочайшая депрессия численности этого вида на Кошалак-Майтюбинской, Уштаганской и других системах ашиков, наметившаяся с начала 50-х гг. и продолжающаяся по настоящее время, общеизвестна и не нуждается в комментариях. О снижении численности малого суслика в Северо-Западном Прикаспии упоминают и другие авторы (Миронов и др., 1962).

Нами было замечено, что гибель основной массы сусликов с превышением рождаемости происходит в зимний период, так как летом предыдущего года численность приплода была достаточно высокой. Были высказаны различные предположения по поводу причин повышенной смертности малых сусликов — это и природно-очаговые инфекции, и влияние подъёма уровня Каспийского моря (Гражданов и др., 2003). Другие придерживаются мнения, что данное явление носит локальный характер и наблюдается только на отдельных участках территории. Но как видно из приведенных материалов, этот процесс охватывает всю территорию Северного Прикаспия, и начался он до периода поднятия уровня Каспия. Обследование малых сусликов перед залеганием в спячку и после весеннего пробуждения не выявило каких-либо признаков инфекционного процесса среди грызунов. Все это привело нас к заключению, что смертность зверьков вызывают другие факторы.

Для поиска ответа на поставленный вопрос мы обратились к архивным материалам Уральской ПЧС. При чтении зоологических отчётов прошлых лет обращает на себя внимание довольно частое упоминание об аномально жаркой и сухой погоде в конце весны и в летний период, плохой нажировке молодых сусликов и, в связи с этим, прогнозе на снижение численности грызунов на следующий год. В 80-х гг. ХХ в. характерным текстом при написании прогноза численности малых сусликов был такой: «Момент расселения и нажировки молодняка малого суслика пришёлся на период наибольшего

угнетения растительности. Упитанность сусликов в период залегания в спячку была ниже, чем в прошлом году. Поэтому, несмотря на достаточно высокую интенсивность размножения и хороший выход молодняка, в следующем году произойдет некоторое снижение численности грызунов» (1986).

В 90-е гг. ситуация с неблагоприятной погодой для грызунов в весенне-летний период стала ещё более очевидной. Так в обзоре за 1995 и 1996 гг. написано, что условия отчётного года были неблагоприятными для нажировки молодняка малого суслика, поскольку высокие температуры воздуха при отсутствии осадков привели к быстрому выгоранию растительности. Прогноз численности грызунов на следующий год отрицательный. Многие авторы отводят большую роль влиянию метеорологических факторов на изменение численности животных (Фалькенштейн 1939; Теплов, 1960; Максимов, 1984).

Учитывая данные зоологических исследований и литературные материалы, мы высказали предположение о том, что именно неблагоприятные погодные условия весенне-летнего периода являются причиной повышенной смертности молодых особей малого суслика зимой. Известно, что во второй половине мая и в июне, когда молодые зверьки переходят к самостоятельной жизни, они интенсивно растут и одновременно накапливают жир, необходимый для успешной перезимовки. В это время грызуны нуждаются во влажных кормах (Бутовский, 1960). Высокая температура воздуха и одновременно недостаточное количество осадков способствуют преждевременному выгоранию растительности. Не получая влаги, молодняк малого суслика вынужден залегать в спячку не успев накопить необходимое количество жира. В итоге во время спячки грызуны погибают от истощения. Для подтверждения этого предположения мы проанализировали выборку за 40 лет метеоданных Урдинской метеостанции, расположенной на территории полупустынной зоны ЗКО. Выяснилось, что произошло заметное потепление климата при одновременном уменьшении выпадающих осадков. Так в июне за период с начала 70-х гг. ХХ в. до конца первого десятилетия ХХІ в. температура воздуха выросла на 2.4°, а осадков стало выпадать на 6.1 мм меньше, что соответствует 11.0% и 23.0% от нормы.

О том, что происходит потепление климата и возрастает аридность территории Северного Прикаспия, говорят и другие факты: значительное сокращение водостока на всех речках, протекающих по территории Западного Казахстана, включая реку Урал, полное высыхание Камыш-Самарских разливов, участившиеся степные пожары, во время которых ежегодно выгорает растительность на значительной территории. Индикаторами потепления служит также расширение на север ареалов южных видов животных, таких как большая песчанка, краснохвостая песчанка, блоха Xenopsylla skrjabini, москит Phlebotomus mongolensis, кольчатая горлица и др. (Бидашко и др., 2006). Эти представители южной фауны в 60 - 70-х гг. XX ст. отсутствовали на территории ЗКО. Синхронность и длительность этих процессов, действующих в одном направлении, доказывают масштабность изменения климатических условий, и этот процесс, без сомнения, связан с глобальным потеплением климата, которое началась в конце 40-х гг. XX в. (Маркович, 2003). Причины изменения климата различными учёными трактуются не однозначно. Одни связывают начавшееся потепление с человеческой деятельностью - как результат выброса в атмосферу промышленными предприятиями большого количества углекислого газа (парниковый эффект). Другие считают, что это естественные природные циклы, зависящие от периодических колебаний значений параметров вращения Земли вокруг Солнца, которые неоднократно наблюдались на протяжении человеческой истории. Но в любом случае эти изменения климата нашей планеты имеют свои последствия.

Для определения связи численности малых сусликов с погодными условиями, были взяты за последние 10 лет абсолютные температуры воздуха и количество осадков за май и июнь, а также показатели весенней численности грызунов следующего года. В Волго-Уральском междуречье использовали данные Жангалинской, а на территории Урало-Уильского междуречья — Каратобинской метеостанций. Сравнение этих показателей проведено с помощью формулы коэффициента ранговой корреляции по Спирмену. Выяснилось, что численность сусликов имеет отрицательный коэффициент корреляции по отношению к температуре воздуха и положительный по отношению к осадкам. Так на территории расположенной восточней реки Урал в июне эти коэффициенты соответственно равны минус 0.9 и плюс 0.7. В Волго-Уральском междуречье наибольшее влияние на численность грызунов оказывают осадки, выпадающие в мае, при этом коэффициент корреляции составляет плюс 0.8. Температурный фактор менее значим (минус 0.2), но достоверно показывает направление изменения численности зверьков. Получены убедительные данные, показывающие зависимость численности малых сусликов от погодных условий.

Малый суслик — типичный представитель фауны сухих степей и полупустынь. Он имеет ряд физиологических и поведенческих приспособлений, позволяющих ему существовать в столь суровых условиях. Однако, как видно, возможности зверьков ограничены, и они часто испытывают влияние отрицательных абиотических факторов, превышающих их способность противостоять им. Наиболее критическим периодом в жизни грызунов является спячка, в которой они проводят до 9 месяцев в году.

По данным А.А. Лисицына, численность сусликов в условиях Северного Прикаспия увеличивается за счёт приплода обычно на 60-70%. В то же время, в период зимней спячки гибель грызунов составляет в среднем 65% от числа зимующих (Лисицын, 1962). Как видно, численность малых сусликов находится в хрупком равновесии между рождаемостью и смертностью. Тонкая грань, разделяющая эти два противоположных процесса, может быть легко нарушена изменяющимися условиями существования, которые выходят за пределы диапазона минимальных экологических требований, необходимых для этих животных, что и происходит в последние десятилетия. Редкие годы с прохладным летом и достаточным количеством осадков дают единовременный подъём численности малого суслика. Но последующие несколько лет с жарким и сухим весенне-летним периодом действуют губительно на грызунов, и их численность продолжает неуклонно снижаться.

За последние 10 лет в Северном Прикаспии весенняя численность малого суслика снизилась в 8 случаях. Следовательно, потепление климата продолжается, и малый суслик служит прекрасным биоиндикатором изменяющихся условий внешней среды. В настоящее время мы являемся свидетелями периода, когда глобальное потепление климата фактически запустило однонаправленные биологические процессы. Отклонение климатических факторов от многолетних средних значений в сторону потепления, снижают численность животных, не приспособленных жить в измененных условиях. Одновременно с этим, представители южной (пустынной) фауны увеличивают численность и расширяют границы своего распространения в северном направлении.

Литература

Бидашко Ф.Г., Пак М.В., Танитовский В.А. и др. Изменения в составе фауны животных северо-западной части Казахстана и их возможные причины//Степи Северной Евразии. Оренбург, 2006. С. 115-117.

Бутовский П.М. Сезонные изменения в питании малого суслика и характер его распределения в Западном Казахстане//Мат-лы по фауне и экологии наземных млекопитающих Казахстана. Алма-Ата, 1960. С. 18-36.

Гражданов А.К., Батыргалиев М.Б., Бидашко Ф.Г., Кусаинов Б.Н. Современные изменения видового состава грызунов в Волго-Уральских песках//Мат-лы конференции «Развитие народного хозяйства в Западном Казахстане: потенциал, проблемы и перспективы». Уральск, 2003. С. 190-191.

Лавровский А.А., Кучеров П.М., Оптякова А.Ф. и др. К вопросу о сохранении возбудителя чумы в межэпизоотические годы в песчаном очаге Волго-Уральского междуречья//Проблемы особо опасных инфекций. Саратов, 1970. № 4. С. 94-104.

Лисицын А.А. Некоторые закономерности в динамике стада грызунов и прогноз их численности//Вопросы экологии. Москва, 1962. Т. № 6. С. 88-90.

Максимов А.А. Многолетние колебания численности животных, их причины и прогноз//Новосибирск: «Наука», 1984. 250 с.

Маркович Н.Я. Реакция биоты на потепление климата в Европе//Медицинская паразитология и паразитарные болезни. Москва, 2003. № 4. С. 23-26.

Миронов Н.П., Климченко И.З., Колесников И.М. и др. Влияние неблагоприятных климатических условий 1959–1960 гг. на численность некоторых видов грызунов в Северо-западном Прикаспии//Вопросы экологии. Москва, 1962. Т. № 6. С. 100-101.

Summary

Valery A. Tanitovsky, Timur Z. Ajazbaev, Nurbek S. Maikanov, Kazhmurat M. Ahmedenov. Pygmy ground squirrel (Spermophilus pygmaeus Pallas, 1778) as a bioindicator of global climate change

In Northern Caspian over the last few decades there has been a steady decrease in the number of pygmy ground squirrel. The death of rodents happens due to excess of birth rate, generally, during the winter period. This paper presents a rationale of the reason for the increased mortality of ground squirrels - it is a bad fattening of young individuals before going to hibernation. The lack of forage is the result of early burning of vegetation. This phenomenon correlates with global warming of climate.

УДК 598.4: 616.988.6 (575.2)

Роль водно-болотных угодий Кыргызстана в циркуляции вируса гриппа среди мигрирующих птиц

Остащенко А.Н. ¹, Касымбекова К.Т. ², Воробьев А.Г. ¹, Давлетбаков А.Т. ¹, Захаров А.Ю. ¹ Биолого-почвенный институт НАН Кыргызской Республики, Бишкек

² Кыргызский медицинский институт переподготовки и повышения квалификации

Водно-болотные угодья Кыргызстана являются местом промежуточных остановок водно-болотных птиц, ежегодно мигрирующих между местами зимовок и местами гнездования. Это подтверждают данные мечения. Водно-болотные птицы, окольцованные в Кыргызстане, были встречены в Таджикистане, Узбекистане, Туркменистане, Пакистане, Иране, Индии, Казахстане, в Томской, Новосибирской областях и Алтайском крае России. Окольцованных на зимовках в Индии уток находили в Кыргызстане весной и осенью (Кыдыралиев, 1990).

Процесс весенней миграции различных видов очень растянут. Весной первые мигрирующие утки (шилохвость, кряква, большой крохаль) появляются в первой половине февраля. Заканчивают весенний перелёт к местам гнездования кулики — белохвостый песочник, мородунка, кулик-воробей и некоторые другие задерживающиеся на территории Кыргызстана до начала июня, но уже в середине июля они вновь появляются, следуя в обратном направлении. В июне на Иссык-Куле, Сон-Куле и Чатыр-Куле начинают собираться на линьку нырковые и речные утки, которые, перелиняв, вновь разлетаются. Заканчиваются массовые осенние миграции уток и лысух к концу ноября. Но на этом кочёвки птиц полностью не заканчиваются. Около 100 000 особей водно-болотных птиц остаются зимовать, часть из них при выпадении снега или промерзания водоёмов могут откочевывать, а при потеплении возвращаться. В период проведения работ по проекту ISTC KR 1429 с июня 2009 по декабрь 2012 г. на территории Кыргызстана был собран материал по распространению вируса гриппа среди мигрирующих и гнездящихся птиц на водоёмах Кыргызстана.

Материал и методика. В полевых условиях материал (пробы на вирус гриппа) в основном собирали от водно-болотных птиц. Сбор материала от других птиц носил случайный характер, если они по каким-либо причинам попадали в руки исследователей. Мазки брали из носоглотки и клоаки, затем тампоны помещали во флаконы с транспортной средой и замораживали в жидком азоте. Собранный материал передавали для вирусологических исследований в Национальную вирусологическую лабораторию Департамента Госсанэпиднадзора Минздрава Кыргызской Республики. В большинстве случаев птиц отлавливали сетями с последующим выпуском. Отловленных птиц кольцевали, что исключало возможность повторного взятия проб от одних и тех же особей. В период охотничьих сезонов (в марте и в сентябре—декабре) брали пробы от птиц, добытых охотниками. В сезон размножения собирали материал от птенцов колониально гнездящихся видов. Обследованы две колонии больших бакланов на Нижне-Ала-Арчинском водохранилище и на озере Иссык-Куль, восемь смешанных колоний озёрных чаек и речных крачек на озёрах Иссык-Куль и Сон-Куль, одна колония чайки-хохотуньи на Иссык-Куле, три колонии кваквы в Чуйской долине и колония серых цапель на Иссык-Куле.

В Нарынской области большинство проб собрано на Чатыр-Куле и Сон-Куле, а также на водоёмах Кочкорской долины. В Иссык-Кульской области обследованы прибрежная полоса озера Иссык-Куль и заболоченные угодья в долине Конур-Олён. В Чуйской области были обследованы водохранилища Чумышское, Нижне-Ала-Арчинское, Степнинское и Спартак, а также прилегающие к ним более мелкие водоёмы. В Джалал-Абадской области исследованиями были охвачены Токтогульское, Шамалдысайское, Базаркоргонское водохранилища, а в Ошской области – Андижанское.

За период работ взяты пробы у 2811 особей 60 видов птиц из 6 отрядов (табл. 1). Положительные результаты на заражённость вирусом гриппа получены от 46 особей 17 видов (табл. 2).

Отрани		Количество взятых проб							
Отряды птиц	Общее	Из них положительных	% положительных						
Podicipediformes – Поганкообразные	38	1	2.6						
Pelicaniformes – Веслоногие	72	0	0						
Ciconiformes – Аистообразные	113	1	0.9						
Anseriformes – Гусеобразные	818	21	2.6						
Gruiformes – Журавлеобразные	268	3	1.1						
Charadriiformes – Ржанкообразные	1502	20	0.6						
Всего:	2811	46	1.6						

Таблица 1. Число положительных проб на вирус гриппа по отрядам (2009–2012 гг.)

Larus cachinans – хохотунья

Larus ridibundus – озёрная чайка

Sterna hirundo – речная крачка

И		Количество взятых проб	5
Название вида	Общее	Из них положительных	% положительных
Tachybaptus ruficollis – малая поганка	20	1	5.0
Nycticorax nycticorax – кваква	56	1	1.8
Cygnus cygnus – лебедь-кликун	82	3	2.5
Tadorna ferruginea – огарь	55	1	1.8
Anas platyrhynchos – кряква	171	14	8.4
Anas acuta – шилохвость	51	1	2.0
Anas crecca – чирок-свистунок	90	2	1.2
Fulica atra – лысуха	250	3	1.2
Gallinago gallinago – бекас	21	4	19.0
Tringa glareola – фифи	27	1	3.7
Calidris temminckii – белохвостый песочник	83	1	1.2
Himantopus himantopus – ходулочник	12	1	8.3
Philomachus pugnax – турухтан	139	1	0.7
Vanellus vanellus – чибис	40	1	2.5

Таблица 2. Птицы, от которых получены положительные пробы на вирус гриппа

Обсуждение. Как видно из табл. 1, общая заражённость обследованных водно-болотных птиц составила 1.6%. Так как количество обследованных особей, принадлежащих к различным видам, распределилось весьма неравномерно, полученные результаты о роли тех или иных видов в переносе вируса гриппа следует считать предварительными. В отношении таксонов более высокого ранга (уровня отряда) можно сделать вывод, что наиболее существенную роль в качестве резервуара и переносчиков вируса гриппа на территории Кыргызстана играет отряд гусеобразных. Из 818 обследованных птиц, принадлежащих к этому отряду, положительные результаты были получены от 21 особи, то есть 2.6% (табл. 2). Среди гусебразных первенство принадлежит роду *Апаs*, в котором из 445 обследованных особей выявлено 17 случаев вирусоносительства, т. е. 3.8%. Первенство принадлежит крякве: среди этого вида вирусоносителями оказались 8.4% особей из 171 обследованных.

120

504

107

1

8

0.8

1.6

Из отряда ржанкообразных взяты пробы от 1502 птиц, среди которых зараженные составили 0.6%. Среди видов этого отряда наибольший интерес заслуживает бекас, из обследованных 21 особи которого, вирусоносителями оказались 4 птицы. В то же время, достоверность этих данных из-за небольшого количества обследованных птиц сомнительна. К сожалению, данные по бекасу получены в конце реализации проекта, что не позволило провести более полное обследование этого вида.

Положительные результаты получены на всех высотных поясах от 600 м над уровнем моря (Шамалдысайское вдхр.) до 3500 м (озеро Чатыр-Куль). В летний период очаги гриппа установлены на оз. Сон-Куль. Здесь с 30 июня по 2 августа 2009 г. обнаружены 4 зараженные гриппом птицы — фифи, озёрная чайка и 2 речных крачек. При обследовании этого озера в начале июля 2010 г. зараженных птиц не выявлено.

В Чуйской долине наиболее часто посещаемым было водохранилище Спартак с прилегающими к нему прудами. Здесь в августе 2009 г. положительные пробы получены от бекаса, белохвостого песочника, кряквы и чирка-свистунка причём две последние птицы отловлены за одну ночь. В 2010 г. 27 марта установлено заражение чайки-хохотуньи, а 14–15 октября – заражение 3 крякв. В октябре 2011 г. положительные пробы дали чирок-свистунок и 2 озёрные чайки. Интересен случай отлова птиц на поле скошенного ячменя и люцерны, залитом водой в течение нескольких дней и расположенном километрах в трех западнее водохранилища Спартак. Днём 20 сентября 2011 г. здесь кормились около сотни турухтанов и десятка два чибисов. В поставленные вечером сети ночью попали 17 птиц: по два чибиса и чирка-свистунка, по шесть турухтанов и бекасов и один чернозобик. Из них положительные пробы на вирус гриппа получены от чирка-свистунка, чибиса, турухтана и двух бекасов. Вероятнее всего, инфицирование этих мигрирующих птиц произошло или на этом поле, или в ближайших окрестностях. Зимой в Чуйской долине выявлен единичный случай вирусоносительства кряквы 16 февраля 2010 г. на водохранилище Ала-Арча.

На озере Иссык-Куль в 2010 г. положительные пробы выявлены 16 января от лысухи, 27 июля от бекаса и 19 ноября от кряквы; 14–15 февраля 2012 г. положительные результаты дали 3 особи лебедякликуна. Весной 12–14 марта на заболоченном озере Конур-Олён среди 30 добытых охотниками птиц вирус гриппа выявлен у 3 особей кряквы и 1 огаря.

В Джалал-Абадской области случаи вирусоносительства установлены на Токтогульском вдхр. у кряквы 13 марта и у двух особей озёрной чайки 19 августа 2011 г. На Шамалдысайском вдхр. 9-11 ноября 2011 г. из 27 добытых охотниками птиц положительные пробы дали 2 лысухи и одна малая поганка.

При проведении исследований гибель диких птиц от вируса гриппа не наблюдалась среди полутора десятка обследованных птиц с признаками заболеваний случаи вирусоносительства гриппа не выявлены. Заслуживает внимание тот факт, что в большинстве случаев вирусоносителями были птицы, добывающие корм на мелководных заболоченных участках с хорошо развитой надводной и подводной растительностью (представители рода *Anas* и некоторые кулики), в меньшей степени – виды, кормящиеся на мелководьях без растительности, хорошо освещённых солнцем или в толще воды водоёмов.

Выводы. На территории Кыргызстана вирус гриппа птиц распространен на водоёмах, всех высотных поясов. На незамерзающих водоемах Чуйской долины и Иссык-Кульской котловины существуют природные очаги вируса гриппа, действующие в течение всего года. Общая зараженность вирусом гриппа диких водно-болотных птиц составила 1.6 %. Учитывая схожесть экологических условий, подобная картина циркуляции вируса гриппа, скорее всего, наблюдается и в других странах Средней Азии.

Кыдыралиев А. Птицы озёр и горных рек Киргизии. Фрунзе, 1990. 238 с.

УДК 598.2/8 (574.52)

Чёрный аист, серпоклюв и другие редкие птицы Жонгар-Алатауского национального парка (Казахстан)

Тушкенов Саят Нурболатович

Жонгар-Алатауский государственный национальный природный парк e-mail: tushkenov@mail.ru

Жонгар-Алатауский национальный парк организован постановлением Правительства Республики Казахстан № 370 от 30 апреля 2010 г., на главном хребте Жетысуского Алатау¹, протянувшемся с запада на восток примерно на 300 км. Парк находится на территории трёх районов Алматинской области — Аксуского, Саркандского и Алакольского. Крутые северные склоны основного хребта (абс. высота 3000-4000, максимум 4622 м н.у.м.), по альпийским водоразделам которого проходит государственная граница Казахстана и Китая, рассечены глубокими скалистыми ущельями. Вдоль северной границы парка на высотах 900 — 1700 м — густые березово-осиновые, тополёвые и яблоневые леса. Широкие горные долины имеют луговой характер. В границы национального парка входят верховья таких крупных рек как Сарканд, Малый и Большой Басканы, Агыныкатты, Лепсы, Тентек-1, Тентек-2 и Тастау. Работы по изучению современного размещения и численности редких и исчезающих птиц, занесённых в Красную книгу, были начаты в 2011 г. Ниже привожу некоторые результаты этих наблюдений.

Чёрный аист (Ciconia nigra Linnaeus, 1758) – Карадегелек

В Жонгарском Алатау чёрный аист гнездится по поймам таких крупных рек как Аксу, Сарканд, Басканы, Теректы, Лепсы и Тентек с их многочисленными притоками (северный склон), рек Каратал и Коксу с их притоками (западный склон), и в бассейне реки Усек (южный склон). Чаще всего чёрного аиста встречали во время кормёжки или в полёте. Так как эта осторожная птица избегает близости с человеком и придерживается самых глухих и малопосещаемых мест, то почти нет сведений о гнёздах этих птиц в горах Жонгарского Алатау. С 2011 г. мы обследовали поймы рек Тентек-1, Лепсы, Агыныкатты, Жаланаш и Теректы. Упорные поиски дали положительные результаты. В границах парка по пойме р. Тентек-1 найдено 4 гнезда чёрного аиста, по Лепсе – 3, по Жаланашке – 2, по Теректам – 1. Кроме того достоверно известно гнездование чёрного аиста за пределами парка в нижнем течении р. Тентек-1, Тентек-2, Жаманты и Ргайты. Все найденные гнёзда расположены на скалах, в недоступных нишах и приступках на высоте 4-12 м над рекой (рис. 1). Только одно гнездо было обнаружено у самого

_

¹ Так теперь в Казахстане рекомендовано называть хребет Джунгарский Алатау – *прим. ред*.

основания (комля) большой пихты, но также на скале, круто обрывающейся к заводи реки Лепсы (рис. 2). Все гнёзда аккуратные, сложены из веток и сучьев, скреплённых глиной. Обследование гнездовых участков чёрного аиста выявило, что обычно в 500-1000 м от основного гнезда имеются 1-2 запасных. Так, например, в 2016 г. гнездо, найденное в 2014 г. по правому берегу р. Тентек-1, было пустое. И только в начале августа мы обнаружили эту пару чёрных аистов, с уже вполне оперившимся птенцами на расстоянии 400-500 м от прошлогоднего гнезда на дне ущелья по левому берегу реки.

Рис 1. Птенцы чёрного аиста в гнезда на скале

Рис. 2. Кладка чёрного аиста. Фото С.Н. Тушкенова

Первое гнездо, обнаруженное 19 июля 2012 г., расположено на левом берегу р. Тентек-1, в труднодоступном месте (ниша скалы, над самой водой), примерно в 1-1.5 км от моста через р. Тентек-1. Высота над уровнем моря 1068 м. Гнездо сфотографировано с противоположного от гнезда берега. В это время в гнезде находились два птенца готовых, к вылёту. Это гнездо аисты используют ежегодно.

Второе гнездо чёрного аиста находится на расстоянии 900-1000 м от места слияния р. Чёрная с р. Лепсы, по левому берегу р. Лепсы под большой пихтой на приступке скалы. Гнездо аккуратное, сложенное из веток. Видимо, это гнездо используется ежегодно. Дальнейшее наблюдение показало, что гнездо очень доступно с левого берега, так как мимо гнезда в этом месте проходит тропа. В апреле 2013 г. в гнезде находилось три яйца. При повторном посещении, 7 июня, гнездо было разорено – яиц в гнезде и самих аистов не было. В 2014-2015 гг. эта пара использовало другое гнездо, находящиеся несколько в 1.7-2 км выше от прежнего по руслу р. Лепсы. Третье гнездо найдено в апреле 2014 г. по правому берегу р. Тентек-1, в 2-3 км от с. Шымбулак. Гнездо находится на приступке отвесной скалы, над большой заводью реки. В гнезде было 2 птенца. Четвёртое гнездо расположено на расстоянии 400-500 м от третьего по левому берегу р. Тентек-1. В нём 6 августа 2015 г. были 3 почти взрослых птенца. Пятое гнездо находится в очень труднодоступном месте, в так называемых «Щёках» - месте слияние рек Агыныкатты и Лепсы, на крутой скале у самого берега. В летнее время большая вода в реке не даёт подойти близко к гнезду. И эта пара аистов ежегодно гнездятся и выводят птенцов. Шестое гнездо находится в верховьях р. Жаланаш, седьмое по пойме реки Теректы (вблизи с. Тополёвка), восьмое найдено в Рыбном Ключе, впадающем в р.Тентек-1. Следует отметить, что численность чёрного аиста на территории Жонгар-Алатауского национального парка стабильная, примерно 28 - 30 особей.

Серпоклюв (Ibidorhyncha struthersii Vigors, 1832) - Орактумсык

На территории Жонгар-Алатауского национального парка в настоящее время установлено три места гнездования серпоклювов. Одно из них расположено на небольшом отрезке (1.5-2 км) поймы р. Тентек-1, вблизи от с. Кокжар, ниже моста через эту реку (рис. 3 и 4).

Местность представляет собой небольшую долину, после выхода р. Тентек из горного ущелья, а затем уходящего дальше на север в теснину гор. На этом промежутке расположены незатопляемые рекой небольшие островки с галечником, где ежегодно (начиная с 2011 г.) выводят птенцов две пары серпоклювов. По правому берегу реки здесь имеются небольшие болотистые участки, заросшие кустарником. Ниже островков в р. Тентек впадает небольшая речка. Высота местности 1037-1042 м. В связи с очень близким расположением от с. Кокжар (400-500 м) этот участок подвержен постоянному антропогенному воздействию (пастьба скота, рыбалка и т.д.) Поэтому птицы очень осторожны.

Чтобы в гнездовой период не тревожить птиц, наблюдения вели на расстоянии с помощью бинокля. В 2014 году (27 июня) нам удалось наблюдать, как пара серпоклювов с двумя птенцами кормились вдоль берега реки. При нашем приближении птенцы моментально спрятались. Мы хорошо запомнили это место и стали искать, и только спустя 30 – 35 минут потеряв всякие надежды найти их, я случайно наткнулся на одного затаившегося в галечниках птенца. В этом году выше моста в галечниках гнездилась ещё одна пара серпоклювов.

Рис. 3 и **4**. Серпоклюв и его типичный биотоп – пойма р. Тентек-1 у с. Кокжар. *Фото С.Н. Тушкенова*

Второй участок находится в районе расположения погранзаставы Уйгентас, при выходе р. Тентек из горного ущелья, на уровне 1602 м. Это небольшая долина, протяжённостью 2-3 км, где в р. Тентек справа и слева впадают многочисленные речушки и ключи. По обоим берегам имеются заболоченные участки. Галечники, пригодные для гнездования серпоклюва, находятся выше моста через р. Тентек на расстоянии 400-500 м в месте, где река, разливаясь, образует небольшие островки. В начале июля 2015 г. во время экспедиционной поездки по установке фотоловушек на плато Жамантас, мы с сотрудниками АСБК (О. Лукановским и Т. Кисебаевым) были вынуждены, пережидая сильный дождь, остановиться именно в этом месте. Наш лагерь был разбит на берегу реки в 200-250 м от этих островков. Когда перестал дождь, я занялся поисками серпоклюва. Перейдя на левый берег, я стал подходить к ближнему островку и увидел среди галечника одного серпоклюва. При дальнейшем приближении серпоклюв с тревожным криком стал летать и кружить вдоль берега и над островками. Видимо, внизу в галечниках затаились птенцы. Перейти на острова я не рискнул, так как было сильное течение.

Третье место гнездования серпоклюва находится на броде через р. Карбышевка, в 100 м от кордона инспектора национального парка. Был случай, когда проезжавший пчеловод перенёс яйца с гнезда немного подальше от брода и замаскировал их камнями, а на обратном пути заметил, что серпоклюв не бросил новое гнездо². В 2014 г. эта пара вывела двух птенцов. Другие предполагаемые местообитания серпоклюва – Малая Жаланаш, Б. Баскан и Солнечная долина – пока ещё не обследованы.

Беркут (Aguila chrysaëtos Linnaeus, 1758) – Бүркіт

Этот самый крупный и сильный орёл сравнительно обычен в горах Жонгарского Алатау. Территория национального парка, простирается вдоль основного хребта, начиная с верховьев р. Айдаусай (приток р. Аксу) на западе, до верховьев р. Тастау на востоке. На всём этом протяжении горы расчленены глубокими (500-1000 м) ущельями, удобными для обитания беркута, который встречается как в среднегорной (2000-3000 м), так и высокогорной (выше 3000 м) зонах. С 2011 г. нами были обследованы все крупные ущелья (Сарканд, М. и Б. Басканы, Агыныкатты, Лепсы, Тентек-1, Тентек-2, Тастау.) Ущелье Сарканд вверху разделяется на Акшунак и Карасырык (протяжённость около 30 км). Здесь постоянно встречается одна гнездовая пара беркутов. Гнездо предположительно расположено по правому склону ущелья Карасырык. Одна пара обитает по Малому Баскану выше перевала Суырлы (протяжённость ущелья 20-25 км). По Большому Баскану (25-30 км) отмечены две гнездовые пары. Одно гнездо расположено по ущелью Караунгур в сторону горы Айбас на вершине карликовой ели (Н. Ткачёв). Это гнездо используется орлами много лет (высота около 3000 м). Второе находится предположительно по ущелью Конакбай. В верховьях р. Агыныкатты, по пойме р. Кенозень, найдено гнездо беркута с двумя птенцами, расположенное на приступке отвесной скалы (И. Носков). Последующие наблюдения егерей и инспекторов подтверждают постоянное нахождение этой пары.

По ущелью Лепсы пригодные для гнездования участки находятся в верховьях (протяжённость ущелья более 30 км). Мы неоднократно наблюдали беркутов в этих местах, но гнездо пока не удалось найти. Далее, в урочище Бирмоин (по правому берегу р.Тентек-1) найдено гнездо беркута на большой ели с обломленной вершиной. Гнездо внушительных размеров и расположено на самой вершине дерева. Во-время проведения интурохоты на теков в 2000-2002 гг. проводники (Г. Атчабаров, Г. Абдухаликов) ежегодно видели беркутов и птенцов в этом гнезде. В 2001 г. в гнезде находился один птенец. Они же

-

 $^{^{2}}$ Пока это единственное наблюдение для данного вида! – npuм. ped

наблюдали, как беркут охотился на тэчёнка, который прятался за тэчкой. В этом месте скальный участок круто обрывается к реке Тентек-1. Напротив этого гнезда, через ущелье в районе слияния р. Кайракты с р. Тентек-1, по словам чабанов, находиться ещё одно гнездо беркута. Видимо, это запасное гнездо этой же пары, так как между ними небольшое расстояние. Весной 2013 г. найдено гнездо беркута в урочище Аттапкан, по второму Тентеку (А. Вайтехович). Гнездо находится в недоступном месте, в нише отвесной скалы. При приближении один беркут слетел с этого гнезда. Значительно ниже по течению р. Тентек-2, уже на территории Лепсинского госзаказника, в начале июля месяца 2015 г. найдено ещё одно гнездо беркута с двумя птенцами. Гнездо расположено по правому берегу р. Тентек-2 на приступке отвесной скалы и хорошо видно в бинокль с левого берега реки, где находится пасека сына А. Вайтехович.

В ущелье Тастау (на промежутке 20 км) обитает одна гнездовая пара. Следует отметить, что юговосточная часть территории Жонгар-Алатауского национального парка и Токтинский заказник издавна отличаются обилием разнообразной дичи, а каньонообразные глубокие скалистые ущелья пригодны для гнездования беркута и других редких хищных птиц. Поэтому, в этих краях возможно гнездование не менее 4-5 пар беркутов. Наличие одного гнезда в горах Кендырсакал подтверждает бывший егерь охотхозяйства «Тастау» (Т. Сенкеев), а чабан СПК «Токжайляу» М. Сабитов утверждает, что, когда устанавливал петли на волков в ущелье Таскашаган, видел гнездо беркута. Коне-табунщик этого же хозяйства Е. Теремкулов видел гнездо беркута в районе горы Бокай. В августе 2008 г. во время рейда по ущелью Теректы я видел двух уже вполне взрослых птенцов беркута. Взрослые орлы находились там же рядом с ними. В то время поисками гнёзд мы не занимались. В 2015 г. беркуты не гнездились в «Щёках» – месте слияния рек Агыныкатты и Лепсы. Это гнездо было найдено в 2011 г. со слов И. Носкова. Таким образом, только на территории Жонгар-Алатауского национального парка предположительно обитают не менее 10 пар беркутов, в Токтинском заказнике 4-5, в Лепсинском заказнике 3-4 пары беркутов.

Бородач (Gypaetus barbatus Linnaeus, 1758) – Сақалтай

Бородач в Жонгарском Алатау, как и во всех других частях своего ареала, является оседлой птицей. На территории национального парка достоверно установлено только одно место гнездования бородача. Гнездо находится в труднодоступном скальном участке по правому берегу р. Лепсы (высота 2500-2700 м). С противоположного берега видно, что гнездо расположено глубоко в нише скалы. Самого гнезда не видно. Как уже отмечалось выше, нами обследованы все крупные ущелья по территории парка. Наши исследования показывают, что гнездовые пары бородачей постоянно встречаются (в разные сезоны года) в следующих участках: верховья р. Сарканд (ущелья Акшунак и Карасырык) — 1 пара; Солнечная долина (верховья р. Агыныкатты) — 1 пара; верховья р. Б. Баскан (урочище Конакбай) — 1 пара; верховья р. Лепсы — 1 пара; верховья р. Тентек-1 — 1 пара; ущелье М. и Б. Аршалы — 1 пара; урочище Аттапкан (верховья р. Тентек-2) — 1 пара; верховья р. Тастау — 1 пара.

Таким образом, непосредственно в границах парка обитают как минимум 8 гнездовых пар бородачей. А на сопредельных территориях Лепсинского заказника — 2 пары (ущелья Кызылтал, Кокмоин) и Токтинского заказника — 3 пары (урочища Сарыбоктёр, Чулак, Сельты).

Орёл- карлик (Hieraaetus pennatus Gmelin, 1788) - Бақалтақ қыран

По литературным данным, относительно обычен в некоторых районах Жонгарского Алатау. По нашим наблюдениям, карлик на территории парка придерживается в основном лесоплодовой зоны, начиная от с. Тополёвки до с. Лепсинск. По пойменным лесам крупных рек проникает выше в горы. Пока нам известны два гнезда орла-карлика. В верховьях р. Теректы (в пихтовом Логу) 24 апреля 1986 г. егерь Лепсинского госзаказника М. Пшениснов нашёл гнездо орла-карлика, которое находится в зоне яблоневых лесов. В одном месте на яблоню упала осина, яблоня согнулась и на сгибе построено гнездо на высоте около 4 м. Основание сложено из сухих осиновых веток, толщиной в палец. Лоток выложен тонкими берёзовыми ветками. Размеры гнезда: диаметр 45-50 см, диаметр лотка около 30 см. В гнезде находилось одно яйцо. Второе гнездо, находится по правому берегу р. Лепсы, ниже тропы на Жамантас. Гнездо расположено в верхней части ели, а рядом большая поляна. Забравшись на ёлку, нашедший его в 2001 г. И. Носков заглянул в гнездо. Лоток гнезда был выложен зелёными ветками и там находились три зеленоватых яйца. В июле 2015 г. во время экскурсии по пойме р. Агыныкатты я видел одного орла-карлика в смешанном лесу. При попытке проследить его до гнезда, он перелетел на другую сторону бурной реки. В гнездовый период эта птица скрытная и поэтому многие не замечают его присутствия. И инспектора часто при своих наблюдениях путают карлика с канюками.

Кумай (Gyps himalayensis Hume, 1869) – Құмай

В Казахстане, гнездится только в горах Северного Тянь-Шаня и Джунгарского Алатау. На территории Жонгар-Алатауского национального парка (это большая часть Центрального Северного 132

хребта) гнездование кумая пока не установлено. Наши наблюдения и многочисленные опросные данные показывают, что кумай на территории парка постоянно не проживает. Наиболее часто его отмечали в летнее время на трупах диких и домашних животных вместе с другими падальщиками. Например, в июле 1986 г. (С. Тушкенов, И. Носков) несколько кумаев видели в группе с грифами и сипами (100-120 особей) на трупе павшей лошади в ущелье Кайракты (2700 м). По нашим многолетним наблюдениям, все падальщики (исключая бородача) появляются у нас в горах только в летнее время, начиная с мая, и встречаются до глубокой осени. В зимнее время на трупы домашних и диких животных слетаются беркуты, вороны и сороки. Не исключено, что кумаи гнездятся по южным склонам основного Центрального хребта Жонгарского Алатау, т.е. на территории соседнего Китая. А зимой, видимо, откочёвывают южнее, в места с лучшими кормовыми условиями.

Балобан (Falco cherrug Gray, 1834) – Ителгі

Численность вида за последние годы столь резко сократилась, что он оказался под угрозой исчезновения во многих регионах Казахстана (Красная Книга Казахстана, 2008). На территории Жонгар-Алатауского национального парка встречи с балобаном зафиксированы на самой юго-восточной и западной части границы парка. В апреле 2014 г. видели одного сокола, сидящего на дереве в верховьях ущелья Карасырык (С. Тушкенов). По дороге в урочище Сарыбоктёр 4 февраля 2015 г. на телефонных столбах сидели два балобана, которых нам удалось сфотографировать. Во время проведения учётных работ на Аттапкане встречены ещё 2 сокола (А. Вайтехович). Гнёзд этого сокола пока мы не нашли.

Cancaн (Falco peregrinus Tunstall, 1771) – Лашын

О гнездовании сапсана в горах Жонгарского Алатау в литературе данных нет. Однако, найденное бывшим егерем Лепсинского госзаказника И. Носковым в 1998-2001 гг. гнездо сокола на левом берегу р. Лепсы под отвесной скалой принадлежит, судя по описаниям, сапсану. Наблюдение за гнездом он вёл с противоположного берега реки. Гнездо расположено под карнизом, в нише отвесной скалы. При проведении интурохоты (в 2000-х гг.) он неоднократно бывал в этих местах и видел этих соколов. Один раз в районе гнездования сокола находил несколько разорванных тушек пустельги. Вне гнездового периода сапсана видели на окраине села Лепсинск (И. Носков), в районе инспекторского кордона на М. Баскане, в селе Кокжар (А. Вайтехович).

Филин (Bubo bubo Linneus, 1758) – Үкі

На территории парка филин встречается в основном вдоль его северной границы — в предгорной лесоплодовой зоне, и в охранной зоне. В зимнее время филин кочует в поисках корма на небольшие расстояния. В 80-е гг. зимой был случай залёта этой редкой птицы прямо в посёлок Лепсинск. Основные встречи с филином случаются в летне-осеннее время года. Нами найдены четыре места гнездования филина. Гнездо, обнаруженное осенью 2013 г., находилось в местности «Таскара», недалеко от села Байзерек. Расположено это гнездо в углубление небольшой скалы. По пойме р. Карбышевка, на южном склоне горы Бельтерек, под большим камнем найдено гнездо филина с двумя подросшими птенцами (В. Ковылин, 1998). Ещё одно место гнездования зафиксировано нами на южном склоне горы по правому берегу р. Лепсы. Гнездо расположено на самом хребте среди больших камней. В течение ряда лет филина и их взрослых птенцов мы видели в Рыбном ключе (на скалах, у самого выхода из ущелья). Из-за скрытного образа жизни определить численность этой птицы очень сложно.

Выводы и рекомендации. В процессе исследований по этой теме был уточнён видовой состав и размещение редких и исчезающих видов птиц Жонгар-Алатауского ГНПП. Проанализированы и обобщены литературные сведения и фондовые материалы за последние 10-15 лет. Составлена кадастровая карта размещения найденных гнёзд и территориальных пар редких и исчезающих видов птиц на территории парка. В 2011-2015 гг. проводился постоянный мониторинг найденных гнёзд и территориальных пар изучаемых птиц, заложены маршруты для учёта редких видов птиц и проведён учёт их численности. Всего на территории парка обитает 9 редких видов птиц, занесённых в Красную книгу Казахстана. Список их можно представить в следующем виде:

- 1. Чёрный аист Ciconia nigra: Пойма реки Тентек-1, Лепсы, Б. Жаланаш, Теректы. Всего = 28-30 особей.
- 2. Беркут *Aquila chrysaëtos*: Урочище Жылысай, Карасырык, горы Бирмоин, Акшунак, верховья рек Тастау, Тентек, Лепсы, Агыныкатты, Баскан, Сарканд. Всего около 55 особей.
- 3. Орёл карлик Aquila pennata: Пойма рек Лепсы, Агыныкатты, Теректы. Всего = 6 особей.
- 4. Бородач Gypaëtus barbatus: Верховья рек Сарканд, Лепсы, Тастау, Тентек, Баскан. Всего = 21 особь.
- 5. Кумай *Gyps himalayensis*: Ущелье Караунгур, Киикбай, урочище Жамантас, Бирмоин, Аттапкан, Солнечная долина, Сарыбоктёр. Всего = 40 особей.

- 6. Балобан Falco sherrug: Ущелье Карасырык, Аттапкан, урочище Сарыбоктёр Всего = 15 особей.
- 7. Сапсан Falco peregrinus: Ущелье Малый Баскан (Аманбоктёр), пойма р. Лепсы (левый берег). Всего = 4 особи.
- 8. Серпоклюв *Ibidorhyncha struthersii*: Пойма реки Тентек-1 (вблизи пос. Кокжар, урочище Уйгентас), Лепсы, Карбышевка, Б. Баскан. Всего = 20-25 особей.
- 9. Филин *Bubo bubo*: Вся лесоплодовая зона территории парка, пойма рек Лепсы, Тентек, Агыныкатты, Теректы, Сарканд, Баскан. Всего = 54 особи.

Большой подорлик (*Aguila clanga* Pallas), хотя и не включён в Красную Книгу, является редким видом в наших горах. В 2014 г. найдено одно гнездо большого подорлика по пойме Чёрной речки, левом притоке р. Лепсы³. Гнездо устроено в развилке толстых ветвей в верхней части ствола большой березы, на высоте 10-11 метров от земли. Корпус сложен из берёзовых и осиновых веток и сучьев, на вид постройка массивная и, судя по её состоянию, занимается подорликами не первый год.

Особо следует отметить, что у ряда редких видов птиц удалось найти жилые гнёзда или гнездовые участки с территориальными парами: у чёрного аиста — 9 гнёзд, у серпоклюва — 3 постоянных места гнездования, у беркута — 10 гнездовых участков, у бородача — 8 участков, у орла-карлика — 2. За всеми этими гнездовыми участками ведётся постоянный мониторинг и охрана инспекторами парка. Анализ многолетней динамики численности редких видов птиц показывает, что их численность на территории национального парка стабильна. Поскольку исследования учёных показывают, что важнейшим фактором, определяющим изменение численности редких видов птиц (особенно для крупных хищных птиц), является, прежде всего, фактор беспокойства в гнездовый период и прямое преследование человеком, а также изъятие птенцов из гнёзд, главными мероприятиями по охране и воспроизводству редких и исчезающих видов птиц Жонгар-Алатауского ГНПП считаю следующие:

- продолжить научные работы по изучению редких видов птиц совместно с ведущими орнитологами;
- выявить на территории парка все гнёзда редких видов птиц и взять их под строгую охрану;
- продолжить мониторинг всех найденных гнёзд и пар, ежегодно вести учёт их численности;
- усилить воспитательную работу по охране редких видов птиц среди местного населения;
- несмотря на то, что сам статус ООПТ и режим охраны его территории способствует защите этих видов, всё-таки необходимо строжайшее соблюдение охраны взрослых птиц и мест их гнездовий;
- организовать зимнюю подкормку беркутов на территории Лепсинского филиала;
- рассмотреть вопрос об организации питомника по разведению хищных птиц (соколов, беркута)

Литература

Березовиков Н.Н. Беркут. Алма-Ата, 1986. 112 с.

Брагин Е.А. Орлы. Алма-Ата, 1986. 128 с.

Долгушин И.А. Птицы Казахстана. Том-1, Алма-Ата, 1960, 471 с. **Долгушин И.А., Корелов М.Н., Кузьмина М.Н., Гаврилов Э.И., Гаврин В.Ф., Ковшарь А.Ф., Бородихин И.Ф.** Птицы Казахстана. Том 4. Алма-Ата, 1970. 647 с.

Ковшарь А.Ф. Мир птиц Казахстана. Алма-Ата, 1988. 272 с.

Красная книга Казахской ССР (ред. А.А. Слудский). Ч-1. Позвоночные животные. Алма-Ата, 1978. 204 с.

Флинт В.Е., Бёме Р.Л., Костин Ю.В., Кузнецов А.А. Птицы СССР. Изд. «Мысль» Москва, 1968.

Шнитников В.Н. Птицы Семиречья. М.-Л., 1949. 666 с.

Sayat N. Tushkenov. Black Stork, Ibisbill and other rare birds of Zhongar-Alatau National Park (Kazakhstan)
The article presents modern data on 9 rare bird species of Zhongar-Alatau National Park: Black Stork, Golden Eagle,
Booted Eagle, Lammergeier, Himalayan Griffon, Saker Falcon, Peregrine Falcon, Ibisbill and Eagle Owl.

³ Точность видового определения птицы нуждается в подтверждении специалистами-орнитологами – *прим. ред.* 134

УДК 598.826: 591.563 (574.54+235.216)

Доминанты строительного материалы гнёзд желчной овсянки (Emberiza bruniceps) в Таласском Алатау (Западный Тянь-Шань)

Иващенко Анна Андреевна, Ковшарь Анатолий Фёдорович

Иле-Алатауский национальный парк, Институт зоологии МОН РК

Материал собран на территории заповедника Аксу-Джабаглы и в его ближайших окрестностях, где в 1960-1968 гг. авторами осмотрено 350 гнёзд желчной овсянки (включая и нежилые), большая часть которых собрана для последующего разбора и определения строительного материала. Сведения о местах расположения, форме и размерах гнёзд, а также некоторых других чертах гнездовой биологии этого вида опубликованы нами ранее (Ковшарь, 1966; Иващенко, Ковшарь, 1969; Ковшарь, Иващенко, Ковшарь, 1986). Здесь же излагаются результаты определения растительного материала гнёзд. Гнездо желчной овсянки представляет собой рыхлую чашеобразную постройку, состоящую из двух слоев: массивного наружного и тонкого внутреннего. Самая характерная черта гнёзд, хорошо отличающая их от гнёзд большинства мелких птиц, – та, что наружный слой их почти всегда строится из свежей, иногда даже зелёной травы.

Для определения строительного материала мы разобрали 240 гнёзд. Из них 16 были построены в низкогорной степи окрестностей с. Новониколаевка (1200 м над ур. м.), 38 – в степи по обе стороны каньона реки Аксу (1600-1800 м), 11 – в урочище Сильбили (2000 м), 15 – в низкогорных участках с лиственными кустарниками (1500-1700 м), 155 – в высокоствольных арчевниках (1800-2000 м) и 5 – у нижнего предела субальпийского пояса (немногим выше 2000 м). Определение собранного материала показало, что эта птица использует на строительство гнезда более 175 видов растений.

Наиболее разнообразен наружный слой, в которой отмечено 174 вида растений, т.е. практически все найденные в гнёздах. Но основу этого слоя составляет сравнительно небольшая группа — 62 вида растений, встречающихся в значительных количествах (30% и более от общего объёма слоя). Перечень их с указанием обилия и встречаемости приведен в таблице 1.

Таблица 1. Растения-доминанты наружного слоя гнёзд желчной овсянки

			Встреча	емость		
Виды растений	26.1124			по обилию		
	общая	до 30%	30%	50%	70%	90%
1. Эфемеры и эфемероиды						
Micronthlaspi perfoliatum	106	74	11	9	8	4
Draba huetii	57	47	4	1	3	2
Alyssum calycinum	72	54	3	8	5	2
A. dasycarpum	28	27	1	-	-	-
Arabidopsis pumila	35	26	2	4	2	1
Galium spurium	57	32	8	11	3	3
G. tenuisissimum	9	5	1	3	-	-
Rochelia sp.	50	32	11	3	3	1
Poa bulbosa	45	35	1	2	2	5
Ranunculus regelianus	44	37	4	3	-	-
R. paucidentatus	15	9	4	1	-	1
R. arvensis	7	5	-	-	1	1
Lithospermum arvense	43	41	2	-	-	-
Myosotis asiatica	41	20	8	8	2	3
Bromus spp.	39	35	2	1	1	-
Veronica spp.	38	31	3	1	1	2
Viola occulta	28	25	2	1	-	-
Ceratocephala testiculata	19	16	2	1	-	-
Valerianella sp.	17	11	1	2	2	1
Geranium transversale	17	15	2	-	-	-
Lappula sp.	17	15	1	1	-	-
Scandix stellata	16	7	4	2	2	1
Filago arvensis	16	6	1	4	2	3
Asperula setosa	15	12	-	2	1	-
Chardinia orientalis	7	4	3	-	-	-
Taeniatherum crinitum	5	4	-	1	-	-
Shibateranthis longistipitata	3	2	-	1	-	-

			Встреча	емость		
Виды растений	обшая			по обилию		
	,	до 30%	30%	50%	70%	90%
2. Мнгоголетнее разнотрави	<u>se</u>					
Galium verum	75	58	10	5	-	2
Potentilla fedtschenkoana	62	45	5	11	1	-
Achillea millefolium	58	47	5	4	1	1
Medicago tianschanica	58	47	7	3	1	-
M. sativa	3	2	-	-	1	-
Cirsium turkestanicum	49	25	4	8	4	8
Cousinia minkwitziae	41	32	4	3	2	-
Gymnospermium alberti	40	32	4	2	1	1
Oxytropis pilosissima	31	25	1	4	-	2
Ferula tenuisecta	30	28	2	-	-	-
Astragalus anisomerus	26	20	3	3	-	-
Origanum tyttanthum	26	25	1	-	-	-
Iris sogdiana	25	24	-	1	-	-
Scorzonera turkestanica	21	17	2	2	-	-
Lindelophia stylosa	16	15	-	1	-	-
Convolvulus lineatus	14	12	2	-	-	-
Thalictrum isopyroides	13	10	1	1	-	1
T. simplex	11	8	3	-	-	-
Cousinia sewerzovii	12	6	4	1	-	1
Asyneuma argutum	11	9	1	1	-	-
Schrenkia golickeana	9	7	1	=-	1	-
Cerastium falcatum	7	5	1	1	-	-
Echinops karataviense	6	3	1	2	-	-
Phlomis salicifolia	4	3	-	-	1	-
Verbascum songoricum	3	2	-	1	-	-
Aegopodium tadshikorum	2	1	-	1	-	-
Helychrisum maracandicum	2	1	-	1	-	-
Tussilago farfara	2	1	1	-	-	-
Linum sp.	1	-	-	1	-	-
3. Многолетние злаки						
Poa angustifolia	28	26	2	-	-	-
Широколиственные злаки	102	85	10	5	2	-
4. Кустарники и деревья						
Juniperus sp.	4	3	-	1	-	-
Lonicera sp.	81	63	12	6	-	-

Из остальных 112 видов, отсутствующих в таблице 1, наиболее часто встречаются: закаспийская лапчатка (*Potentilla transcaspia*) – в 19 гнездах, ясколка (*Cerastium* sp.) – в 14 гнёздах, эремурус Регеля (*Eremurus regelii*) – в 14 гнёздах, василёк растопыренный (*Centaurea squarrosa*) – в 13 гнёздах.

Среди доминантов наружного слоя (см. табл. 1) можно выделить четыре группы растений.

1) Эфемеры и эфемероиды. Это, прежде всего, крестоцветные – ярутка (Microthlaspi perfoliatum), бурачок полевой (Alyssum calycinum), крупка (Draba huetii), резушка (Arabidopsis pumila); бурачниковые – рохелия, воробейник полевой (Lithospermum arvense) и многолетняя незабудка азиатская (Myosotis asiatica); фиалка (Viola occulta) из фиалковых; вероника (Veronica campylopoda, V.arguteserrata) из норичниковых; подмаренник ложный (Galium spurium) из мареновых; жабник (Filago arvensis) из сложноцветных. Сюда же относятся однолетние злаки (группа костров – Bromus severzovii, B. oxyodon, B. japonicus, Anisantha tectorum) и многолетние лютики.

Все они ко времени гнездования желчной овсянки обычно отцветают, и на постройку птицы используют верхушки плодоносящих стеблей, а зачастую — целые растения с плодами и корешками. В таком же виде используется и многолетний мятлик луковичный (*Poa bulbosa*), колосящиеся стебли которого вместе с луковичками и листьями достигают длины 20-30 и даже 40 см. Растения этой группы обычно создают каркас наружного слоя гнезда, а иногда полностью весь наружный слой (мятлик, ярутка, жабник).

2) Многолетнее разнотравье. У *Gymnospermium alberti*, лапчатки (*Potentilla fedtschenkoana*), астрагала (*Astragalus anisomerus*), остролодочника (*Oxytropis pilosissima*), тысячелистника (*Achillea millefolium*), и неколючей кузинии Северцова используются свежие листья с черешками, служащие цементирующей частью («заполнителем») наружного слоя и скрепляющие его с внутренним. У колючих 136

сложноцветных (Cirsium turkestanicum, Cousinia minkwitziae), используются старые, наполовину перегнившие листья, от которых иногда остается только «скелет» – черешок и проводящие жилки с колючками; а у подмаренника (Galium verum) и люцерны (Medicago tianschanica) – верхушки стеблей, как свежих, с листьями, так и прошлогодних.

- 3) Широколиственные злаки. Это прежде всего пыреи (Elytrigia trichophora, E. repens), кострец безостый (Eromopsis inermis), реже ежа сборная (Dactylis glomerata), вейник (Calamagrostis sp.) и лисохвост (Alopecurus pratensis). Эти растения используются довольно часто и нередко в значительном числе (см. табл. 1), но в гнезде они менее заметны, так как употребляются чаще всего старые размочаленные листья, обладающие достаточной гибкостью и сцепляемостью. Гладкие и упругие свежие листья неподходящий стройматериал, поэтому в гнездах они встречаются крайне редко и только в качестве примеси.
- 4) Кустарники, особенно жимолость. Кора и луб этого растения встречается в наружном слое довольно часто (81 гнездо из 240), но обычно в небольшом числе.

Растения последних двух групп, играющие роль заполнителя, попадают в наружный слой из внутреннего, для которого они очень характерны, и поэтому обычно встречаются в месте контакта обоих слоёв и при осмотре гнезда снаружи незаметны.

Таким образом, строительный материал наружного слоя функционально разделяется на растения, создающие каркас (первая группа) и заполняющие промежутки между рыхло расположенными частями каркаса (остальные группы, но в основном вторая).

Внутренний слой гнезд желчной овсянки гораздо тоньше и более однороден, чем наружный. В нём обнаружено всего 48 видов растений, все они встречаются и в наружном. В отличие от последнего внутренний слой строится почти исключительно из старого материала, зелёные части растений употребляются очень редко. Доминанты этого слоя приведены в таблице 2.

		I	Встречаемо	сть		
Виды растений	26,442		по	обилию		
	общая	до 30%	30%	50%	70%	90%
1. Многолетнее разнотравье						
Ferula tenuisecta	66	17	9	13	9	
Cirsium turkestanicum	29	13	1	3	4	
Galium verum	25	21	2	-	-	
Medicago tianschanica	25	21	2	-	-	
Cousinia minkwitziae	19	14	3	1	-	
Iris sogdiana	15	13	1	-	-	
Arctium sp.	5	3	-	-	1	
Ближе не определено	19	14	3	1	-	
2. Многолетние злаки						
Широколиственные злаки	136	56	13	17	13	37
Poa angustifolia	19	13	2	3	1	-
Bromopsis inermis	7	3	4	-	-	-
Elytrigia trichophora	4	2	-	-	1	1
3. Кустарники						
Lonicera sp.	135	39	17	16	13	50
Rosa sp.	19	7	7	1	1	3
Кустарники (вид? род?)	10	-	2	1	2	5
Корешки	9	7	1	1	-	-

Таблица 2. Растения-доминанты внутреннего слоя гнезд желчной овсянки

Строительный материал внутреннего слоя служит для формирования лоточка гнезда на основе каркаса и заполнителя наружного слоя. Поэтому здесь наблюдается переход к более мягкому и гибкому материалу; прежде всего это узкие полосы луба кустарников (преимущественно жимолости) или разнотравья (чаще всего ферулы) и размочаленные полоски старых листьев широколиственных злаков. Эти взаимозаменяемые материалы нередко встречаются вместе, но половина всех гнёзд (120 из 240) имеет внутренний слой, на 90% состоящий из одного вида (жимолости – 21% гнезд, ферулы – 7%, злаков – 10%).

Выстилка лотка имеется далеко не во всех гнёздах. Из 240 разобранных она отсутствовала в 141 (58.7%). Остальные 99 гнезд были выстланы: 60 — только конским волосом, 14 — тонкими корешками растений, 12 — смесью конского волоса и корешков, 6 — шерстью диких животных, 3 — волосом и шерстью и по одному гнезду — растительным пухом и опушенными остями ковыля, волосом и такими же

остями, корешками и шерстью. В большинстве случаев выстилка слабая, зачастую сквозь неё просвечивает внутренний слой.

Для постройки одного гнезда используется от 2 до 24 видов растений, чаще всего 5-14: из 240 гнезд только 12 (5%) состояли из 2-4 видов растений каждое, 105 (44%) — из 5-9, 93 (39%) — из 10-14, 24 9(10%) — из 15-19 и 5 (2%) — из 20-24 видов.

В качестве крайних примеров можно привести два гнезда. Гнездо № 160 (урочище Кзылжар, лиственные кустарники, 1400 м над ур. м.) построено всего из двух видов растений: наружный слой сплетен из кусочков листьев со стеблями и плодоносящими верхушками подмаренника ложного (каркас) и полосок коры и луба жимолости (заполнитель); внутренний – полоски луба жимолости; выстилки нет. В гнезде № 211 (урочище Дарбаза, высокоствольный арчевник, 1900 м над ур. м.) на постройку использованы 24 вида растений. Каркас наружного слоя сделан в основном из кусочков стеблей с плодами ярутки, в качестве примесей, единично – верхушки стеблей с плодами бурачка полевого, воробейника, подмаренника ложного, метёлки мятлика луковичного и верхушки вегетативных побегов какого-то однолетнего костра. Заполнителем служат верхушки стеблей с листьями люцерны тяньшанской, подмаренника настоящего и лапчатки Федченко, в меньшей степени – какого-то астрагала с жёлтыми цветами. Как примесь найдены: цветонос остролодочника, верхушки стеблей с соцветиями Gymnospermium alberti u Lindelofia stylosa, верхушки стеблей с листьями зверобоя удлиненного, костра безостого и тысячелистника обыкновенного. Внутренний слой в равной степени составляли старые листья барбариса (в месте контакта с наружным слоем), костреца безостого и тонкие выбеленные полосы луба жимолости (верхняя часть слоя, образующая лоток). Выстилка отсутствует, её заменяет луб жимолости.

Литература

Иващенко А.А., Ковшарь А.Ф. Гнездостроение у желчной овсянки//Орнитология в СССР, кн. 2. Ашхабад, 1969. С. 252-256.

Ковшарь А.Ф. Птицы Таласского Алатау. Алма-Ата: Кайнар, 1966. 435 с.

Ковшарь А.Ф., Иващенко А.А., Ковшарь В.А. Биология желчной овсянки в Таласском Алатау (Западный Тянь-Шань). Сообщение 1//Вестник зоол., 1986, № 5. С. 36-40.

Кузьмина М.А. Семейство овсянковые//Птицы Казахстана, том V. Алма-Ата: Наука, 1974. С. 121-200.

Summary

Anna I. Ivaschenko, Anatoly F. Kovshar. Dominants of nest material of Red-headed Bunting (Emberiza bruniceps) in Talasskiy Alatau (West Tien Shan)

The article gives data on nest material of Red-headed Bunting, analyzed from 240 collected nests. The list of recorded plants reaches 175 species.

УДК 599.742.4 (574.52)

О среднеазиатской речной выдре Lutra lutra seistanica Birula, 1912 в Казахстане

Шаймарданов Рашит Талгатович

Институт зоологии КН МОН РК, Алматы

Со времен В.Н. Шнитникова (1936) зоологические сведения о туркестанской (среднеазиатской) выдре крайне отрывочны. Наиболее полные сведения по общей биологии этой выдры опубликованы в сводке «Млекопитающие Казахстана», где суммированы все биологические данные по этому очень редкому водному хищнику (Лобачев, 1982). После выхода в свет упомянутой сводки о среднеазиатской выдре не появлялось ни одной публикации, кроме кратких очерков Ю.С. Лобачева (1978, 1991, 1996, 2008) в разных изданиях Красной книги Казахстана и небольшой заметки о гибели этого зверя на территории ГНПП «Алтын-Эмель» в 1992 г. (Шаймарданов, Жуйко, 2006). Нам повезло собрать немного фактов наблюдении за этим скрытным водным млекопитающим с территории Илийской котловины, реки Или и впадающих в неё рек, а также о встрече её в на реке Коксу в Джунгарском Алатау.

По прошлому ареалу среднеазиатской выдры (Лобачев, 1982) известно, что ею были освоены большинство рек хребтов Джунгарского и Заилийского Алатау — Каратал, Аксу, Лепсы, но её численность здесь сократилось ещё в прошлом веке и сейчас сохранилось только в Илийской котловине. В Джунгарском Алатау, по сообщению директора охотхозяйства «Коксуйский», напротив пос. Теректы в 138

Небольшая колония фламинго на периферии колонии больших бакланов. Внизу справа - стая молодых фламинго.

Фото В.А. Ковшарь

К статье Р.Т. Шаймарданова, стр. 138 Среднеазиатская выдра на южном берегу Капчагайского вдхр. 28 января 2015 г. Фото В.Т. Якушкина

Самец *Oenanthe picata capistrata* (вверху) и *O. р. opistoleuca* (внизу) и места их обитания: чинки близ горы Дарбаза (справа вверху) и ур. Кызылкудуксай (внизу.). *Фото В.А. Федоренко*

Пункты стационарных наблюдений в Каратау и местообитания каратауского архара. Красным обозначен основной стационар Бозбутак (все сезоны года), зелёным — места наблюдений по 15 дней и более; синим — временные стационары (менее 15 дней). Фото Э.Р. Байдавлетова

К статье Э.Р. Байдавлетова и В.О. Саловарова, стр.141

2016 г. отмечены следы взрослой выдры со щенками. Он же в 2015 г. ниже предыдущей точки также видел выдру в бесснежный период. Таким образом, здесь, на р. Коксу, наблюдается очаг её обитания.

На левобережье среднего течения реки Или, в окрестностях села Маловодное (Енбекши-Казахский район Алматинской области) на безымянной речушке, что вытекает из пруда накопителя ниже дамбы, в

полдень 2 января 2007 г. я наблюдал семью выдры. Взрослая и три детёныша с фырканьем и шумными всплесками, копошились в открытом месте этой речушки. Сама речка довольно густо обросла высоким тростниковым бордюром и лишь в месте их обнаружения она разлилась обширным плёсом, на котором сначала плавала и ныряла взрослая особь с одним детёнышем. Они ныряли, изредка показывая толстые хвосты, и громко шумели, в общем вели себя довольно слышно, но потом сверху течения, появился ещё один детеныш и в конце наблюдения – третий. Таким образом, одновременно в поле зрения находилось сразу четыре выдры. Была хорошо видна разница в величине головы взрослой особи и молодых, которая разнилась у них гдето на одну треть или четверть. Последний

Места современных встреч среднеазиатской выдры в Алматинской области

выдрёнок как бы «догонял» своих, просто плывя вниз, по течению. После чего вся компания с шумом и так же внезапно, сплавились вниз по течению речки, исчезнув в густом бордюре тростника.

На протяжении всего лета 2007 г. гидротехник В. Гусев на посту в километре от пристани Дубунь, наблюдал на своем участке пару выдр. Они часто навещали в р. Или его садок с живой рыбой. В этих же местах, в середине апреля 1989 г. в районе Дубунской пристани (левый берег р. Или), что в 30 км от госграницы с КНР, ихтиолог В. Калугин в воде заметил плавающую выдру, которую ему удалось в течении 5 минут «погонять» и наблюдать взрослую особь.

В 1980 г. в середине июля, на реке Чарын, ниже первого верхнего моста по течению, на трассе Алма-Ата – Нарынкол, рыбак-любителем Б. Гонов очень близко наблюдал на протяжении 2-3 минут взрослую крупную выдру, которая всплывала и ныряла, обследуя территорию заводи. В 2005 г. на территории охотхозяйства «Карачингиль» выше пос. Куш, была отпущена запутавшаяся в рыболовной сети молодая выдра, её несколько дней наблюдали здесь же, в охотхозяйстве. В этом же охотхозяйстве в начале 80-х гг. прошлого столетия в неволе содержалась выдра около трёх лет. Ее ранней осенью подобрали люди. Выдрёнок был совсем маленький, всего-то с ладонь взрослого человека, очевидно из довольно позднего помёта. Он прожил в неволе с 1981 по 1983 год и вырос совсем ручным. Первый год молодая выдра прожила у сотрудника охотхозяйства И.Ф. Бородихина в доме, но в дальнейшем её определили в вольер во дворе. Из него её часто выпускали на волю, где она "познакомилась" с домашним (скотом, собаками). Выдра совсем их не боялась. Так, однажды, её чуть не забили копытами дикие самки бухарского оленя, после чего выдрёнок стал опасаться коров и других крупных животных. Во время отлучек на волю в средний пруд, о её существовании узнал взрослый дикий самец, который активно «звал» её свистом, но она его явно побаивалась и не шла в воду. Любовь уже довольно взрослой трехлетней выдры к прогулкам на озере сыграла печальную роль в её жизни. Её нашли задавленной волчьей семьёй недалеко от берега водоёма. Из того же охотхозяйства известен факт борьбы двух фокстерьеров с выдрой, в результате чего погибла выдра и одна собака на мелководье одного из местных озер в 90-е гг. XX ст. Здесь же в месте впадения р. Тургень в Капчагайское вдхр. 28 января 2015 г. В.Т. Якушкину удалось сделать ряд снимков этого редкого животного (см. цветную вклейку 1).

Со слов охотоведа В.А. Гребенникова, ещё в середине XX в., в окрестностях г. Панфилова (ныне Джаркент), им у охотника профессионала, в сарае была замечена большая тушка выдры, висевшая с ободранной ондатрой. С тех пор и до сегодняшнего времени, выдра регулярно отмечается в этой части Уйгурского района Алматинской области. Так местный житель села Ташкарасу В. Булавин сообщает, что в окрестностях села многими односельчанами выдра регулярно отмечается в круглогодично текущем канале. Она была заметна зимой по следам на снегу вдоль канала. Один зверь был добыт там, но долго не был продан, так как считалось, что такую дорогую пушнину мог носить только богатый человек или служитель религиозного культа.

Факты встречи выдр на берегу реки Чилик Ю.А. Грачёвым в середине XX ст., А.А. Грачёвым в 2014 г. в пойме р. Чарын, в 2012 г. А.В. Грачёвым и егерем ГНПП «Чарын» в пойме средней части парка опубликованы в юбилейном сборнике (Шаймарданов, Жумаров 2014). На правом берегу Или,

в ГНПП «Алтын-Эмель», зимой на льду реки в районе урочища "Подпор" А.А. Грачевым была замечена речная выдра с пойманным жерехом (30-35 см), которого она не спеша поедала. Заметив человека с собакой, она взяла поперёк рыбу и нырнув в "Майну" вылезла из нее на лёд с другой стороны, где продолжала её спокойно доедать. А 11 октября 2009 г. он же в 2 часа дня видел выдру на голом острове посреди озера, она переползала через остров в ясный солнечный день при температуре +2+4°C.

Егерь В. Гусев, в верхней части Илийской котловины, на реке Или (пристань Дубунь) наблюдал трёх выдр, которые играли на льду, возле открытой воды "Майны". Эта группа состояла из взрослой самки и двух молодых особей. В другом урочище "Кундызды" выдра регулярно видели на отшнурованных от р. Или водоёмах, в урочище "Озеро деревянное" её также ежегодно отмечают. Егерь Михальцев 16 ноября 2003 г. наблюдал 6 плавающих друг за другом выдр, в этом же урочище им были встречены ещё две американские норки, отношения с которыми пока ещё не известны. Со слов Азиза Турдибаева, охотоведа, в Уйгурском ГУ всего в 200 м от кордона на высыхающей протоке постоянно видят следы выдры на грязи.

В питании среднеазиатской выдры, по Г.И. Ишунину (1961), 90-96% составляют рыба, раки, ужи, земноводные и даже беспозвоночные — водяные жуки плавунцы, личинки стрекоз и т.д., и лишь осенью состав пищи выдр обогащается теплокровными: водными птицами — утками, пастушковыми, водяными полевками, крысами, ондатрой. Интересно отметить, что известная нам ручная выдра всегда из одновременно предложенных ей свежей рыбы и тушки голубя предпочитала последнего. Она также очень активно реагировала на мясо, вывешенное в зимнее время в чулане, пытаясь добраться до него, и с жадностью поедала куски, перепавшие от хозяина. Свежих двух подлещиков при мне она, прижав их лапой, поедала полностью с плавниками, чешуей и головой — одного с головы, другого с хвоста, сосредоточенно и совершенно с одинаковой скоростью.

Из устного сообщения ихтиолога Н.Ш. Мамилова на юго-востоке Казахстана по всем малым рекам и речушкам обитает семь видов аборигенных гольцов, шесть из которых в Алматинской области: пятнистый губач (Triplophesas trauchii), серый голец (T. dorsalis), тибетский голец (T. stoliczkai), одноцветный губач (T. labiata) и голец Северцова (Nemachilus). Южную часть страны освоил голец терский (Nemachilus conipterus). Выдра водный супер хищник, и природа Балхашского региона поставляет ей весь здешний количественный и качественный набор фауны рыб, богатый пелагическими, и особенно важными в питании, придонными видами. Сюда входит большинство гольцов, губачей, форели-микижи и других рыб, мигрирующих вверх по течению от основной крупной реки Или. В самой р. Или выдра охотится на всю мелкую (10-20 см), среднюю (от 30 до 50 см) и очень редкую крупную рыбу (сом, шип, крупные сазаны свыше 2-3 кг, и другие виды) в особых редких случаях попадания их в мелкие заводи, замор и т.д. Нужно отметить, что от попусков отравленной воды в реку Или в 2009-2010 гг., очень крупные сомы отмечались в воде вплоть до моста через реку, по трассе Алматы-Чунжа. Мы не знаем отношения выдры к сонным или павшим рыбам. В зимнее время на льду, выдру часто видят с пойманным жерехом, что очевидно связано с предзимней и икрометной его активностью (миграцией) по р. Или. Таким образом, в пищевом рационе оказываются все 24 вида аборигенных и интродуцированных рыб Балхаского бассейна.

В заключение некоторые соображения и предложения по изучению и сохранению этого редкого вида. В свете биологических знаний о среднеазиатской выдре, собранных зоологами за последнее столетие в Казахстане, становиться совершенно ясно, что этот вид млекопитающего является одним из самых мало изученных и раритетных в стране. Его изучение в Илийской межгорной впадине остаётся задачей следующих поколений зоологов. По юго-востоку страны надо выявить все разрозненные очаги обитания выдры. Из анализа точек последних встреч она сохранилась и ещё встречается в основном в бассейне реки Или и её притоков с Заилийского и Джунгарского Алатау. Настоятельно требуется проверка обитания выдры в верхней части нижнего течения реки Или, в месте впадения р. Куртинки, где зимой 2004 г. она встречена в охотхозяйстве, в котором кормилась мелкой рыбой, попавшей в затопленный корпус автобуса. Если она обитает там и сегодня, то мы вправе считать этот факт расширением её ареала в пойме р. Или. Требуются конкретные исследования распространения, физиологии, поведения, конкурентов (человек и американская норка), анализ кормовой базы и т.д.

Автор выражает искреннюю благодарность всем корреспондентам, упомянутым в статье, за помощь в сборе научных фактов по среднеазиатской выдре с территории юго-востока Казахстана.

Ишунин Г. Н. Распространение и численность персидской выдры//Редкие исчезающие звери и птицы Казахстана. Алма-Ата. 1977. **Лобачев Ю.С.** Речная выдра//Млекопитающие Казахстана. Т. 3. ч. 2 Хищные (куньи, кошки). 264с. **Лобачев Ю.С.** Красная книга Казахской ССР. Том 1. Животные. Алма-Ата: «Гылым», 1991. С. 60-62. **Шаймарданов Р.Т., Жуйко Б.П.** Случай гибели среднеазиатской речной выдры (*Lutra lutra seistanicabirula*) на южной границе национального природного парка «Алтын-Эмель»//Труды ГНПП «Алтын-Эмель». Алматы: РНЦ «Азия», 2006. С. 78. **Шнитников В.Н.** Млекопитающие Семиречья//Труды Биол. АССОЦ. АНСССР, 1936.

УДК 599.735.5 (574.54)

К экологии каратауского архара (Ovis ammon nigrimontana Severtzov, 1873)

Байдавлетов Ерлик Рыспекович, Саловаров Виктор Олегович

Иркутский аграрный университет им. А.А. Ежевского, Иркутск, Россия

Каратауский архар (Ovis ammon nigrimontana Severtzov, 1873) — один из самых малочисленных подвидов горного барана, эндемик Казахстана за сохранение и воспроизводство которого республика несет ответственность перед мировым сообществом. А между тем биология и экология каратауского архара до настоящего времени недостаточно изучена (Северцов, 1873; Антипин, 1941, 1947; Цалкин, 1951 и др.). В большинстве своём ранее опубликованные работы носят фрагментарный характер и посвящены, в основном, территориальному распределению этого копытного (Северцов, 1873; Антипин, 1947, 1955; Цалкин, 1951; Федосенко, Капитонов, 1983; Грачев, 1986 и др.). Для разработки экологических основ сохранения и воспроизводства каратауского архара необходимо, прежде всего, изучить сезонные особенности стациального распределения этого копытного, его перемещения, питание, размножение, смертность.

Материал и методы исследований. Экологические исследования и учёт каратауского архара проводились в северо-западной половине хр. Каратау (Сырдарьинский) в угодьях Каратауского лесничества Туркестанского лесхоза Южно-Казахстанской области в 2003-2016 гг. в составе экспедиций и полевых выездов сотрудников лаборатории териологии Института зоологии МОН РК в рамках выполнения плановых НИР, проектов INTAS и WWF. Исследования проводились по общепринятым методикам (Новиков, 1953), ими охвачены все сезоны года, продолжительность составляет 19 месяцев. Использованы опросные и литературные сведения, обработаны ведомственные материалы.

Территориальное и биотопическое распределение, перемещения. В XIX в. архар обитал на хребте Каратау повсеместно (Северцов, 1873; Цалкин, 1951 и др.), но уже в середине XX ст. он исчез из северо-западной окраинной части этого горного массива (Гептнер и др., 1961). Известно также, что, если в XIX в. архар на хр. Каратау «был обычен, а местами многочислен» (Северцов, 1873), то уже во второй половине XX ст. его численность в западной половине хребта снизилась до 150 особей (Грачев, 1982; Байдавлетов, 1996). В угодьях Каратауского лесничества в 50-60-ые гг. XX ст. каратауский архар обитал повсеместно. В настоящее время он населяет северную, горную часть лесничества.

Общеизвестно, что архары живут на выровненных остепнённых участках гор, придерживаясь зимой малоснежных склонов или мест, где снежный покров выдувается (Антипин, 1947; Федосенко, Капитонов, 1983). На хребте Каратау из-за разнообразия ландшафта места обитания архара чрезвычайно своеобразны. Мы наблюдали их как на пологих и выровненных склонах гор, так и в крутосклонных обрывистых каменистых частях гор, среди скал и осыпей. Нередко они встречались в местах, поросших ясенем, клёном Семёнова, дикой яблоней, грушей, боярышниками, барбарисами, кизильниками, вишней, спиреей, шиповниками и другими кустарниками. В летнее время архары нередко наблюдались на высокогорных лугах, а в зимнее время они кормились в полупустынных, а изредка – и пустынных предгорьях с небольшими участками обеднённой степи. В летнее время архар в угодьях лесничества обитает лишь в его северной высокогорной части, в горных массивах и урочищах Джон, Аккуз, Талмас, Актуекулаган, Каракуз, Корпеш, Ятып, Аксерке, Рустемшокы и др. Основные летние места обитания архара в угодьях Каратауского лесничества расположены на высотах от 800 до 1900 м над ур. м. (табл. 1).

	Количество отмеченных животных								
Высота над ур. моря., м	Летом		Осенью		Зимой		Весной		
	n	%	n	%	n	%	n	%	
до 500	17	8. 46	11	5. 64	33	15. 21	19	10. 98	
500-1000	43	21. 39	49	25. 13	87	40. 09	55	31. 79	
1000-1500	69	34. 33	78	40.00	61	28. 11	57	32. 95	
выше 1500	72	35. 82	57	29. 23	36	16. 59	42	24. 28	
Всего	201	100.00	195	100.00	217	100.00	173	100.00	

На этих высотах в летнее время отмечено более 80% архаров, из которых более 70% наблюдали в крутосклонных глухих и скальных биотопах, куда они вытесняются домашними овцами.

Следует отметить, что территориальное распределение архара во многом определяется тем, что вследствие географического расположения хребта Каратау и недостаточного выпадения осадков (обычно 300-400 мм, а в горах – до 500 мм) в этом горном массиве ярко выражена общая ксерофитизация флоры, которая выражается в проникновении полупустынных и некоторых пустынных элементов не только в

предгорья, но и в низкогорья (Камелин, 1990). Таким образом, с уменьшением абсолютной высоты местности не только увеличивается количество полупустынных и пустынных элементов в составе флоры, но и изменяется характер вегетации растительности, что выражается в прекращении их развития уже в начале лета. Поэтому во второй половине лета на основной площади низкогорных пастбищ растительность практически полностью выгорает и лишь в высокогорьях и в затенённых урочищах сохраняются сочные растения (Камелин, 1990).

Высотное распределение каратауского архара в летнее время характеризуется тем, что подавляющее большинство взрослых самцов в летнее время обитает в высокогорье, тогда как самки с ягнятами чаще встречались в среднегорье. Особо следует отметить, что в первой половине лета самки с ягнятами, как правило, встречаются в крутосклонных скалистых хорошо защищённых участках гор. В жаркие дни архары держались исключительно в тени скал, склонов, деревьев и кустарников, что отмечено и в других частях ареала вида (Антипин, 1947; Федосенко, Капитонов, 1983).

В осеннее время архары также чаще наблюдаются на высотах от 800 до 1900 м, и только в ранние многоснежные годы спускаются до 500 м. Следует отметить, что гонные группы архаров чаще наблюдаются на пологих степных склонах, а при выпасе скота они чаще гоняются в глухих урочищах и на высокогорных плато. Особо следует отметить, что при обильном снегопаде архары из высокогорий в массе спускаются в средне- и даже низкогорья (до 500-1000 м). Но поскольку архаров постоянно беспокоят, то они и здесь предпочитают более крутосклонные части гор, чаще встречаясь среди скал и осыпей. По описаниям В.М. Антипина (1947) архары и в других частях хребта Каратау также обитают среди скалистых ущелий, иногда густо поросших ясенем, клёном Семенова, дикой яблоней, боярышником, кизильником и другими древесно-кустарниковыми растениями.

В зимнее время территориальное распределение каратауского архара зависит от высота и структуры снежного покрова, а также наличия и доступности кормов (Цалкин, 1945). С увеличением высоты снежного покрова архары из верхних частей хр. Каратау спускаются в ряде случаев до предгорий (табл. 2).

Снежный	і покров	Число	anyanop peri	еченных на склонах различной экспозиции				
Высота, плотность,		ерная	•	очная	Западная			
СМ	г/см ³	n	%	n	%	n	%	
до 10	0.10-0.15	19	26.76	8	11.11	5	6.76	
10-20	0.10-0.15	27	38.03	39	54.17	31	41.89	
20-30	0.20-0.22	14	19.72	14	19.44	22	29.73	
30-40	0.20-0.22	7	9.86	8	11.11	9	12.16	
более 40	0.24-0.26	4	5.63	3	4.17	7	9.46	
Всего		71	100.00	72	100.00	74	100.00	

Таблица 2. Распределение архара в зависимости от снежного покрова, 2003-2016 гг.

Изучение зимней экологии каратауского архара показывает, что в условиях Каратау высотное распределение животных зависит, прежде всего, от высоты и структуры снежного покрова. Так, на склонах северной и восточной экспозиции животные предпочитают участки, где высота снежного покрова не превышает 30 см. На склонах западной экспозиции архары предпочитают участки, где высота снежного покрова менее 30 см, хотя 22% животных встречены на участках, где высота снежного покрова варьировала от 30 до 45 см при его плотности 0.20-0.22 г/см³. Склоны южной экспозиции в большинстве своём малоснежны, а в ряде случаев бесснежны, так что архары могут кормиться здесь всю зиму. Тем не менее, часть архаров, обитающая летом в верховьях рек Актобе, Коксарай и Ушозен, с установлением снежного покрова даже в обычные зимы откочевывают к югу, в низкогорья и предгорья хр. Каратау, проходя до 20-25 км. Меньшая же часть архаров совершает лишь незначительные вертикальные кочевки, перемещаясь не далее 5-6км.

По мере таяния снега (в марте – апреле) архары медленно поднимаются в горы вслед за отступающим снежными покровом и появляющейся зеленью. К концу весны они, как правило, возвращаются к летним местам обитания, проходя в обратном направлении до 20-25км. На хребте Каратау выделяются следующие стации, на которых чаще встречаются архары: 1) степные пологие и выровненные склоны в низкогорной, среднегорной и водораздельной частях хребта; 2) крутосклонные глубокие глухие ущелья с многочисленными выходами коренных пород.

В бесснежное время распределение архаров во многом определяется антропогенным фактором, так как склоны хребта Каратау являются местами весеннего-летнего выпаса домашних животных, в первую очередь домашних овец. Основными местами обитания зимой являются горные массивы с хорошо выраженными остепнёнными участками; лишь в случае значительных снегопадов,

сопровождаемых обычно сильными ветрами, бараны спускались в глубокие закрытые ущелья. Некоторая концентрация архаров наблюдается в местах, где удачно сочетается холмистая местность со скалистыми массивами, куда они убегают в случае опасности. Одним из таких мест являются склоны западной экспозиции горы Тастытау к северу от перевала Баджи. Нижняя часть склонов пологая, с многочисленными мелкими ущельями, с богатой травянистой растительностью и относительно густыми зарослями спиреи, дикой вишни, и шиповника. Выше по склону громадные выходы коренных пород, причём каменная гряда («серпантины»), тянущаяся на несколько километров, как бы опоясывает гору Тастытау. Сверху над серпантинами склоны круты, а ущелья становятся глубокими, и животные здесь легко могут скрыться.

Экспозиция склонов на зимнее распределение диких баранов в условиях хребта Каратау в безветренную погоду не оказывает существенного влияния, так как постоянный снеговой покров держится короткое время. Только в суровые зимы архары придерживаются склонов южной экспозиции, где снег стаивает быстрее. В конце апреля — начале мая картина распределения архаров меняется. Самки с ягнятами придерживаются глубоких ущелий и скалистых склонов, где становятся менее заметными и доступными для врагов.

Питание. В Казахстане изучено недостаточно, особенно на хребте Каратау (Федосенко, Капитонов, 1983). По литературным сведениям, архары в Каратау весной выходят из гор и пасутся на озимых хлебах, а в юго-восточной части хребта Каратау архар в весеннее время поедают листья и бутоны тюльпанов, луков, ревеня и др. растений (Антипин, 1947; Плешак, 1980). Осенью отмечено поедание опавших плодов боярышника (Федосенко, Капитонов, 1983). Проведенные нами исследования свидетельствуют о том, что на хребте Каратау архары поедают травянистые растения 60 видов и листья, цветы, побеги и плоды 11 видов кустарников, кустарничков и деревьев (табл. 3).

Таблица 3. Растения, поедаемые архарами на хребте Каратау в разные сезоны года

	Поедаемые части		Сезо	Степень					
Растение (группа растений)	растения			Осень Зима		важности корма			
Травы									
Aстрагалы (Astragalus aksaricus; A. Severzovi; A. michaelis)	Листья, цветки, стебли	+	+++	+++	-	Основной корм			
Бородач кровеостанавливающий (Bothriochloa ischaemum)	Листья, цветки	-	+	+	+	Случайный			
Василек растопыренный (Centaurea sguarrosa)	Листья, цветки	++	++	-	-	Второсте- пенный			
Герань скальная (Ceranium saxatile)	Листья, соцветия	++	++	+	-	Второсте- пенный			
Гречишник (Polygonum sp)	Листья, соцветия	++	++	+	-	Второсте- пенный			
Горошек (Vicia kokanica; V. sp)	Листья, соцветия, бобы	+	++	++	-	Второсте- пенный			
Ежа сборная (Dactilus glomerata)	Листья, цветы	++	+++	+++	+++	Основной			
Клевер (Trifolium sp.)	Листья, стебли, цветы	-	+++	++	-	Основной			
Ковыли (Stipa karataviensis; S. caucasica; S. zalesskii; S. sp.)	Листья, стебли, соцветия	+	++	++	++	Второсте- пенный			
Колокольчик сборный (Companula glomerata)	Листья, цветы	+++	+++	+++	-	Основной			
Копеечник (Hedysarum karataviensis)	Листья, цветы	+	+++	++	-	Основной			
Лапчатки (Potentilla asiatica; P. pedata; P. sp.)	Листья, цветы	++	++	++	+	Второсте- пенный			
Лисохвост луговой (Alopecurus pratensis)	Листья, соцветия	+	+	+	-	Случайный			
Луки (Allium barszevkii; A. humenorrhizum; A. sp.)	Листья, стебли	+++	+++	+	-	Основной			
Люцерна (Medicago sp.)	Листья, цветы	-	+++	+++	+++	Основной			
Маки (<i>Papaver sp.</i>)	Листья, цветы	++	+	-	-	Второсте- пенный			

	П		Сезо		Степень	
Растение (группа растений)	Поедаемые части растения	Весна	Лето	Осень	Зима	важности корма
Мятлик (Poa sp.)	Листья, цветы	+++	++	++	++	Второсте- пенный
Овсецы (Helictotrichon hookeri); H. asiaticum; A. desertorum ; H. sp.)	Листья, соцветия	+	+	-	-	Случайный
Овсяницы (Feetuca valesiaca; F. rubra; F. rupicola)	Листья, стебли	++	++	+++	+++	Основной
Осоки (Carex orbicularis; C. turkestanica; C. sp.)	Листья, стебли	+++	+++	+++	+++	Основной
Остролодочники (Oxytropis aulieatensis; O. sp.)	Листья, цветы, бобы	-	+++	+++	-	Основной
Полыни (Artemisia diffusa; A. cina; A. serotina; A. terrae- albae, A. sp.)	Листья, цветки, верхняя часть стебля	+	++	++	++	Второсте- пенный
Пырей (Agropirum cristatum; A. sp.)	Листья, стебли	++	++	+++	+++	Основной и второстеп.
Ревень (Rheum sp.)	Листья, соцветия	++	++	-	-	Второсте- пенный
Солянка (Ilyinia regeli)	Листья, стебли	++	++	++	-	Второсте- пенный
Тимофеевка степная (Phleum phleoides)	Листья, соцветия, стебли	++	++	+	-	Второсте- пенный
Типчак (Festuca sulcata)	Листья, соцветия, стебли	+++	++	++	+++	Основной
Тюльпаны (Tulipa greigii; T. kaufmanniana)	Листья, цветы, стебли	+++	+	-	-	Основной
Ферула (Ferula tenuisecta; F. karatavica)	Листья, цветы	++	++	-	-	Второсте- пенный м
Xохлатка (Corydalis ledebouriana)	Листья, стебли	+	+	-	-	Случайный
Эспарцет песчаный (Onobrychis arenaria)	Листья, цветы, стебли	+++	+++	-	-	Основной
Ястребинка (Hieracium echioides; H. Umlellatum)	Листья, цветы, стебли	-	++	+	-	Второсте- пенный
Ячмень (Hordeum bullosum; H. sp.)	Листья, соцветия, верхняя часть стебля	++	++	++	++	Второсте- пенный м
	Кустарники	и кустарн	ички			
Боярышник туркестанский (Crataegus turkestania)	Листья, цветы, плоды	+	+	+	-	Случайный
Вишня красноплодная (Prunus erythrocarpa)	Листья, цветы, плоды	+	+	+	-	Случайный
Жимолость (Lonicera nummularlifolia; L. sp.)	Листья, цветы, плоды, побеги	+	++	++	+	Второсте- пенный
Кизильник многоцветковый (Cotoneaster multiflora)	Листья, цветы, побеги	+	++	++	++	Второсте- пенный
Можжевельник (Juniperus sp.)	Хвоя, плоды	-	+	+	+	Случайный
Спирея (Spiraea hypericifolia; S. sp.)	Листья, цветы, побеги	-	++	++	++	Второсте- пенный
Шиповник (Rosa laxa; R. Sp.)	Листья, цветы, побеги, плоды	-	++	++	++	Второсте- пенный
Эфедра (Ephedra sp.)	Листья		+	++	+	Второсте- пенный

Примечание: +++ - поедаются очень часто; +- - часто; +- редко; - -поедание растений не установлено.

Растения на хребте Каратау в обычные по влажности годы вегетируют с конца марта до конца октября. Продолжительность вегетации длится от 210 до 220 дней. С началом вегетации в низкогорных районах архары активно поедают солянки. По мере таяния снега архары следуют за вегетирующей растительностью вверх по склону и охотно поедают листья и бутоны. В конце апреля — начале мая

2013 г. на Джоне в утренние и вечерние часы наблюдали за кормлением 2 групп архаров (смешанное и самцовое стада). Ежедневно с 17-18 час. вечера животные поднимались на пологие склоны и кормились до полной темноты, а утром они кормились с рассвета до 9-10 час. Судя по визуальным наблюдениям, животные активно кормились листьями, соцветиями и цветами тюльпанов, реже — маков. По поедям растений в местах кормления, установлено, что архары поедали луки, василёк, герань, гречишник, лапчатник, лисохвост, мятлики, овсецы, овсяницы, осоки, пырей, ревень, солянки, тимофеевку, эспарцет и др.

Аналогичные наблюдения проведены в конце мая 2015 г. в урочище Бозбутак. В утренние и вечерние часы наблюдали за кормлением стада из 5 самок. Они кормились с 18-19 час. вечера до полной темноты, а утром — с рассвета до 9-9³⁰ час. утра. Установлено, что они поедали те же растения из семейств бобовых, злаков, лилейных, розоцветных и сложноцветных. В это время отмечено также поедание листьев спиреи и вишни. По литературным данным известно, что архары весной выходят из гор Каратау и кормятся на озимых хлебах (Антипин, 1947).

Летом основа питания каратауского архара – разнотравье. В конце июня – начале июля 2008 г. на Джоне наблюдали за группой архаров из 6 особей (самки с ягнятами), которые и утром и вечером активно кормилась на участке горной степи, где активно поедали люцерну, клевер, копеечник, ежу сборную, колокольчик, астрагалы, овсяницы, осоки, эспарцет. Кроме того, судя по поедям растений в местах кормления, они также охотно поедали листья и побеги васильков, герани, гречишника, горошка, ковыля, лапчатки, овсяницы, пырея, тимофеевки, ферулы, ястребинки, ячменя луковичного. Следует отметить, что часть архаров охотно кормилась листьями и мелкими побегами жимолости, кизильника, спиреи и шиповника. Изредка они поедали также листья и побеги овсеца, лисохвоста, бородача, хохлатки. Отмечено редкое поедание в это время листьев боярышника, дикой вишни, зелёных листьев ив. Во второй половине августа 2015 г. в верховьях р. Актобе наблюдали за стадом архаров из 11 особей. Они кормились утром до 9 час. 30 мин. – 10 часов, а вечером – с 18 час. 30 мин. до полной темноты. Кормились как на степных склонах, так и в зарослях кустарников. Установлено поедание в массе растений из семейства бобовых, розоцветных, сложноцветных и осоковых. Чаще архары поедали более мезофильные – лисохвост, осоки и др. растения, реже поедали злаки. Особо следует отметить, что если в первой половине лета архары более 75% времени кормились на травянистых склонах, а ¼ времени кормились в кустарниковых зарослях, то уже в конце лета они до 1/3 времени кормились в кустарниковых зарослях. Последнее объясняется выгоранием травянистой растительности, вследствие чего архары предпочитают более сочные корма.

По нашим наблюдениям, проведенным в конце сентября — первой половине октября 2016 г. в урочищах Ран, Кумысты и Тастау, архары утром и вечером в значительном количестве поедали листья ив и плоды абрикосов. В конце октября — начале ноября 2012 г. в верховьях р. Актобе наблюдали за гонной группой архаров из 8 особей. С началом гона животные были активны не только в утренние и вечерние часы, но и в дневное время. Животные в течение светлого времени суток 2-3 раза кормились и столько же отдыхали. В отдельные дни архары кормились и гонялись до 30-40% светлого времени суток. Судя по визуальным наблюдениям и поедям растений, собранных на местах кормежки, установлено поедание астрагалов, люцерны, овсяницы, остролодочника, горошка, ковыля, ежи сборной, полыни. Поедают архары листья и плоды боярышника, жимолости, шиповника и спиреи.

В желудке взрослой самки, убитой браконьерами в урочище Архарбулак в конце октября, содержалось 6.5 кг растительной массы. В рубце самки остатки трав составляли 60%, а 35% содержимого рубца состояли из листьев, побегов и плодов шиповника, спиреи, кизильника, можжевельника и эфедры.

В конце ноября – начале декабря 2015 г. на Джоне мы вытропили кормовые следы стада архаров, а также кормовые наброды ещё двух стад. Установлено, что в начале зимы архары в массе поедают ветошь злаков, осоки, полыни, ковыль, типчак, мятлики, овсяницы, осоки, полыни, эфедру, ячмень луковичный. С установлением снежного покрова они чаще кормятся побегами и плодами кизильника, можжевельника, спиреи и особенно шиповника.

По многолетним материалам сотрудников лаборатории териологии Института зоологии МОН РК основу зимнего питания каратауского архара также составляет ветошь злаков и побеги, листья и плоды кустарников (Байдавлетов, 2010). В рубце желудка архара ставшего жертвой волков на северном макросклоне хр. Каратау в урочище Ран в декабре 2014 г., остатки трав, прежде всего злаков, составляли 55%, а 45% — побеги, листья и плоды шиповника, кизильника, можжевельника и спиреи.

В весенне-летнее время каратауский архар, как и другие подвиды архара, активно посещает солонцы. Водопои играют в его жизни существенную роль в поздневесенний, летний и осенний периоды – до выпадения снега. Копытные находят достаточное количество влаги в многочисленных ручьях, речках и родниках, а зимой поедают снег.

Размножение. Общеизвестно, что горные бараны — полигамные виды, поэтому спариванию этих животных предшествует формирование «семейных» стад или «гаремов» (Антипин, 1947; Гептнер и др., 1961; Сапожников, 1976 и др.). Известно также, что начало гона зависит от погодных условий (Сопин, 1977). Учеными Института зоологии КН МОН РК в 1993-2001 гг. было исследовано 42 семенника и придатка взрослых самцов архаров, в том числе и каратауского барана. Установлено, что в конце августа — сентябре в их половых железах активизируется смерматогенез, а в конце октября в семенниках образуются сперматозоиды (Спивакова, Байдавлетов, 1997; Спивакова, Байдавлетов, Плахов, 2002). Поэтому в обычные по климатическим особенностям годы самцы каратауского архара в самочьих стадах наблюдаются с 20-25 октября, а в конце этого месяца отмечаются первые признаки ухаживания самцов за самками (табл. 4).

Регион, хребет	Начало гона (предтечковый период)	Конец гона	Разгар гона	Число самок в гареме	Источник информации
Каратау	20 октября	30 ноября	5-15 ноября	1-3	Собств. материалы
-//-	22 октября	30 ноября	5-15 ноября	1-4	Байдавлетов Р.Ж.
-//-	25 октября	5 декабря	5-15 ноября	1-5	Оразбаков Д.Б. (устн. сообщ.)
Боролдай	20 октября	3 декабря	5-15 ноября	1-7	Байдавлетов Р.Ж.
Таласский Алатау	20 октября	30 ноября	1-15 ноября	до 5	Федосенко, 2000
Джунгарский Алатау	середина октября	30 ноября	5-20 ноября	1-8	Слудский и др., 1983
Памир	конец ноября	начало января	середина декабря	8-25	Федосенко, 2000
Казахское нагорье	15-16 октября	начало декабря	5-25 ноября	1-9	Федосенко, 2000

3 декабря

10-20 ноября

Байдавлетов Р.Ж.

23 октября

Таблица 4. Сроки гона каратауского архара (для сравнения – сроки гона архаров других подвидов).

Наиболее интенсивно гон у каратауского архара протекает с 5 по 15 ноября. Формируют «гаремы» обычно самцы старше 7-8 лет, изредка 5-6-летние. Количество самок в гареме колеблется от 1 до 5, чаще их бывает 2-3 (n=27). Причем часть самок имеет ягнят, а часть самок ещё неполовозрелые. В гареме могут быть и молодые, 1-2-летние самцы, которых взрослый самец не трогает. При формировании «гарема» между самцами обычны демонстрации и турнирные бои (Федосенко, 1979; Федосенко, Капитонов, 1983). При приближении эструса гаремные самцы постоянно контролируют самок, проявляя типичное половое поведение. Они то и дело подходят к самкам в позе «low-stretch» («движение вытянувшись») и «twist» («своеобразном повороте головы, когда один рог направлен вверх, другой вниз»), обнюхивают половые органы и мочу самки (Geist, 1971). Самки, не пришедшие в охоту, обычно отбегают. Приходящую в охоту самку самец преследует неотступно, гоняясь за ней по пятам, что в своё время было отмечено А.К. Федосенко (1979) при наблюдении за гоном тянь-шанского архара. Поведение самки в охоте заметно меняется. Она позволяет самцу обнюхать половые органы, не убегает, когда самец шеей и грудью касается её крупа, делает садку, длящуюся 5-10 секунд. Судя по наблюдениям в природе и в Шымкентском зоопарке, самец каратауского архара покрывает самку с интервалом от 7 до 29 минут (n=11).

Общеизвестно, что сроки рождения ягнят в разных частях ареала аргалиобразных баранов не одинаковы (Гептнер и др., 1961). Обычно в низкогорье и среднегорье самки архаров рожают с конца марта – начала апреля, в высокогорье – в конце апреля, а на Памире – с конца мая, что связано с разным временем прекращения морозного периода и начала вегетации растительности (Гептнер и др., 1961; Сапожников, 1976; Федосенко, 1979). Судя по нашим исследованиям, окот каратауского архара начинается в начале апреля и длится до начала мая, а массовый окот обычно наблюдается с 5 по 15 апреля (табл. 5).

Так, 1 апреля 2006 г. в урочище Туекулаган сотрудники Института зоологии наблюдали взрослую самку архара с двумя новорожденными ягнятами. В этом же урочище 3 апреля 2013 г. самку архара с новорожденным ягнёнком видел один из авторов, участвовавший 7-9 апреля 2008 г. в авиаучёте, на котором в западной половине хребта Каратау насчитали 92 архара, среди них – 9 (9.8%) ягнят.

Установлено, что самки каратауского архара перед родами уединяются в укромных местах, где и ягнятся, что вообще характерно для горных баранов (Федосенко, Капитонов, 1983; Данилкин, 2005). Самки каратауского барана кормят ягнят молоком до конца ноября — декабря (Байдавлетов, 2010).

В апреле-мае 2013 г. на площади более 40 тыс. га мы совместно с сотрудниками Института зоологии МОН РК и лесниками лесхоза встретили 19 самок архара, у 11 (57.9%) из которых было по 1 ягнёнку, у 4 (21.05%) – по 2 ягненка, а 4 (21.05%) самки были без ягнят.

Таблица 5. Сроки окота у каратауского архара (для сравнения сроки окота у архаров других подвидов)

Регион, хребет	г Начало окота Конец окот		Массовый	Кол-во	Источник	
, F			окот	ткнлк	информации	
Каратау	Каратау З апреля 1 мая 5-15 апреля		1 мая 5-15 апреля		Собственные	
Каратау	3 апрели	1 Max	3-13 апрели	1-2	материалы	
-//-	1 апреля	7 мая	5-15 апреля	1-2	Байдавлетов Р.Ж.	
-//-	1 апреля	5 мая	5-15 апреля	1-3	Оразбаков Д.Б.	
-//-	т апреля	Э мая	3-13 апреля	1-3	(устн. сообщ.)	
Таласский Алатау	пополо опреда	начало мая	первая половина	1-2	Слудский и др.,	
Таласский Алатау	начало апреля	начало мая	апреля	1-2	1983	
Джунгарский Алатау	3-я декада апреля	середина мая	25 апреля – 5 мая	1-2	Байдавлетов Р.Ж.	
Памир	25 мая	конец июня	5-15 апреля	1-2	Сапожников, 1976	
Казахское нагорье	25 марта	начало мая	5-20 апреля	1-2	Федосенко, 2000	
Казахское нагорье	2 апреля	12 мая	10-20 апреля	1-2-3	Байдавлетов Р.Ж.	

Более достоверную информацию о плодовитости каратауского архара можно получить при обработке материалов учётов, проведенных нами совместно с сотрудниками Института зоологии МОН РК и лесниками Каратауского лесничества в апреле-мае 2003-2014 гг. Всего в эти годы при наземных и аэровизуальных учётах, а также проведении экологических исследований отмечено 217 архаров, среди которых было 47 (21.68%) самцов архара старше трёх лет, 25 (11.52%) 1-2-летних самцов, 79 (36.40%) самок, с которыми было 66 (30.41%) ягнят. Учитывая, что по материалам Института зоологии ежегодно 1/4 часть взрослых самок остается яловой, можно рассчитать, что на одну рожавшую взрослую самку архара в первые месяцы деторождения (т.е. в апреле-мае) приходится 1.1 ягненка. Следует отметить, что плодовитость архара в действительности несколько выше приведенной цифры, так как часть новорожденных ягнят затаивается и остается неучтённой (Данилкин, 2005).

Смертность. Известно, что в разных популяциях архара в течение первого года жизни гибнет от 61.0% до 74.2% молодых животных (Егоров, 1955; Гептнер и др., 1961). Высока смертность молодых животных и на хр. Каратау. Так, если в апреле-мае 2003-2014 гг. здесь было встречено 217 архаров, из которых 66 (30.41%) были ягнятами, то уже в октябре-ноябре 2003-2014 гг. среди 209 архаров было всего 33 (15.79%) ягнёнка. А в апреле-мае 2003-2014 гг. среди встреченных в эти годы 192 архаров было лишь 17 (8.85%) годовалых. Таким образом, судя по нашим исследованиям, в течение первого полугодия гибнет до 50% сеголетков, а до годовалого возраста доживает не более 25.7% животных.

В пределах хребта Каратау в 1960-2001 гг. зарегистрирована гибель 25 архаров (Байдавлетов, 2002), а за период с 2002 по 2014 г. нами установлена гибель 29 архаров (табл. 6).

Таблица 6. Причины гибели каратауского архара в 1960-2016 гг. (n – особей).

	Встречаемость погибших архаров, по годам, в %.						
Причины гибели	1960-2001	C	обственные мат	гериалы			
причины гиосли	(n=25)	2002-2010	2011-2016	Вс	его		
	(Байдавлетов, 2002)	(n=17)	(n=12)	n=29	%		
Волки	25.73	23.53	25.00	7	24.14		
Лисицы	2.86	11.76	8.33	3	10.34		
Собаки (чабанские и безнадзорные)	8.57	-	8.33	1	3.45		
Крупные хищные птицы	2.86	11.76	-	2	6.90		
Болезни, паразиты	2.86	-	-	-	-		
Многоснежье, бескормица	5.71	-	-	-	-		
Низкая температура во время окота	2.86	5.88	8.33	2	6.90		
Браконьерство	31.4	35.29	33.33	10	34.48		
Содержание в неволе новорожденных	2.86	5.88	8.33	2	6.90		
Пожары	2.86	-	-	-	-		
Прочие известные	2.86	-	-	-	-		
Неизвестные	8.57	5.88	8.33	2	6.90		
Всего, %	100.00	100.00	100.00	100.00	100.00		

В местах обитания архара мы с 2002 по 2014 г. обнаружили и исследовали 11 останков животных, убитых браконьерами и хищниками или павших от прочих причин. Собрано и проанализировано 107 экскрементов волка и 29 экскрементов лисицы. Исследовано содержимое 17 желудков волков и 9 лисиц. Для установления причин гибели животных проводилось тщательное обследование места обнаружения их останков (Murie, 1944; Егоров, 1955).

Причины смертности архара обычно подразделяют на естественные, антропогенные и невыясненные (Байдавлетов, 2002). К первым относятся случаи гибели от биотических и абиотических факторов, а ко второй — все случаи гибели, причиной которых прямо или косвенно является человек (Байдавлетов, 2002). В особую категорию выделяются случаи гибели животных, причины которых не установлены.

Судя по материалам таблицы 6, наиболее существенный вред популяции каратауского архара наносили и наносят браконьерство и волки. Так, если от браконьеров в 1960-2001 гг. гибло 31.4% животных, то в 2002-2014 гг. – 34.48%, т.е. гибель копытных от незаконной охоты в последнее десятилетие возрастает. Анализ причин гибели каратауского архара свидетельствует о том, что во второй половине XX ст. его обычно отстреливали на мясо, а в «лихие 90-е» годы устраивали даже чёрные трофейные интурохоты. Судя по неофициальным источникам, только во второй половине 90-х гг. на хребте Каратау с привлечением иностранных охотников было отстреляно 4 или 5 трофейных самцов (Федосенко, 2000). И это несмотря на то, что каратауский архар как исчезающее животное внесён в Красную книгу Республики Казахстан и Красную книгу МСОП. В последнее же десятилетие в связи с улучшением охраны редких и исчезающих копытных Казахстана, в том числе и архаров, чёрные трофейные охоты на каратауского архара не проводятся, зато незаконный отстрел продолжается даже с использованием вертолетов.

Из хищников наибольший урон каратаускому архару наносит волк (23-25% от числа погибших животных). Наибольший урон волки наносят архару во второй половине зимы, когда выгоняют их на передутые снегом участки и там легко давят, причём чаще гибнут старые и больные особи (Байдавлетов, 2002). Лисицы, собаки и крупные хищные птицы добывают лишь молодняк, чаще всего новорожденных. Определить истинные размеры гибели ягнят от хищников трудно, так как тушка утилизируется хищниками почти полностью и лишь по находкам отдельных частей их тела (чаще кости) у логов или гнёзд и в экскрементах хищников можно судить об этом (Байдавлетов, 2002).

Так из осмотренных в 2002-2016 гг. на хребте Каратау 5 волчьих логов у 2 валялись свежие останки ягнят архара. А из осмотренных в эти же годы 8 выводковых нор лисицы у 3 найдены свежие останки ягнят. В августе 2009 г. в верховьях р. Ран под гнездом беркута обнаружены кости конечностей и наполовину разрушенный череп недельного архаренка. По опросным сведениям, чабанские собаки время от времени в середине и второй половине апреля отлавливают новорожденных или ещё не окрепших ягнят.

Гибель архаров от многоснежья и бескормицы в последнее десятилетие не отмечена, хотя в 60-е гг. XX ст. имела место (Байдавлетов, 2002). В то же время отмечено несколько случаев незаконного отлова новорожденных ягнят каратауского архара, часть из которых впоследствии пала.

Таким образом, наши материалы свидетельствуют о том, что главные причины смертности каратауского архара — волки и браконьеры. Для сохранения и воспроизводства каратауского архара необходимо снижение численности волка, расширение сети охраняемых территорий, регулярное проведение соответствующих охранных и воспроизводственных мероприятий.

Литература

Антипин В.М. Копытные//Звери Казахстана. Алма-Ата: Казогиз, 1941. Т. 3. 107 с. **Антипин В.М.** Экология, происхождение и расселение диких баранов Казахстана//Изв. АН КазССР, сер. зоол. 1947. Вып. 6. С. 3-32. **Антипин В.М.** Очерки наземных позвоночных хр. Каратау//Бюлл. МОИП, отд. биол., 1955, т. 60, вып. 1. С. 33-38.

Байдавлетов Р.Ж. Каратауский архар//Красная книга Республики Казахстан. Т. 1. Животные, ч. 1. Позвоночные. Алматы, «Сhevron», 1996. С. 264-265. **Байдавлетов Р.Ж.** Факторы смертности архара в Казахстане//Современные проблемы природопользования, охотоведения и звероводства: Мат-лы Международной научно-практической конференции, посвященной 80-летию ВНИИОЗ (Киров, 28-31 мая 2002г.). Киров, 2002. С. 133-135. **Байдавлетов Р.Ж.** Каратауский горный баран//Красная книга Казахстана: Позвоночные животные. Алматы, 2008. Т. 1. Ч. 1. С. 278-279.

Гептнер В.Г., Насимович А.А., Банников А.Г. Млекопитающие Советского Союза. Т. 1. Парнокопытные и непарнокопытные. М.: Высшая школа, 1961. 776 с.

Грачев Ю.А. Редкие виды млекопитающих заповедника Аксу-Джабаглы и хр. Каратау//III съезд Всесоюзного териологического общества. М.: Наука, 1982. С. 39-51.

Грачев Ю.Н. Краткое сообщение об архаре в северо-западной части хребта Каратау//Редкие животные Казахстана (Материалы ко второму изданию Красной книги КазССР). Алма-Ата: Наука, 1986. С. 37-38.

Данилкин А.А. Полорогие//Млекопитающие России и сопредельных регионов. М.: Изд-во КМК, 2005. 552 с.

Иллюстрированный определитель растений Казахстана / Под ред. В.П. Голоскокова. Алма-Ата: Наука. 1968, Т. 1. 644 с.; 1972, Т. 2. 572 с.

Камелин Р.В. Флора Сырдарьинского Каратау. Ленинград: Наука, 1990. 147 с.

Новиков Г.А. Полевые исследования экологии наземных позвоночных. Москва: Советская наука, 1953. 503с.

Плешак Т.В. К экологии архара весной//Копытные фауны СССР. М.: Наука, 1980. С. 194-195.

Сапожников Г.Н. Дикие бараны (род Ovis) Таджикистана. Душанбе: «Дониш», 1976. 201 с.

Северцов Н.А. Вертикальное и горизонтальное распределение туркестанских животных//Известия Общества любителей естествознания, антропологии и этнографии. 1873. Т. 2, Ч. 2. 157 с.

Сопин Л.В. Размножение аргали//Редкие виды млекопитающих СССР и их охрана. М.: Наука, 1977. С. 233-234.

Спивакова Л.В., Байдавлетов Р.Ж. Микроструктура гонад половозрелых самцов *Ovis ammon collium* в Центральном Казахстане//Редкие виды млекопитающих России и сопредельных территорий. М., 1997. С. 92.

Спивакова Л.В., Байдавлетов Р.Ж., Плахов К.Н. Динамика репродуктивной активности самцов горных баранов Казахстана// Зоологич. исслед. в Казахстане: научная конференция (Алматы, 19-21 марта 2002 г.). Алматы, 2002. С. 119-122.

Федосенко А.К. Поведение архаров в репродуктивный период в Северном Тянь-Шане и Джунгарском Алатау// Зоол. журн., 1979. Т. LVIII, вып. 6. С. 903-911. **Федосенко А.К.** Архар в России и сопредельных странах. Москва. 2000. 292 с.

Федосенко А.К., Капитонов В.И. Архар//Млекопитающие Казахстана. Алма-Ата: Наука, 1983. Т. 3, Ч. 3. С. 144-209.

Цалкин В.И. О вертикальном распределении диких баранов//Бюлл. МОИП, отд. биол., 1945. Т. 50, вып. 1-2. С. 39-51.

Цалкин В.И. Горные бараны Европы и Азии//Материалы к познанию фауны и флоры СССР, издаваемые МОИП. Нов. сер., отд. зоол., М: МОИП, 1951, вып. 27, 344 с.

Geist V. Mountain sheep. A study in behavior and evolution. Chicago-London: The Univ. of Chicago Pres., 1971. 383 p.

Murie A. The wolves of Mount Mc Kinley//Fauna of National Parks of the United States, Washington, 1944, 238 p.

Summary

Yerlik R. Baidavletov, Viktor O. Salovarov. To the ecology of Karatau Argali (Ovis ammon nigrimontana Severtzov, 1873).

The article is dedicated to study of ecological peculiarities of Karatau Argali (*Ovis ammon nigrimontana* Severzov, 1873): seasonal territorial distribution, food, reproduction, death rates and its causing factors. It is established that in times with no snow Argali inhabit flat and slightly slopes mountain parts and with fodder plants, moving to the distances of 20-25 km. In Karatau mountains Argali eat grasses of 60 species and 11 species of shrub and semi-shrub. The base of Karatau Argali's diet throughout the year is motley grass; with highest importance of Fabaceae, Asteraceae, Poaceae, Liliaceae, Cyperaceae, Chenopodiaceae and Rosaceae. Reproduction takes place 3-4 weeks earlier than in highland populations of Tien Shan subspecies. 73.3% females have 1 lamb, while 26.6% have 2 lambs. In the first six month 50% of lambs dies, and only 25.7% make it to one year old. The main causes of Karatau Argali death are poaching (34.48%) and wolves (24.14%). There is also death caused by foxes, wild and shepherd dogs and large predatory birds. Newborn lambs die from return of low temperatures and during trapping.

УДК 599.32+591.4

Social behaviour of *Ondatra zibethicus* L. muskrats under their natural settlement and protection of family plot from individuals of the same species in Kyrgyzstan

Kharadov Alexandr V.

Biology-soil Institute of NAS KR, Bishkek, Kyrgyzstan

Behaviour nature of muskrat during a year is changeable. Changes of year seasons entail corresponding changes in animal ethology since constant change of abiotic environmental factors occurs. This results in physiological reconstruction of a rodent organism. Thus, in spring inception of reproductive period occurs to which mass spring migrations precede. They are accompanied by high degree of aggression towards individuals of own species. Rigorous competition arises during families' formation. Borders of selected plots with reconstructed old and constructed new inhabitations are strenuously marked. Instinct of inhabitation and family plot in winter-summer period is highly developed in rodents, and they atilt defend settled territory from congeners-competitors, especially during bearing and growing calves (Kharadov, 2011).

Among rodents, muskrat has middle sizes which achieve the biggest parameters on the second year during lifetime (\sim 3 years). Thus, it was determined that maximum body length is 337 mm, tail - 271 mm, and the total animal length were 608 mm with weight of 1245 g. The length of upper and lower incisors can exceed 20 mm. Using them an animal is able to inflict considerable and deep wounds (= bites, = scars) on skin during arising scuffles between individuals. Following two types of bites on fur are noted by us: a). the size of bite does not exceed 5 mm (an animal bit an enemy and released): b). the size of bite exceeds 5 mm (an animal intensively shaking by hand during biting which leads to skin rupture and leaves deep wound on the body).

To avoid scuffles at arising conflict situations a muskrat demonstrates frightening poses at first: raises fur on spine, leaps and makes rushes towards enemy, bares incisors and gnash by teeth. We observed as a muskrat moved through snow from a frozen up to bottom pound to a flowing canal and faced with a neglected dog (of middle size). Above mentioned frightening poses helped the rodent to gain time and safely reach open water and hide. Probably the dog was young and non-experienced in hunting wild animals. There is a case when an animal frightened away a deer female from a reservoir in July. Protecting own territory and defending calves, muskrat becomes spiteful, not feeling fear at all animal even in the face of enemy which much more surpass it on size and physical strength.

Whiskers or tactile hairs are important receptor organ which take part in internal communication, pheromone distribution, have tactile function which determines muskrat aggressive behaviour during invasion on its territory animals from other families (Ahl, 1986). Communicative mechanisms in muskrat population promote information transmission needed for forming its special structure and energy economy, mainly in conditions of intra-species competition. These mechanisms favour regulation of quantity and density of certain community at various population densities. At high population number communicative mechanisms serve as its limiter which is necessary for conserving peculiar to the species spatial structure.

Besides intensive marking and demonstrative behaviour, conflict situation arise which often ended with severe scuffles. This result in muskrat exhausting primarily in the main points of migration ways which are distinguished by higher reproductive potential (Laanetu, 1988). Acute competition for fodder plots arises among muskrat at 17 % and less plant cover of reservoir. Scuffles among animals become more severe in June (Errington et al., 1963).

Wounded muskrat males were met more frequently in May-June during sexual activity. Consequences of scuffles between rivals are wounds on a body. There is temporary monogamy in this period (Pronlx, 1989). Three months old calves start to be evicted by parents from the inhabiting plot and aggressiveness is evolved at them. Sometimes calves stay with parents up to 1 year (Steiniger, 1976).

Frequency of bites occurrence on skins can be an indicator of intra-species relationship tension in population (Kelbashekov, 1988). Muskrat aggressiveness towards individuals of the same species can decrease during extreme winter conditions. Thus, individuals of several families can feed together on one fodder table in places of plant resource concentration in winter period (Shirjaev, 1989).

It is following from literature that data on muskrat social behaviour at protection of family plot are fragmentary and scanty. In this study we tried to clear up such questions as: aggressiveness degree of different age and gender of rodent groups on months and year seasons; dependence from abiotic factors (water mineralization) and altitude zones (from 700 to 1700 m above sea level) and other populations environmental conditions.

Material and methods

Data collection was carried out during three years (from November 2007 to November 2010) in 11 sites: Chui valley -34 specimens (Tokmok hunting ground -33 and Sokuluk hunting ground -1); ponds RC -20, 150

GES -5 - 10, Manas -7, Glass-manufacture -4, Dordoi -1, Miljafan -1 and Karagacha stream -3; Issyk-Kul basin -37 specimens (Balykchi hunting ground -29 and Semenov hunting ground -8). 117 muskrats of various ages were caught during study, among them 57 are females (\mathcal{P}) and 60 are males (\mathcal{P}). About three specimens were caught each month. Animals were caught by traps #0 and #1 and also by mordushka of various modifications and by live traps_with falling doors. Traps were installed on fodder areas on 2 cm lower water level. It is desirable checking and taking out animals up to $23^{00} - 24^{00}$ hours because other muskrats often attack caught animals and data adequacy will be distorted. Two-seater rubber boat Sea Hawk II and binoculars BPC -4 8x30 were used in expeditions. Muskrat carcasses were weighed on electric balances ACS Electronic CE. Metal 30 cm ruler was used for scar length measurements.

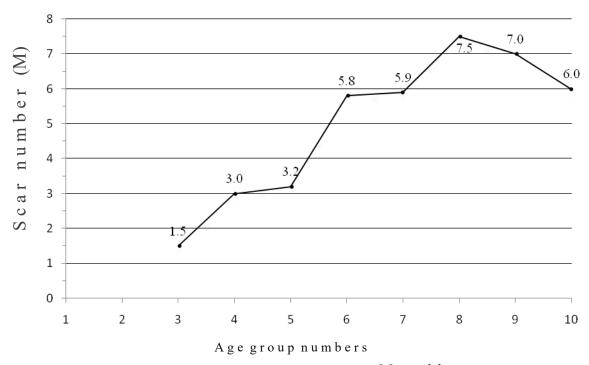
Skin was accurately (excluding accidental cuts) taken off from caught animal and freed of fat. Revealed bites and wounds (fresh and scarred) were transferred on beforehand prepared two skin figures (dorsal and ventral sides). Ruptures on skin were sewed up and skin was stretched according to GOST (Fur raw material, 1977) for following drying and animal moulting study. The gender was determined by obligatory examination of abdominal cavity, especially of young animals.

Various criteria and methods are proposed by zoologists for determination of muskrat age. So, V.S. Smirnov (1960) measured crown height and fang length of the first lower molar. Distal ring of baculum outgrowth also can serve as criterion for determination of three age groups (Elader, Shanns, 1962). Four age groups are distinguished on degree of teeth erasing up to two years (Ruprecht, 1974). E. Trankova (1966) determined eight age muskrat groups by teeth measurement and some standards of cranium measurements. Methods of rodent age determination on tail length and weight of glass crystalline lens are proposed in Belgium (Le Boulenge, 1977). All these methods are labour consuming and require special skills and equipment. For study of aggressiveness of various age rodents we selected 10 age groups which cover animals from 205 to 1245 g which conform to physiological age from 1,5 month to 2 and more years (Tab. 1).

A small data array (few quantity) gives us reason to not implement formal statistical processing which value we not at all depreciate.

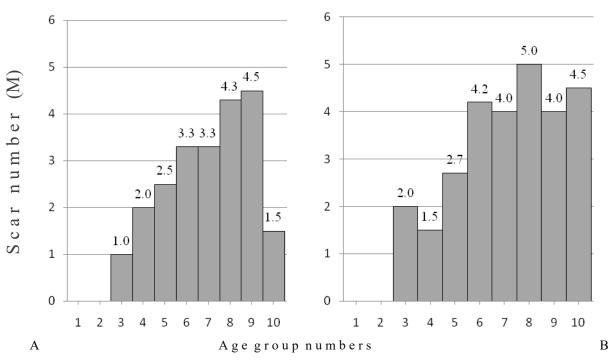
Collected material is stored in zoological collection of the Biology-soil Institute of the National Academy of Sciences of the Kyrgyz Republic.

	A ı	nimals		Weight (g)			
Number of age group	a g e	n u m b ♀♀	e r 33	limit	M	weight increment according to M	
1.	1.5 month	2	2	205-290	247	-	
2.	2 - // -	3	7	310-490	400	153	
3.	3 - // -	5	5	500-595	539	138	
4.	4 - // -	5	9	600-690	647	109	
5.	5 -6 - // -	11	9	705-780	746	99	
6.	7 - // -	11	10	810-890	847	101	
7.	8 - // -	6	10	900-995	947	100	
8.	9-12 - // -	12	5	1000-1075	1037	90	
9.	> 1 year	2	1	1105-1135	1117	80	
10.	> 2 years	-	2	1210-1245	1227	110	
Total:		57	60	205-1245	247-1227	980	


Table 1. Structure of age groups of Kyrgyzstan muskrats (2007-2010)

Results and their discussion

On muskrat lateral body sides from forefoot to hind foot there are muscles and tendons with stripe up to 6 cm, which are dense constitution having thickness of 5-7 mm in males. Similar constitutions of these tissues named "kalgans" are found in some other animal species. On belly and as less vulnerable body parts kalgan is not presented and skin thickness here is 1 mm whereas on sides it reaches 2 mm. Both males and females have these constitutions; they are less expressed in latter.


Kalgan protects rodent from deep wounding by rival and facilitate wound quick healing. Being adaptive constitution, kalgan was formed during evolution and have become important species adaptation which allows muskrat to avoid lethal incidents among males during severe scuffles for females and during protection of own territory. Consideration of various age groups participation degree is important in understanding muskrat social behaviour under defending family plot. We did not observe scars on muskrats before 2 months age. At this age animals are very small and their average weight does not exceed 490 g. Animals of groups 1 and 2 are under parent guardianship, do not leave family plot and do not take part in conflict situations (Fig. 1). Animals of group 3, having weight of 539 g, had traces of bites at 20 % of animals with average scar length 60 mm per individual. Approximately the same percent (21.4 %) at muskrats having traces of scuffles are observed in age

group 4. Average scar number increased from 1.5 to 3.0 whereas their length decreased in almost 3 times and was 33.7 mm per individual. It was noted more than half of animals (60.0 %) in group 5 were of 5-6 months. Average scar number remained almost as previous – 3.2, but their length increased to 50.2 mm per individual. In group 6 the percent of bitten animals remained on the same level, but notable increasing of average scar number to 5.8 per individual and their length to 85.0 mm occurred. Number of bitten animals (93.7 %) in age group 7 (8 months) had notably increased at that the number of scars remained almost on the previous level - 5.9 per individual, but their length had continued to increase and was 106.8 mm in average of one scar. Muskrats of age under 1 year (8th age group) had scar percent decrease (76.5 %) on skin, but scar number increased up to 7.5 per individual and their length reached in average to 135.6 mm. All animals older than 1 year had injuries on skin. It was determined 7.0 scars per individual and their length was only 33.0 mm in average per one individual with scars. Two male of group 10 had 6.0 scars per individual and their length was at maximum and reached 141.0 mm in one animal. Regarding percent ratio, the most scar number was in age groups 6, 7 and 8 – 22.0 %, 25.5 % and 28.1 % of total found scars respectively 53.8 % of total observed muskrats (117 specimens) had scars. Localization of scars on their bodies had certain differences (Fig. 2). Thus, if there were 161 scars on the back then on belly there were 184 scars that made up 3.3 and 3.9 in average respectively. Average scar length was also higher on belly than that of on back – 19.5 mm and 15.8 mm respectively. The largest indexes on back were observed in age groups 8 and 9 and on belly in group 8. Interestingly, in group 10 (age is >3 years) scar number on back was only 1.5 whereas on belly in the same group it was 4.5 per individual (3 time higher). Probably it is connected with that fact that during conflict animals stand on hind legs and belly is more often bitten. We did not observe occurrence of torn wounds in genital area both of \mathcal{Q} , and \mathcal{A} .

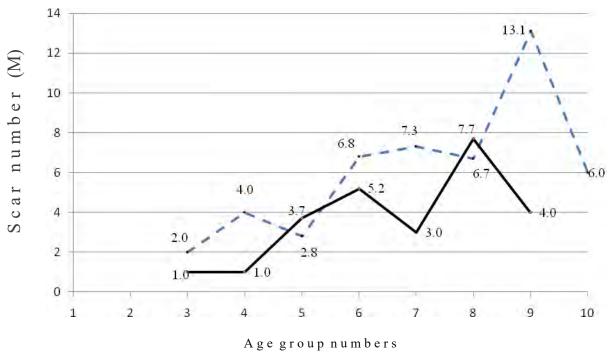
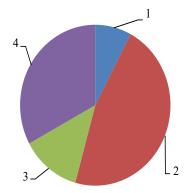


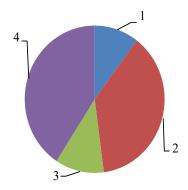
Fig. 1. Bites on bodies various age muskrats (\mathcal{P} and \mathcal{P})

Average scar length was almost the same; at \Im it was 17.9, at \Im -17.6 mm per individual. The largest scar length of \Im were determined in 9 and 7 age groups – 41.7 and 21.7 mm per individual respectively, and that of \Im in 3 and 10 groups – 50.0 and 23.5 mm respectively.

Fig. 2. Scar topography and number of muskrats (\mathcal{P} and \mathcal{P}) in various age groups: A) – back; B) – belly

Fig. 3. Skin damages dynamics of muskrat of various ages at conflicts with individuals of the same species: $\bigcirc\bigcirc$ – ———; $\bigcirc\bigcirc$, – - -


Three peaks of wound number decrease on muskrat body during year were detected. If in February there were 2.3 scars per an animal then in March its number increased in more than 3 times and was 7.0. Then in April decrease of aggression to 4.4 bites was observed. In May number of scuffles again increased which is evidenced by scar number which was 8.1 per individual. In June, July an August scar number varied from 2.0 to 4.6. The highest number was observed in September which reached 10.5 bites per individual.


The most severe scuffles were in January and October which evidenced by average wound length per individual – 28.4 and 26.5 mm respectively. The indexes were as following depending on year season (Fig. 4). If

the largest scar number was observed in spring (46.5 %) and in autumn (32.9 %) then their largest length was observed in autumn (40.9 %) and then only in spring (37.7 %). Number of individuals with scars on seasons was following: in winter – 40.9 %, in spring – 78.1 %, in summer – 36. %, and in autumn – 56.7 % of total number of studied rodents.

The slight divergence in number and length of muskrat scars in two different vertical-landscapes belts of Kyrgyzstan (Tab. 2) is specified by study season.

Since animals were caught in Tokmokskoe hunting ground in winter period in absence of migrations and reproductive activity then scar number was two times lower than in Balykchinskoe hunting ground where rodents were caught in summer period (presence of migrations and reproductive activity).

- 1. Winter 7.8 3. Summer - 12.8
 - 2. Spring 46.5 4. Autumn 32.9
- 1. Winter 10.3 3. Summer - 11.1 4. Autumn - 40.9 2. Spring - 37.7

Fig. 4. Scars numbers (A) and their length (B) in %

Conclusion

The age groups 1 and 2 do not take part in family plot defence and conflict situations. Scars arise only in muskrats of 3 and further age groups. High scar quantity were in animals of ages from 7 months to 2 years and older. Probably the highest activity in area protection was observed in rodents of age groups 8 and 9. Belly was more often affected to bites (3.9) than the back (3.3). Muskrats do not bite each other in area of genitals. The average scar number in 99 was 5.0, in 33-6.0. It is probably connected with the fact that female rarely leaves nest during offspring growing and male carry out protection of family plot. Females do not take part in defence of home and bordering territory during about 3 months (lactation lasts ~ 1 month x 3 litters = 3 months). Three peaks of highest inter-species aggression were determined: in March (7.0 scars per individual), May (8.1) and September (10.5). In first two cases it is connected to reproduction when intolerance to individuals of own species is the highest, and in the third case it is connected with migration of young individuals of the first litter. The longest scar length was revealed in January 28.4 mm and in October 26.5 mm per individual.

Table 2. Muskrat skin damage in conflict situations within various vertical-landscape biotope of Kyrgyzstan

C41: - 1 - :4 -	Animals			Scars				
Studied site	nuı	nber	%	num	ber	len	gth (m	m)
Chui valley, Tokmoskoe hunting ground, fresh water, >790 m	33	16	48.5	53	3.3	798	15.1	49.9
Issyk-Kul hollow, Balykchinskoe hunting ground, salt water (marine), >1600 m	29	15	51.7	102	6.8	1853	18.2	123. 5
Total:	62	31	50.0	155	5.0	2651	17.1	85.5

Indices of scar quantity and length were the highest in spring and autumn periods. Scar decomposing (abscesses) was not detected. It is probable that during evolution mechanism, under which scars quick healing occurs, was developed. One of the adaptation for reducing negative scar effect on muskrat back and especially on body sides are sizeable thickness of skin epidermis ("kalgan") in comparison with that on belly. The largest scar number - 45 was found in a female in September at their total length of 790 mm, and in a male caught also in September these indexes were 19 and 290 respectively. The sizes of females are smaller than that of males and it is difficult for them to resist in inter-species conflicts.

Literature

Ahl A. S. The role of vibrissae in behaviour: a status review // Vet.Res.Commun. 1986. Vol.10. N4. P. 245-268.

Elader W.H., Shanks C.E. Age changes in tooth wear and morphology of the baculum in muskrats // J. Mammal. 1962. Vol.43. № 2. P.144-150.

Errington P.L., Siglin R.J., Clark R.C. The decline of a muskrat population // J.Wildlife Manag. 1963. Vol. 27. №1. P. 1-8.

Le Boulenge E. Two ageing methods for muskrats: live or dead animals //Acta theriol. 1977. Vol. 22. № 30-36. P. 509-520.

Proulx G. Consideration sur les blessures des rats musques (*Ondatra zibethicus*) adultes males en saison de reproduction // Mammalia. 1989. Vol. 53. № 1. P. 19-23.

Ruprecht A. L. Cranianefric variations in Central European population of *Ondatra zibethica* (Linnaeus, 1766) // Acta theriol. 1974. Vol.19. № 26-33. P. 463-507.

Steiniger B. Beitrage zum verhalten und zur soziologie des bisams (*Ondatra zibethicus* L.) // Z. Tierpsychal. 1976. Vol. 41. № 1. P.55-79.

Trankova E.K. Metadice stari ondatry pizmova *Ondatra zibethica* Linnaeus, 1758 // Lunx. 1966. № 6. P. 165-172.

Atlas of the Kyrgyz SSR. M., 1987. Vol.1. 158 p.

Kelshebekov B.K. Studying of bites on *Sciurus vulgaris* skin for assessment of intra-species tension in population // Behaviour of hunting animals. 1988. P.58-63.

Laanetu N.P. Dependence of communicative mechanisms and territorial structure of muskrat population on its size // Nat. conf. Communicative mechanisms of mammal pop. structure regulation. M., 1988. P. 60-61.

Fur raw stuff. State standards of USSR. – M., - 1977. 168 p.

Smirnov V.S. Determination of age and age ratio of mammals on the example of squirrel, muskrat and five predator species // Proc. of Biology Institute of USSR AS Ural branch. 1960. Vol. 14. P. 97-112.

Kharadov A.V. Ondatra zibethicus L. ethology in spring-summer season // Science and new technologies. 2011. Vol. 2. P. 117-122.

Shiryaev V.V. Muskrat // Hunting and hunting farming. 1989. Vol.3. P.14-16.

Summary

Александр Владимирович Харадов. Социальное поведение ондатры Ondatra zibethicus L. в естественных поселениях и защита семейного участка от особей того же вида в Кыргызстане

В статье рассматривается агрессивное поведение ондатры в различные времена года по отношению к особям из других семей при охране семейного участка. Отношения между животными различного возраста и пола имеют определенную важность в конфликтных ситуациях. Обсуждаются топографические признаки числа и длины шрамов (укусов) на теле животных. Показана природа повреждений тел грызунов водно-болотных комплексов различных высотных поясов.

3AMETKA

УДК 598.33 (574)

Первая зимняя встреча перевозчика в Казахстане

Как известно, перевозчик (Actitis hypoleucos), населяющий большую часть Евразии, является дальним мигрантом и зимует в подходящих биотопах по всей Африке, в Месопотамии и всему Индо-Австралийскому архипелагу (Гладков, 1951). Территорию Казахстана, встречаясь во время пролета практически повсеместно, покидают в конце сентября — начале октября (Долгушин, 1962). Указания на редкие зимние встречи в последнем источнике не подтверждены фактическими материалами. За последние десятилетия зимние встречи в Казахстане не зафиксированы.

Начиная с декабря 2008 г., мы проводим регулярные зимние исследования птиц за побережье Каспийского моря в Мангистау (Мангышлак), от залива Ералиево (Курык) на юге до залива Тюп-Караган (Баутино) на севере. Во время очередных полевых работ зимой 2014/15 г. на незамерзающем оз. Караколь 11 декабря был отмечен перевозчик, который держался на берегу тёплого канала, по которому вода, использовавшаяся для охлаждения механизмов на МАЭК при опреснении морской воды, сбрасывается в оз. Караколь. Погоду в этот период можно описать как оттепель после похолодания, дневные температуры чуть выше нуля, переменчивая облачность, ветер умеренный. Птица сфотографирована А. Катунцевым (www.birds.kz). Посетив это место через месяц, 12 января 2015 г., после гораздо более сильного похолодания (акватория Караколя на 70% была покрыта льдом, дневные температуры -4-6°С, ночные до -12°С), мы обнаружили перевозчика на берегах того же тёплого канала. Птица выглядела здоровой и энергичной. Месяц спустя мы не увидели перевозчика здесь, что не означает его отсутствия: возможно, он сместился по каналу вверх, на охраняемую территорию, которую мы проверить не могли. Поэтому мы не можем ничего сказать об успехе этой зимовки.

Следует сказать, что за прошедшие зимние сезоны мы отметили здесь 18 видов куликов. Кроме 15 видов, встречи с которыми были опубликованы нами в 2011 г. (Карпов, Ковшарь, 2011), многие из которых отмечались и в последующие зимние сезоны, встречено ещё 3 вида. Кроме приводящегося в этом сообщении перевозчика, мы зафиксировали морского зуйка (*Charadrius alexandrinus*) и большого улита (*Tringa nebularia*) 16 января 2016 г., первого из них на городском побережье в пределах г. Актау (которого за неделю до этого, 4 января, здесь же сфотографировала Анна Ясько, <u>www.birds.kz</u>), второго – на мелководьях Караколя.

Долгушин И.А. Кулики//Птицы Казахстана. Т. 2. 1962. С. 40-245. **Гладков Н.А.** Перевозчик//Птицы Советского Союза. Т. 3. 1951. С. 241-249. **Карпов Ф.Ф., Ковшарь В.А.** О зимнем пребывании куликов на полуострове Мангышлак//Selevinia, 2011. С. 211-213.

В.А. Ковшарь, Ф.Ф. Карпов Алматы

КРАТКИЕ СООБЩЕНИЯ

УДК 595.797 (574)

Роющая oca Eremochares dives (Brullé, 1833) (Hymenoptera, Sphecidae) – новый кандидат в Красную книгу Казахстана

Казенас Владимир Лонгинович

Институт зоологии МОН РК, Алматы, Казахстан

Eremochares dives (Brullé, 1833) (см. фото на обороте обложки) относится к семейству роющих ос (Sphecidae), у которых самка изготавливает для своего потомства специальное гнездо (обычно в виде трубчатой полости в земле), приносит туда провизию (парализованных или убитых насекомых или пауков), откладывает на неё яйцо и тщательно закрывает пробкой из частиц субстрата.

Вид Eremochares dives был описан французским энтомологом Г. Брулле (G. Brullé) в 1833 г. по материалам из Греции, первоначально был отнесен им к роду Ammophila Kirby, 1798. В 1886 г. Э. Андре (Еd. André) перенес его в род Parapsammophila Taschenberg, 1869, однако большинство исследователей долгое время продолжали рассматривать вид по-прежнему в роде Ammophila. Лишь в 1966 г. американец А. Менке (А. Менке) на основании специальной ревизии поместил его в род Eremochares Gribodo, 1883. Вид имеет несколько синонимов: Ammophila melanopus Lucas, 1849; Ammophila festiva F. Smith, 1856; Ammophila elegans F. Smith, 1856; Ammophila limbata Kriechbaumer, 1869; Ammophila nigritaria Walker, 1871; Eremochares doriae Gribodo, 1883; Parapsammophila retowskii Konow, 1887; Ammophila orichalceomicans Strand, 1915 (Pulawski, 2010).

Важнейшими диагностическими признаками рода *Eremochares* являются следующие. Коготки с базальным зубцом на внутреннем крае. Галеа в развернутом состоянии никогда не тянется за середину стипеса и обычно короче. Стебельковая ямка почти полностью окружена стернумом промежуточного сегмента. Внутренние края глаз самки сильно сближаются книзу.

Род содержит 5 видов, распространенных в южной части Палеарктики. *Eremochares dives* имеет широкое южно-палеарктическое распространение. Он известен из Южной Европы (Греция), Украины, юга европейской части России, Северной Африки (Тунис, Алжир, Морокко, Египет), Юго-западной Азии (Турция, Ливан, Израиль, Оман, Саудовская Аравия, Ирак, Иран), Афганистана, Средней Азии (Туркменистан, Узбекистан, Таджикистан), Казахстана и Китая (Pulawski, 2010). Есть сведения, что заходит в Индию и Пакистан. В Казахстане известно два вида – *E. dives* и *E. mirabilis* Gussakovskij, 1928. Отличия между *E. dives* и *E. mirabilis* приведены в следующей определительной таблице:

- 1 (2). Темя и среднеспинка с очень густым опушением, скрывающим скульптуру. Минимальное расстояние между глазами равно длине 3-го членика усиков. Грудь $\mathcal P$ красно-коричневая. *E. mirabilis* (Guss.)
- 2 (1). Темя и среднеспинка с менее густым опушением, не скрывающим скульптуру. Минимальное расстояние между глазами больше длины 3-го членика усиков. Грудь ♀ обычно чёрная............. *E. dives* (Br.)

E. mirabilis обитает на самом юге — в пустыне Кызылкум. Это очень редкий и малоизученный вид, известный в Казахстане лишь из одного места (30 км южнее г. Шардара). *Eremochares dives*, напротив, в Казахстане широко распространен в южных областях. Он известен из следующих регионов: предгорья хр. Боралдай — близ Бугуньского вдхр.; долина р. Сырдарья и присырдарьинские пустыни —

окр. г. Шардара, пос. Байгакум (близ Чиили), г. Кызыл-Орда; пески Кызылкум; о. Возрождения (Аральское море); п-ов Мангышлак – ур. Бас-Кудук; Рын-пески; долина р. Или – от Аяк-Калкана до Капчагая (ныне все известные точки затоплены Капчагайским вдхр.); предгорная равнина Заилийского Алатау – 10 км северо-западу от станции Чемолган.

Экология и биология: Eremochares dives — летний вид. В Юго-Восточном Казахстане первые осы появляются в середине июня. Вскоре после выхода из гнёзд происходит копуляция. Самцы активны лишь в определенное время суток. Их лёт на участке выхода самок в солнечную погоду наблюдается с 7-8 часов до 11-12 часов и затем с 16-17 до 19-20 часов. Промежуток между этими двумя периодами они проводят на цветках растений, питаясь нектаром. Самки же, наоборот, в утренние часы питаются нектаром цветов, а к гнездованию и другими «работам», связанными с заботой о потомстве, приступают в 11-12 часов и заканчивают к 17-18.

Обычно вид гнездится на участках с уплотненной, увлажненной и, как правило, сильно засоленной песчано-глинистой почвой в долинах рек или близ различных водоемов в пустынной зоне (оборот обложки, рис. 2). Самки гнездятся на голых участках; делают одноячейковые гнезда в земле, выгрызая кусочки грунта челюстями и вынося их наружу (оборот обложки, рис. 3). Строение гнезда довольно простое. Почти отвесный ход длиной 8-9 см на нижнем конце изгибается и переходит в почти горизонтальное расширение (ячейку). Часто на участках, пригодных для гнездования, образуются скопления норок.

Добыча — личинки саранчовых, представители родов *Dociostaurus, Notostaurus, Oedipoda, Calliptamus, Oedaleus, Chorthippus, Eremippus* и др. (Смирнов, 1915, Мярцева, 1965, Казенас, 1970, Казенас, Насырова, 1991). Поймав и парализовав добычу с помощью жала, оса транспортирует её к гнезду. Опустившись на землю рядом с входом, оса оставляет добычу и открывает норку, которая после изготовления предварительно была закрыта временной пробкой, состоящей из комочков грунта. Затем входит внутрь гнезда и после этого, пятясь, втаскивает жертву внутрь и помещает в ячейку. Осы иногда похищают добычу друг у друга. Это происходит, когда добыча остается без присмотра во время открывания осой норки.

Самка приносит в ячейку до 6 экз. добычи. После откладки яйца и после принесения каждого последующего экземпляра добычи оса закрывает норку частицами грунта, который берёт поблизости в специальной дополнительной норке.

Для вида отмечено замедленное, или прогрессивное, провиантирование в течение всего периода развития личинки, который длится 6-7 дней (Казенас, 1970). В конце его личинка плетёт из шёлка сигарообразный кокон и покрывает его стенки изнутри специальным лаком.

Взрослые осы питаются на цветках различных растений (солнцецвета, ластовня, тамариска, кермека, горца и др.).

В последнее время происходит заметное сокращение численности и ареала вида в Казахстане. Во многих местах он становится редким или исчезает совсем. Главной причиной является сильное антропогенное воздействие на биотопы, где обитает этот вид. Устройство водохранилищ на реках приводит к затоплению территорий гнездования ос (как это случилось, например, при постройке Капчагайского вдхр. на р. Или). Как правило, места гнездования расположены близ водоёмов и сильно вытаптываются скотом. По открытым ровным такырообразным участкам прокладываются дороги (оборот обложки, рис. 4), интенсивно ездит автотранспорт, причем для современных автомобилей даже размокшие весной солончаковые участки не являются препятствием. В результате разрушаются гнёзда ос, гибнут личинки, куколки и взрослые осы, находящиеся в гнездах.

Между тем, *E. dives*, благодаря участию в биологическом контроле численности вредных видов саранчовых является хозяйственно очень ценным компонентом биоценозов солончаковых пастбищных территорий. Он представляет несомненную научную ценность как носитель интересных морфологических, поведенческих и эколого-биологических особенностей. Заслуживает особого внимания как объект генетических и таксономических исследований. Его включение в Красную книгу Казахстана, несомненно, послужит предпосылкой для сохранения в Казахстане его популяций. Следует отметить, что данный вид уже включен в Красную книгу Республики Крым (2015), что служит хорошим примером реакции зоологов на ухудшение состояния популяций тех или иных представителей животного мира.

Литература

Казенас В.Л. К биологии роющей осы *Ammophila (Eremochares) dives* Brulle (Hym., Sphecidae)//Энтомол. обозр. - 1970. Т. 49, вып. 2. С. 292-302. **Казенас В.Л., Насырова С.Р**. Роющие осы (Hymenoptera, Sphecidae) – враги прямокрылых (Orthoptera) в пустынной зоне Казахстана//Изв. АН КазССР. Сер. биол. 1991. № 6. С. 37-40.

Красная книга Республики Крым. Животные. Симферополь: ООО «ИТ «АРИАЛ», 2015. 440 с.

Мярцева С.Н. Роющие осы (Hymenoptera, Sphccidae) низовьев Мургаба и Теджена и их роль как энтомофагов в природе и сельском хозяйстве. (Дисс. на соискание уч. степ. канд. биол. наук). Ашхабад: ИЗИП АН ТССР, 1965. 320 с.

Смирнов Д. О нравах *Ammophila* (*Eremochares*) dives Brulle//Pycck. Энтомол. обозр. 1915. T.15. C. 153-155.

Pulawski W.J. 2010 Catalog of Sphecidae. Catalog of Genera and Species // http://www.calacademy.org/scientists/projects/catalog-of-sphecidae.

Summary

Vladimir L. Kazenas. Eremochares dives (Brullé, 1833) (Hymenoptera, Sphecidae) is a new candidate to the Red Data Book of Kazakhstan

Data on distribution, biology and ecology of *Eremochares dives* (Brulle) is provided in the article. Thanks to participation in biological control of harmful acridids it is very valuable component of biocenoses of saline grazing territories. Recently under the influence of anthropogenic factors there is a noticeable reduction in number and distribution area of this species in Kazakhstan. It is offered to include *E. dives* in the Red Data Book of Kazakhstan.

УДК 595.762 (574)

Материалы к распространению Carabus (Tomocarabus) marginalis Fabricius, 1794 (Coleoptera, Carabidae) в Казахстане

Кабак Илья Игоревич,* Кадырбеков Рустем Хасенович, Колов Сергей Владимирович*****ВНИИ защиты растений РАН, Санкт-Петербург, Россия, E-mail: ilkabak@yandex.ru.
**Институт зоологии МОН РК, Алматы, Казахстан, E-mail: shirson28@front.ru.

Материалы, послужившие основой работы, собраны авторами во время экспедиции по Центральному Казахстану в 2016 г. Помимо этого, использованы коллекционные материалы Зоологического института Российской академии наук (ЗИН, Санкт-Петербург). При перечислении материала приняты следующие сокращения: ml – самец, fm – самка.

Carabus (Tomocarabus) marginalis Fabricius, 1794

Изученный материал. 1 ml, 1 fm Kazakhstan, Bayan-Aul Mts., 7 km SW Bayan-Aul, N 50.7414 E 075.6394, (50°44'29"N / 75°38'22"E) H=492 m, 10.07.2016, R.Kh. Kadyrbekov, S.V. Kolov leg.; 1 fm (ЗИН) Каркаралы, 28.VIII.1897, Киниц.

Обсуждение. Этот приуроченный к лесам вид широко распространён по югу лесной и лесостепной зон от Польши, Венгрии и Румынии на западе через Молдавию, Украину, центральные и южные области Европейской части России, юг Западной Сибири до Алтая на востоке (Kryzhanovskij et al., 1995; Bousquet et al, 2003; Turin et al., 2003). Ближайшие к границам Казахстана находки, отмеченные в литературе, происходят из следующих регионов. Нижнее Поволжье: Еланский р-н (Елань), Алексеевский р-н (хутор Поклоновский), Новоанненский р-н (хутор Деминка) (Калюжная и др., 2000); Челябинская область (Троицкий заказник) (Козырев и др., 2000); Новосибирская область, преимущественно юго-западная часть (Дудко, Любечанский, 2002); Алтай: "Barnaul, Lokotj" (Gebler, 1847), "...Sibirien: Barnaul (Gebler, coll. mea), Loktj (Gebler)" (Breuning, 1933). Известен также из Омской области (экземпляры в коллекции ЗИН). В то же время, С. marginalis не указан для Оренбургской области (Немков, Шапкин, 2012).

С территории Казахстана вид не был упомянут ни в одной из фаунистических сводок, касающихся хотя бы частично лесных регионов (Петропавловская область — Яковлев, 1900; Уральская область — Журавлев, 1914; Арнольди, 1952; Каркаралинский лесхоз — Славченко, 1982, 1984). Не указан он для территории республики и в Каталоге жужелиц Палеарктики (Bousquet et al, 2003). Единственный регион Казахстана, для которого удалось найти литературные сведения по рассматриваемому виду, это Западно-Казахстанская область, где «карабус маргиналис» был отмечен без более точных указаний (Сторожева, 1983). Впоследствии А.М. Сторожева (1985) привела более конкретную информацию о местонахождении вида: «Уральская область, пойменный луг вблизи пос. Подстепное Теректинского района»

(географические координаты этого локалитета $-51^{\circ}09'52"N / 51^{\circ}28'50"E$, H \sim 30 м). Эти указания вполне вероятны, однако нам не известны экземпляры вида, происходящие из этого сравнительно неплохо изученного в фаунистическом отношении региона.

Обнаружение *С. marginalis* в восточной части Казахского Мелкосопочника (горы Баянаул) подтверждает факт обитания вида на территории Казахстана. Экземпляры *С. marginalis* были собраны на границе смешанного леса (сосново-лиственного) на высоте 492 м н.у.м. Синтопично с данным видом был собран *С. (Megodontus) violaceus aurolimbatus* Dejean, 1829.

Авторы искренне благодарны В.С. Абукеновой (Караганда) за помощь в работе.

Исследования проводились частично в рамках проекта № 1838/ГФ4 Комитета науки Министерства образования и науки Республики Казахстан «Влияние антропогенных и абиотических факторов на структуру фауны насекомых степной зоны Казахстана в современных условиях».

Литература

Арнольди Л.В., 1952. Общий обзор жуков области среднего и нижнего течения р. Урала, их экологическое распределение и хозяйственное значение//Труды ЗИН. Т. 11. С. 44-65.

Дудко Р.Ю., Любечанский И.И. 2002. Фауна и зоогеографическая характеристика жужелиц (Coleoptera, Carabidae) Новосибирской области//Евразиатский энтомологический журнал. Т.1. Вып.1. С. 30-45.

Журавлев С.М., 1914. Материалы по фауне жуков Уральской области//Труды Русского энтомологического общества, т. 41, С. 1-61.

Калюжная Н.С., Комаров Е.В., Черезова Л.Б., 2000. Жесткокрылые насекомые (Insecta, Coleoptera) Нижнего Поволжья. Волгоград: Региональный центр по изучению и сохранению биоразнообразия. 204 с.

Козырев А.В., Козьминых В.О., Есюнин С.Л., 2000. Состав локальных фаун жужелиц (Coleoptera, Carabidae) Урала и Приуралья//Вестник Пермского университета. Биология. Пермь: изд. Пермского ун-та. Вып. 2. С. 165-215.

Немков В.А., Шапкин А.Г., 2012. Жужелицы рода *Carabus* L. в фауне Оренбургской области//Труды Оренбургского отделения РЭО. Вып. 2. С. 63-66.

Славченко Н.П., 1982. Почвенная мезофауна Каркаралинского лесхоза (Центрально-Казахстанский мелкосопочник). Автореферат дис. канд. биол. наук. Баку. 1982. 22 с.

Славченко Н.П., 1984. Особенности распределения жужелиц в лесах Каркаралинского лесхоза (Центрально-Казахстанский мелкосопочник)//Проблемы почвенной зоологии. Тезисы докладов VIII всесоюзного совещания. Книга 2. Ашхабад, 1984. С. 97-98.

Сторожева А.М., 1983. Материалы к фауне жужелиц Уральской области//Фауна и экология насекомых Урала. Информ. материалы Института экологии растений и животных УНЦ АН СССР. Свердловск, 1983. С. 51-52.

Сторожева А.М., 1985. Особенности биотопического распределения жужелиц Уральской области//Фауна и экология животных Казахстана. Алма-Ата, 1985. С. 20-23.

Яковлев А.И., 1900. Перечень жесткокрылых, собранных Н.Н. Ширяевым в окрестностях Петропавловска, Акмолинской области в 1897 и 1898 гг.//Труды Русского энтомологического общества. Т. 34. С. 689-711.

Bousquet Y., Březina B., Davies A., 2003. Carabini, pp. 118-201 – In: I. Löbl & A. Smetana (editors): Catalogue of Palaearctic Coleoptera. Vol. 1: Archostemata – Myxophaga – Adephaga. Stenstup: Apollo Books – 819 p.

Breuning S. 1933. Monographie der Gattung *Carabus* L. (IV. Teil). Bestimmungs-Tabellen der europaischen Coleopteren. 107. Heft. Troppau: Emmerich Reitter, pp. 707-912.

Gebler, F.A., 1847. Verzeichnis der im Kolywano-Woskresenskischen Hüttenbezirke Süd-West-Sibiriens beobachteten Käfer. - Bull. Soc. Nat. Mosc., 1847, Vol. 20, f. 1, S. 263-361, f. 2, S. 391-512.

Kryzhanovskij O.L., Belousov I.A., Kabak I.I., Kataev B.M., Makarov K.V., Shilenkov V.G. A checklist of the ground-beetles of Russia and adjacent lands (Insecta, Coleoptera, Carabidae)//Series faunistica. - Sofia-Moscow: Pensoft, 1995. V. 3. 271 p.

Turin, H., Penev L., Casale A. 2003. The genus *Carabus* in Europe. A synthesis. Sofia, Moscow: Pensoft Publ., 511 p.

Summary

Iliya I. Kabak, Rustem Kh. Kadyrbekov, Sergey V. Kolov. Materials on the distribution of Carabus (Tomocarabus) marginalis Fabricius, 1794 (Coleoptera, Carabidae) in Kazakhstan

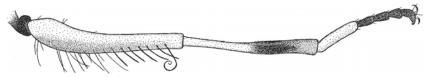
New data on distribution in Kazakhstan are given for *Carabus marginalis*, which is recorded from Eastern part of the Kazakh Uplands (Bayanaul mountains).

УДК 595.77 (574.52)

Находки *Platycheirus barkalovi* Mutin, 1999 (Diptera, Syrphidae) **на юго-востоке Казахстана**

Златанов Борис Васильевич, Айтжанова Мира Онланбековна

Институт зоологии МОН РК, Казахский женский педагогический университет, Алма-Ата, Казахстан


В Определителе насекомых Дальнего Востока России (1999) В.А. Мутин опубликовал краткое описание нового вида журчалки *Platycheirus barkalovi* Mutin, sp. n. из подрода *Pachysphyria* Enderlein, 1938: базальный членик лапок передних ног жёлтый, контрастно отличается от более тёмных апикальных члеников. Самец: лобный угол прямой; щетинки на задней стороне бёдер передних ног чёрные, заметно уплощённые. Самка: базальная ½ бёдер задних ног и, как правило, бёдра и голени передних и средних ног жёлтые; брюшко с косо расположенными овальными блестящими пятнами, которые обычно центрированы желтыми мазками. Обнаружен новый вид на юге Хабаровского края, в Амурской области, Приморском крае, а также в Южной Сибири.

При обработке материала, собранного нами на южном макросклоне Джунгарского Алатау в 2016 г., а также при работе с коллекционным материалом, собранным на юго-востоке Казахстана ранее, обнаружены несколько экземпляров мух-журчалок, почти полностью соответствующих вышеприведенному описанию, за исключением затемнённых в апикальной половине голеней передних и средних ног самки.

Материал: 1 ♂, северо-зап. окр. г. Алма-Ата, пос. Селекция (теперь с. Кольды) 43°19'27.33"N, 76°42'30.70"E, 717 м над ур. м., 14.06.2007 (Айтжанова); 5 ♂♂, 1 ♀, юго-зап. окраина г. Алма-Ата,

п. Рахат (ныне вошёл в черту города, растительность почти полностью уничтожена в результате застройки), 43°11'19.52"N, 76°51'50.53"E, 992 м над yp. 19-24.04.2009; 1 ♀, пойма р. Чарын, Ясеневая роща (окр. Лесной Дачи), 43°32'18.73"N, 79°17'28.78"E, 730 м над ур. м., 11.07.2009; 1 ♀, г. Алма-Ата, терр. Института зоологии. 43°12'42.99"N, 76°54'44.48"E, 910 м над ур. м., 14.08.2009; 1 ♂, Джунгарский Алатау, ущ. р. Коксу, 44°41'09.71"N, 78°56'55.96"E, 1300 м над ур. м., 28.05.2016 (Златанов) (рисунок). Поскольку В.А. Мутин не дает никаких рисунков описанного вида, поэтому мы приводим оригинальное изображение передней ноги самца P. barkalovi (рисунок). Таким образом, юго-западным пределом ареала P. barkalovi являются г. Алма-Ата и его окрестности.

Рис. Места встреч *P. barkalovi* на юго-востоке Казахстана и передняя правая нога самца

Мутин В.А., Баркалов А.В. 62. Сем. Syrphidae — журчалки //Определитель насекомых Дальнего Востока России. Двукрылые и блохи. Владивосток: Дальнаука. 1999. Т. 6. Ч. 1. С. 342-500.

УДК 598.112

О токсичности укуса серого варана (Varanus griseus)

Зима Юлия Александровна

Институт зоологии КН МОН РК, Алматы

На сегодняшний день вопрос о токсичности укуса серого варана остается открытым. Так, по мнению W. Auffenberg (1986), укус варана не несет никаких последствий кроме получения самих ран. Но ещё более 40 лет назад опыты Ю.К. Горелова (1971) по введению инъекций слюны варанов каспийского подвида мелким птицам и грызунам приводили к моментальному параличу последних. Случаи же укуса серым вараном людей в литературе упоминаются довольно редко, а информация об их последствиях скудна и разноречива. Интоксикацию слюной варана описали О. Сопыев с соавторами (1987). По их данным, у укушенного человека, которого варан удерживал в течение одной минуты, наблюдались головокружение, боли в мышцах, ускоренное сердцебиение, осложнённое дыхание; все эти симптомы прошли по истечению 24 часов. Это указывает на то, что слюна варана содержит яд, который имеет парализующие свойства, а различие во мнениях о токсикологических последствиях укуса (W. Auffenberg – Ю.К. Горелов и О. Сопыев), видимо, основано на том, что сам укус может быть как с использованием яда – в результате «жующих» движений челюстью и поступлением яда в рану, так и просто режущий или рваный, без введения яда.

Мне удалось собрать материал по этому вопросу, работая в пустыне Кызылкум (Южный Казахстан). В 2015 и 2016 гг. здесь имели место три укуса взрослыми особями варанов трёх разных людей. Первые два укуса (за кисть и за палец руки) оказались достаточно непродолжительными (без удержания), в результате чего получены только рваные раны, но никаких симптомов, отмечено не было.

В третьем же случае, в сентябре 2016 г., мне «повезло»: укус кисти моей руки полувзрослой особью варана вышел долгим и имел последствия. Укус произошел в 13 час 30 мин (рана сразу обработана перекисью водорода, спиртом и наложена повязка с мазью Левомиколь). Челюсти варана после захвата им мягких тканей кисти, удалось разжать только спустя 7 минут, при этом варан во время удерживания «фыркал» и производил жевательные движения. Первые симптомы проявились через 20 минут – постепенно нарастающие боли мышцы лица, глотки, шеи, спины, боли при движении глазами (принят Зодак – 1 табл., Найз – 1 табл.). Через час болела вся мышечная ткань тела, поэтому попытки встать или просто пошевелиться, вызывали сильнейшую боль (принят активированный уголь – 10 табл.). Пить и просто сглатывать было крайне болезненно. Прикосновения к любой части тела также отдавались болью. Заметно утяжелилось дыхание, за счёт сложности совершения дыхательных движений. Проявилась легкая тахикардия. Спустя 2 часа после укуса появилась тошнота и диарея (принято ещё 10 табл. активир. угля). К 18 час симптомы не спадали, стала очевидной необходимость врачебной помощи. К 20 час началась рвота, после чего тошнота прошла, а чуть позже стала медленно ослабевать общая боль. Добраться до больницы и поставить капельницу удалось только к 22 час 40 мин (капельница – физраствор 500мл + натрия тиосульфат 10мл; укол от столбняка – ADSM 0.5 внутримышечно). После этого боль начала спадать более активно и в полночь удалось немного поесть и заснуть. В 10 час 30 мин утра следующего дня (спустя 21 час после укуса) боль осталась только в мышцах шеи.

Обращает на себя внимание отсутствие воспалительного процесса в месте укуса. На руке рана не воспалилась ни сразу, ни во время заживления, боль не ощущалась и ткань не была отёкшей.

К обеду следующего дня (через сутки после укуса) симптомы действия яда прошли полностью. Развернутый анализ крови на третий день после укуса не выявил никаких изменений — все показатели крови были в норме. Раны полностью затянулись довольно быстро — в течение 12 дней. В местах прокола зубами образовались уплотнения, которые в течение месяца были ощутимы при пальпации, и в течение ещё 2-х месяцев ощущался зуд. Полностью все симптомы в месте укуса исчезли через 3 месяца.

По моему мнению, немаловажную роль в понимании ядовитости *V. griseus* играет тактика его охоты. Схватив добычу, серый варан максимально крепко удерживает её. Мелкую добычу он не жуёт, а сразу начинает заглатывать, либо, сжимая её челюстями, дожидается пока жертва перестает высвобождаться, и после этого съедает. Более крупную добычу варан старается «пожевать» и, также не отпуская ее, заглатывает. Иногда этот процесс может занимать длительное время. Подобная тактика охоты говорит в пользу обездвиживающего действия токсинов яда.

B.S. Arbuckle (2009) считает, что для варанов, которые охотятся главным образом на мелкую добычу, трудно увидеть преимущества в использовании яда для обездвиживания жертвы. Мощные челюсти варана позволяют наносить достаточно сильные повреждения некрупной жертве, что часто приводит к её более быстрой смерти и минимальному риску получить травму самому. Преимущества использования яда становятся очевидными у тех видов варанов, которые охотятся на потенциально

опасную добычу, такую, как крупные млекопитающие или ядовитые животные. Одним из таких видов является *V. komodoensis*, который регулярно нападает на крупных млекопитающих, превосходящих его по размерам. Подобная добыча может представлять серьёзную опасность для варана, поэтому яд *V. komodoensis* играет важную роль в его охоте. Исследования В.G. Fry (2008), посвящённые комодскому варану (*V. komodoensis*), подтверждают наличие у того ядовитых желез и центральную роль яда в поимке добычи. Фосфолипазы, найденные в его слюне, действуют как мощный нейротоксин и также могут разрушать структуру молекул, помогая, таким образом, перевариванию кормовые объектов (Condrea and de Vries, 1965; Harris, 1997). Тем не менее, по мнению В.S. Arbuckle (2005), основная функция яда у варанов не обездвиживание жертвы, а повышение скорости и/или эффективность пищеварения. Для проверки этой гипотезы необходимы экспериментальные исследования по сравнению переваривания кормовых объектов у *Varanus* с участием яда и без него.

И всё же, рассматривать вопрос ядовитости слюны варанов, основываясь только лишь на оценке размеров объектов их охоты не совсем корректно, поскольку вараны практически всеядны. Рацион серого варана разнообразен и меняется в зависимости от условий. Таким образом, несмотря на сомнения некоторых исследователей в ядовитости серого варана, токсичность его укуса подтверждается фактами. Эта токсичность направлена на обездвиживание жертвы, и, видимо, на облегчение её переваривания. Налицо выраженный нейротоксический эффект после укуса варана – паралич скелетной и дыхательной мускулатуры, в результате воздействия на нервную и мышечную ткани. Обнаруженные в слюне серого варана ферменты – общие с ядами змей. По данным М.Э. Абубакировой (1997), слюна, собранная у основания зубов Varanus griseus, куда имеют выход выводные протоки железы Гейба, содержит гиалуронидазу, протеазы и ФРН. Гиалуронидаза усиливает проницаемость капилляров в месте укуса и увеличивает скорость распространения фосфолипазы А2 (пищеварительного фермента, осуществляющих разрушение мембран клеток). Протеазы, с одной стороны, способствуют расщеплению белков, тем самым начиная процесс переваривания, и в то же время вызывают нарушения свертываемости крови. ФРН могут тормозить воспалительные процессы, повышать проницаемость сосудистой стенки. Токсическое действие яда в сочетании с силой укуса, нанесением рваных ран и сильных повреждений тканей, делает серого варана универсальным хищником, способным менять объекты охоты и не зависеть от сторонних влияний на рацион. Необходимо дальнейшее экспериментальное исследование токсичности серого варана, которое может пролить свет на особенности его биологии и физиологии.

Литература

Абубакирова М.Э. Особенности биологии, экологии ряда ужовых змей, серого варана, секреции и механизма действия их ядов//Автореферат. Ташкент. 1997. 23 с.

Горелов Ю.К. О токсичности слюны *Varanus griseus*//Изв. Акад. наук Туркменской ССР. Серия биологическая. 1971. Т. 6. Вып. 1. С. 75-76.

Сопыев О. и др. Случай интоксикации при укусе серого варана *Varanus griseus*//Изв.АН ТССР. Серия биол. наук, №1, 1987. С. 76.

Arbuckle K. Ecological Function of Venom in Varanus, with a Compilation of Dietary Records from the Literature//Biawak. 2009. Vol. 3 (2). P. 46-56.

Auffenberg, W. The Indian monitor lizard//Sanctuary Asia. 1986. Vol. 6. №4. P. 327-333.

Condrea E. A. de Vries Phospholipase A//Reviem. Toxicon. 1965, N2. P. 261-270.

Fry et al. A central role for venom in predation by *Varanus komodoensis (Komodo dragon*) and the extinct giant *Varanus (Megalania) priscus*//PNAS, June 2, 2009. Vol. 106, No. 22. P. 8969 – 8974.

УДК 598.842 (574.54)

Новые данные по чёрной каменке Oenanthe picata Blyth, 1847 в Южном Казахстане

Федоренко Василий Андреевич, Торопов Сергей Акиндинович

Алматы, Казахстан, e-mail: arthey@mail.ru Бишкек, Кыргызстан

В Казахстане гнездование чёрной каменки установлено только для крайнего юга республики, где она найдена на небольшом участке, недалеко от границы с Узбекистаном. Впервые гнездовая популяция, представленная формами *capistrata* и *opistoleuca*, была обнаружена в 1949 г. Р.Н. Мекленбурцевым (1951), севернее г. Сарыагаш, в 5 км восточнее ст. Дарбаза, где им было добыто несколько экземпляров.

Позже на данной территории проводились более детальные исследования в 1978 г. (Митропольский, 2004), и ряд экспедиций в период с 1985 по 2005 г. (Матюхин, 2014), в результате которых была подробно изучена биология и экология данной популяции. А в 2015 г. найдена новая точка гнездования на хр. Бельтау, находящаяся примерно в 50 км северо-западней от известного до этого участка (Пестов и др., 2016).

В ходе экспедиции по югу Казахстана 3-4 июня 2016 г. мы предприняли попытку найти известную популяцию чёрной каменки близ станции Дарбаза, для чего подробно осмотрели северную половину ур. Кызылкудуксай. Южная его часть в данный момент закреплена за военными, и проезд туда закрыт. В результате пешего осмотра чинков чёрных каменок не обнаружено. В долине урочища из воробыных птиц встречена только жёлчная овсянка (*Emberiza bruniceps*). Более того, местность не выглядела подходящей для чёрной каменки – склоны чинков зеленели от свежей травы, а дно урочища и вовсе было покрыто травянистыми зарослями, в некоторых местах в метр высотой. В долине располагается небольшая пасека, видимо, ориентированная на верблюжью колючку. По данным орнитолога А.В. Коваленко (устн. сообщ.) в середине апреля 2014 г. чёрные каменки здесь также не были встречены, но были отмечены каменки-плешанки (*Oenanthe pleschanka*).

Популяция чёрной каменки была обнаружена нами 4 июня в 60 км северо-западнее вышеназванных мест, в районе горы Дарбаза, что примерно в 10 км севернее хр. Бельтау (41°51'18.69" с. ш., 68°32'44.52" в. д.). На нескольких сухих чинках, покрытых скудной растительностью, расположенных друг от друга на расстоянии до 2 км, обнаружено 6 гнездовых участков (см. фото на вклейке).

- 4 июня самка и самец формы *capistrata* держались на склоне небольшого чинка (41°51'18.12" с. ш., 68°32'45.42" в. д.).
- 4 июня самка носила корм на склон другого небольшого чинка (41°51'9.30" с. ш., 68°32'33.06" в. д.).
- 4 июня самец формы *opistholeuca* держался участка (41°50'16.99" с. ш., 68°32'20.51" в. д.) на длинном чинке. Рядом находился слёток, уже начинающий линять во взрослое оперение.
- 4-5 июня на том же чинке в 150 м от предыдущей птицы, пара (самка и самец формы *capistrata*) кормили птенцов в гнезде. Гнездо располагалось в небольшой нише на стенке чинка на высоте около 2 м. В гнезде находилось 4 маленьких пуховых птенца и 1 «болтун».
- 5 июня пара (самка и самец формы *capistrata*) с кормом в клюве держались гнездового участка (41°50'56.48" с. ш., 68°30'55.36" в. д.) на следующем чинке.
- 5 июня на этом же чинке в 150 м летал ещё один самец формы *capistrata*.

Кроме того, уже линяющий во взрослое оперение слёток встречен на равнине у пересыхающей лужи несколькими километрами севернее, ближе к горе Айгыришан.

Позже, 7 августа эти же места посетили орнитологи Б.М. Губин и О.В. Белялов (устн. сообщ.) и также наблюдали здесь взрослых и молодых особей чёрных каменок обеих форм (*capistrata* и *opistoleuca*).

Таким образом, на всех осмотренных нами чинках в данном районе были обнаружены гнездовые участки чёрных каменок, расположенные не ближе 150-200 м друг от друга, но только там, где отсутствовали колонии розовых скворцов, которые в данной местности гнездились в большом количестве. Лишь один из встреченных самцов относился к форме *opistholeuca*. Ввиду ограниченности во времени, нами не был осмотрен хр. Бельтау, где, вероятно, чёрная каменка присутствует с той же плотностью.

Литература

Гаврилов Э.И. Чёрная каменка//Птицы Казахстана. Т. З. Алма-Ата, 1970. С. 550-553.

Любущенко С.Ю., Пирхал А.Б., Матюхин А.В., Панов Е.Н. Состав полиморфной популяции и гнездование чёрных каменок в Приташкентском Каратау//Изучение птиц в СССР, их охрана и рациональное использование. Ч. 2. Л., 1986. С. 46-47.

Матюхин А.В. Чёрная каменка (*Oenanthe picata* Blyth, 1847) в Южном Казахстане: биология, экология, поведение, паразиты, эпидемиологическое значение (история популяции). Москва, 2014. 79 с.

Мекленбурцев Р.Н. О нахождении чёрной каменки и кеклика в Южном Казахстане//Изв. АН КазССР. Сер. зоол., 1951. № 105. Вып. 10. С. 137-140.

Митропольский О.В. Чёрная каменка (*Oenanthe opistoleuca* Strickland, 1849) в Южном Казахстане//Selevinia, 2004, Алматы. С. 218-220.

Пестов М.В., Коваленко А.В., Даулетов А.З. Новая находка чёрной каменки *Oenanthe picata* Blyth, 1847 в Южном Казахстане//Selevinia-2015, том 23. Алматы, 2016. С. 224.

УДК 562. 569.74 (574.4)

Представители ископаемых хищных (Carnivora) кайнозоя Зайсанской впадины (Восточный Казахстан) и Павлодара

Байшашов Болат Уапович*, Алиясова Валентина Нурмагамбетовна**, Касымбекова Гульдана Идырысбековна*

*Институт зоологии МОН РК, Алматы,

**Павлодарский педагогический институт, Павлодар, Казахстан

Отряд хищные (Carnivora), которые берут начало своего развития в конце мела или в начале палеоцена (около 66 млн лет тому назад), были разделены на два подотряда – примитивные хищники (Creodonta Cope, 1875) и настоящие хищники (Fissipedia Blumenbach, 1791). Сейчас ископаемые примитивные хищники выделены в самостоятельный отряд, куда входят семейства - Arctocyonidae, Hyaenodontidae, Oxyaenidae, Mesonychidae. Наиболее древним представителем креодонтов было семейство Arctocyonidae, с примитивными зубами всеядного типа, как у насекомоядных и других древних млекопитающих со стопоходящими пятипалыми конечностями. В Казахстане (местонахождение Шалкар-Тениз), было описано близкое к нему семейство Tshelkariidae (Громова 1959). В Зайсанской впадине из среднеэоценовых отложений местонахождения Аксыир, был обнаружен неопределенный вид из семейства Mesonychidae (Габуния, 1984). «Настоящие» хищники (отряд Carnivora) являются более распространенными и многочисленными животными, выявлено 240-250 видов. У них происходит морфологическое изменение зубов. Более развивается плотоядность зубов, переднекоренные увеличиваются и приобретают режущий характер с постепенным уменьшением заднекоренных, вплоть до полного их исчезновения. Хищные из местонахождения «Гусиный перелет» Павлодара представлены обычными спутниками гиппарионовой фауны. Хотя они в основном такие же, как из местонахождения Калмакпай карабулакской свиты Зайсанской впадины, но некоторые имеют более архаичные признаки, как и другие представители гиппарионовой фауны Павлодара, чем Калмакпайские. В Зайсанской впадине из кайнозойских отложений выявлены отдельные виды этих хищников, которые относятся к 5 семействам, 7 родам и 7 видам. Из более древних отложений остатки их обнаружены незначительно и из-за их фрагментарности определены лишь до семейства.

Отряд Carnivora Bowdich, 1821 Семейство Miacidae Cope, 1880

Miacidae ex grege. Кости этого животного обнаружены в среднеэоценовых отложениях, обайлинской свиты из местонахождения «Чёрная банка». Представители «настоящих» хищников в основном известны из верхнемиоценовых- нижнеплиоценовых? отложений карабулакской свиты местонахождения Калмакпай (Вангенгейм и др. 1993). Ниже приводим систематическое положение и некоторые данные распространения этих животных.

Семейство Mustelidae Swainson, 1835

Подсемейство Mustelinae Gill, 1872

Род Martes Frisch, 1775

Martes paleosinensis Zdansky, 1925. Впервые вид описан из провинции Шаньси в Китае, позже неопределенный вид (Martes sp.) обнаружен в верхнемиоценовых отложениях местонахождения «Гусиный перелет» Павлодара (Орлов,1941).

Род Vormela Blasius, 1884

Vormela sp. Ископаемые перевязки встречаются редко, ранее они были обнаружены в отложениях плейстоцена Закавказья, Апшеронском полуострове.

Род Plesiogulo Zdansky, 1924

Plesiogulo crassa Teilh. De Chard., 1945. Древние росомахи первоначально были найдены в основном в нижнеплиоценовых отложениях Центральной Азии (Китай), позже их кости были обнаружены в Европе и Сев. Америке. В частности, в Северном Причерноморье местонахождение Черевичное (Короткевич, Семенов, 1975), в Греции местонахождения Ватилакос (Koufos, 1982), в Италии из местонахождения Баччинелло (Rook, 1990). В Казахстане из местонахождения «Гусиный перелет» Павлодар Ю.А. Орловым (1941) был описан этот вид как Plesiogulo brachygnatus. Позже Б. Куртен (Kurten, 1970) его отнес к P. crassa. М.В. Сотникова, анализируя материал, приходит к выводу, что павлодарская форма мелкая, по размерам как P. brachygnatus, но по морфологическим признакам ближе к P. cf. crassa.

Семейство Hyaenidae Gray, 1869

Подсемейство Ictitheriinae Touessart, 1897

Род Hyaenictitherium Kretzoi, 1938

Hyaenictitherium hyaenoides orlovi Semenov, 1989. Семейство гиеновые было широко распространено в миоцене Китая. Представители рода Hyaenictitherium были описаны из туролийской фауны Китая, а в Казахстане – из местонахождения «Гусиный перелет» Павлодара. На основе изучения многочисленного материала, находящегося в Палеонтологическом институте (Москва), Ю.А. Семенов (1989) описал гиениктитерия из Калмакпая Зайсанской впадины, как подвид Hyaenictitherium hyaenoides orlovi, отличительными признаками которого были более тонкие клыки, относительно более узкие предкоренные и более слабая редукция последних коренных зубов верхней и нижней челюсти. Он считает, что эти отличительные признаки связаны с более молодым возрастом отложений Калмакпая, по сравнению с местонахождениями в Китае и Павлодаре.

Подсемейство Hyaeninae Mivart, 1882

Род Adcrocuta Kretzoi, 1938

Adcrocuta (=Percrocuta) eximia Roth et Wagn., 1855. Череп адкрокута имеет близкое сходство с современными гиенами. Тем не менее, он был очень коренастый, с короткими, прочными конечностями, видимо он не был хорошим бегуном. Они были распространены в Евразии с миоцена до плейстоцена. Особенно многочисленны на территории Украины и Молдавии. В Казахстане известны из гиппарионовой фауны Павлодара и Зайсана.

Семейство Felidae Gray, 1821

Подсемейство Machairodontinae Gill, 1872

Род Machairodus Kaup, 1883

Machairodus kurteni Sotnikova, 1992. Один из спутников гиппарионовой фауны, был грозный хищник, саблезубый тигр, известный в Евразии со второй половины миоцена до плиоцена включительно. В Казахстане из миоценовых отложений Павлодара был известен новый вид Machairodus irtyschensis Orlov,1936, а из Калмакпая Зайсанской впадины М.В. Сотниковой (1992) описан другой, новый вид Machairodus kurteni, который отличается от других видов более специализированными резцами. Она относит калмакпайскую форму к самым поздним представителям рода.

Семейство Ursidae Gray, 1825

Род *Indarctos* Pilgrim, 1913

Indarctos sp. Представитель медвежьих индарктос, был описан из нижнеплиоценовых отложениях докпатан Северной Индии. Позже разные виды этого рода обнаружены из нижне-средне-плиоценовых отложений Евразии и Северной Америки.

Литература

Вангенгейм Э.А., Вислабокова И.А., Година А.Я., Дмитриева Е.Л., Жегалло В.И., Сотникова М.В., Тлеубердина П.А. О возрасте фауны млекопитающих из карабулакской свиты на р. Калмакпай (Зайсанская впадина, Восточный Казахстан)//Стратиграфия, геологическая корреляция. 1993. Т. 1. № 2. С. 37-44.

Габуния Л.К. Новые данные об обайлинской и саргамысской фаунах Зайсанской впадины//Флора и фауна Зайсанской впадины. Тбилиси: «Мецниереба» 1984. С.124-141

Короткевич Е.Л., Семенов Ю.А. Первая находка неогеновой росомахи *Plesiogulo crassa* в Северном Причерноморье//Вест. зоол. 1975. № 4. С. 33-38.

Орлов Ю.А. Третичные млекопитающие и местонахождения их остатков//Тр. ПИН АН СССР. 1941. Т. 8. Вып. 3. С. 30-39.

Семенов Ю.А. Иктитерии и морфологически сходные гиены неогена СССР. Киев: «Наук. думка», 1989. 176 с.

Gromova V. Premiere decouverte d'un chat primitif au paleogene d'Asie Centrale//Vert. Palasiatica. 1959. Vol. 3. N. 2. P. 59-72.

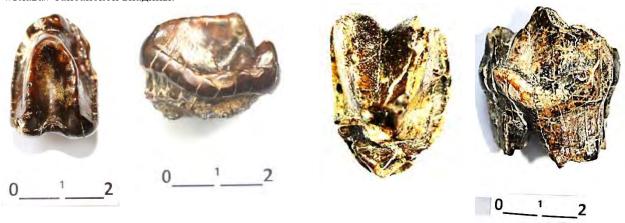
Koufos G. *Plesiogulo crassa* from the Upper Miocene of Northern Greece//Ann. Zool. Fennica. 1982. N. 19. P. 193-197.

Kurten B. The neogene wolverine *Plesiogulo* and the origin of *Gulo* (Carnivora, Mammalia)//Acta Zool. Fennica, 1970. N. 131. P. 1-22.

Rook L. Vertebrate localites with carnivors from the Messinian in Italy//Global events and Neogene evolution of the Mediterranean. 1990. P. 293.

Sotnikova M.V. A new species of *Machairodus* from the Late Miocene Kalmakpai locality in East Kazakhstan//Ann. Zool. Fennici, 1992. N. 28. P. 361-369.

УДК 56.569 (574.42)


Находки костей пантодонта и диноцерата (Mammalia, Pantodonta, Dinocerata) из Зайсанской впадины

Байшашов Болат Уапович

Институт зоологии МОН РК, Алматы, Казахстан

Из местонахождени Майкапчагай обайлинской свиты нами обнаружен зуб (Р\3) одного из древних ископаемых млекопитающих эудиноцерас (*Eudinoceras*). Несмотря на малочисленность форм, по своим особенностям, он выделен в самостоятельный отряд − Pantodonta. В Северной Америке два семейства (Coryphodontidae, Barylambdidae) этого отряда обитали в среднем палеоцене − раннем эоцене. В Азии на территории Монголии и Китая − из отложений позднего палеоцена − среднего эоцена обнаружены представители трех семейств (Coryphodontidae, Archaeolambdidae, Pantolambdidae). Судя по находкам архаичных форм в палеоценовом периоде в Америке и в Азии, предполагают, что если предками азиатских форм являются американские, то они могли мигрировать очень рано и впоследствии развивались самостоятельно. В Европе известен в раннем эоцене Англии один род *Coryphodon*. Представители рода *Eudinoceras* описаны из эоценовых отложений Китая и Монголии (Osborn, 1924). В Казахстане, единственный обнаруженный вид *Eudinoceras obailensis* Gabunia, 1961 описан из обайлинской свиты (Габуния, 1961). Наша находка пополняет материал по этим исчезнувшим в эоцене редким животным.

Другой представитель малоизвестных ископаемых форм — диноцераты. В начале они были объединены в один отряд (Amblypoda) с пантодонтами. Позже, учитывая более архаичные признаки, чем у пантодонта, они были признаны как отдельный отряд Dinocerata. Тем не менее, у них имеется некоторое сходство в строении зубов с пантодонтами. Они произошли от древних плацентарных млекопитающих в раннем палеоцене Азии, а в среднем и позднем палеоцене распространились в Америке. Ранние азиатские формы этих животных (Prodinoceratidae) были небольшие всеядные, а поздние американские — (Uintatheriidae) были очень крупные (размером со слона) и питались растительной пищей. Более поздние азиатские формы (Gobiatheriinae) были крупные, примерно с современного носорога. Считается, что эти животные отделились от американских предков и вели полуводный образ жизни. Они были найдены в эоценовых отложениях Китая, Монголии, Киргизии и Казахстана (Osborn, Granger, 1932; Флеров, 1957; Qi, 1987; Agadjanan A., Kondrashov P., 1999; Lucas, 2001). Нами обнаружен верхний предкоренной зуб (Р\4), из чакпактасской свиты местонахождения «Слава» Зайсанской впадины.

Рис. 1. Верхний предкоренной зуб *Eudinoceras obailensis:* а – вид с жевательной поверхности, б – сбоку

Рис. 2. Верхний коренной зуб *Gobiatherium mirificum*: a – вид с жевательной поверхности, б – сбоку

Ниже приводим описания костных останков представителей отрядов Pantodonta и Dinocerata, обнаруженные нами в Зайсанской впадине.

Отряд Pantodonta

Семейство Coryphodontidae Marsh, 1876

Род Eudinoceras Osborn, 1924

Eudinoceras obailensis Gabunia, 1962

Материал. Верхний предкоренной зуб ($P\2$) - 35(65)4156 (рис. 1); мес. п. Майкапчагай, Зайсанская впадина; средний эоцен, обайлинская свита.

Описание. Парастиль и метастиль одинаково вытянут лабиально. Протокон хорошо выражен. Воротничок широкий и окружает коронку со всех сторон. Длина зуба по наружной стенке 23,5 мм, наибольшая ширина 33 мм.

Распространение. Эоцен, Китай, Монголия, Казахстан.

Отряд Dinocerata

Семейство Uintatheriidae Flower, 1876

Подсемейство Gobiatheriinae Flerov, 1952

Род Gobiatherium Osborn & Granger, 1932

Gobiatherium mirificum Osborn & Granger, 1932

Материал. Верхний коренной зуб $(P\4)$ – 35(69)4201 (рис. 2); мес. Слава, Зайсанская впадина; средний эоцен, чакпактасская свита.

Описание. Парастильный гребень на жевательной поверхности выше, чем метастиль, и немного вытянут лабиально. Внутренняя долинка между гребнями глубокая. Протокон хорошо выражен, высокий. Воротничок, отделяющееся от боковой стенки гребней, спереди и сзади широкий, низкий, а на лингвальной стороне зуба, прижатый к протокону, едва заметно. Наибольшая длина зуба с воротничком 29 мм, ширина 41 мм, наибольшая высота сбоку, по метакону 29 мм.

Распространение. Эоцен, Китай, Монголия, Киргизия и Казахстан.

Литература

Габуния Л.К. Обайлинская фауна древнейший комплекс ископаемых СССР//Сообщ. АН СССР. 1961. № 27 (6). С. 711-713. Флеров К.К. Диноцераты Монголии//Труды ПИН АН СССР. М. 1957. № 67. 82 с.

Agadjanan A., **Kondrashov** P. Gobiatherium (Dinocerata, Mammalia) from Kyrgyzstan//Paleontological journal. 1999. N. 33. P. 308-320. **Lucas** S. Gobiatherium from the middle Eocene of Asia; Taxonomy and biochronological Significance//Palaontologische Zeitschrift. 2001. N. 74. P. 591-600.

Osborn H.F. Eudinoceras, upper Eocene amblypod of Mongolia//American Museum Novitates. 1924. N. 145. P. 1-5. Osborn H.F., Granger W. Corypodonts and Uintateres from the Mongolian Expedition of 1930//Amer. Mus. Nov. 1932. N. 552. 34 p. Qi T. The middle Eocene Arshanto fauna of inner Mongolia//Annals of Carnegie Museum. 1987. N.56. P. 1-73.

УДК 599.32+599.33

Клетка как основное звено

при случайном освоении млекопитающими новых мест обитания

Дворянов Владимир Николаевич

Общество любителей птиц «Ремез», Алматы, Казахстан

В отличие от птиц, млекопитающие, такие как обыкновенный ёж (Erinaceus europaeus) или серая крыса (Rattus norvegicus), не способны быстро преодолевать значительные расстояния в сотни и тысячи километров. А если между их ареалами и потенциально пригодными для жизни территориями расположены угодья по природно-климатическим условиям, непригодные для жизни, то самостоятельное распространение зверьков становится невозможным и в отдаленной перспективе. Крыса-пасюк, будучи синантропным грызуном, приспособилась преодолевать большие расстояния с помощью людей в качестве непрошенного попутчика, сначала на кораблях, а с XIX века — и железнодорожным транспортом. В Казахстане такие удалённые от основных мест обитания поселения серых крыс были в портах и посёлках на побережье Каспийского моря и в Чимкентской области. Но далеко не всегда, попав в, казалось бы, вполне подходящую обстановку, крысам удается приспособиться на новом месте. После строительства железной дороги, соединившей Алма-Ату с Сибирью и республиками Средней Азии, крысы неоднократно появлялись вблизи железнодорожной станции Алма-Ата-1, но прижиться не смогли (Шнитников, 1936; Афанасьев, 1960). Так продолжалось на протяжении почти полувека.

Обосновались крысы в Алма-Ате первоначально как лабораторные животные. В 60-е гг. Казахский зоокомбинат начал разводить небольшое количество крыс-альбиносов для медицинских и научных учреждений. В 70-е гг., после ввода в строй Алматинского биокомбината, резко возрос спрос на новорожденных крысят, которых использовали для изготовления некоторых биопрепаратов, и крыс-альбиносов в массовом количестве начали разводить не только работники Зоокомбината и Биокомбината, но и частники. Это привело к регулярным побегам крыс из вивариев. По устному сообщению А.Г. Нелаева, работавшего до 1983 г. сотрудником Кировского отделения Института животноводства и пушнины, во время посещений расположенной неподалеку от места работы столовой 168

Биокомбината он стал замечать бегающих по арыкам улицы Чапаева белых крыс, по крайней мере, уже с 1980 г. А через 2-3 года крысы, преимущественно альбиносы и отчасти пегие, в заметном количестве появились в районе его проживания между Малой станицей и Татаркой на усадьбах вдоль речки Казачки. Многие жители частных застроек держали тогда свиней, нутрий, кроликов и прочую домашнюю живность, что позволяло беглецам без труда находить себе пропитание и убежища. На крысальбиносов первое время особого внимания не обращали, вероятно, полагая, что они, как и все животные-альбиносы, долго на воле не проживут. Однако в Алма-Ате именно сбежавшие из клеток лабораторные крысы быстро приспособились к местным природно-климатическим условиям и вскоре, перемешиваясь с прибывающими по железной дороге дикими собратьями, заполонили весь город, пригородные посёлки и дачи.

О том, что именно альбиносы первыми приспособились к местным условиям, свидетельствует тот факт, что в северных районах города, примыкающих к железной дороге, крыс типичной серой окраски стали в заметном количестве отлавливать с 1982 г. В тот год, по словам работников местного овощехранилища, серые крысы появились во время массового завоза овощей из Северного Казахстана (Стогов, 1988). В других районах города до середины 80-х гг. обитали в основном белые и пёстрые крысы. Во второй половине 80-х гг. крысы-альбиносы стали редкостью, но пёстрые встречались часто. В настоящее время и в городе, и за его пределами можно увидеть крыс только типичной серой окраски. Альбиносы и крысы с частичным альбинизмом стали такой же редкостью, как и у других диких животных.

Ещё один незваный переселенец, явно попавший на юго-восток Казахстана через клетку – обыкновенный ёж – был обнаружен в 2009 г. в окрестностях Алматы южнее пересечения Талгарских дач и Большого Алматинского канала (БАК). Первоначально было сделано предположение, что ежей недавно завез с севера кто-то из дачников и выпустил у себя на даче, где они и размножились (Дворянов, 2009). Но в 2012 г. юго-западнее г. Талгар на низкогорьях у водозаборных плотин был выявлен ещё один участок, где обыкновенный ёж, по словам местных пастухов, встречается регулярно. Три крупных обыкновенных ежа, выловленных здесь, продавались на Птичьем рынке Алматы в июле 2012 г. (Дворянов 2012). Расстояние между двумя заселёнными обыкновенными ежами участками составляло около 10 км. Таким образом, предположение о сравнительно недавнем специальном выпуске ежей в районе дач отпадает. Время и место их выпуска остаются не выяснеными. Некоторые знакомые нам дачники, участки которых расположены возле Каскеленского ущелья, утверждают, что обыкновенных ежей можно встретить возле плотины и в этом ущелье, удалённом от города Талгар на 60 км. Если эти слухи в дальнейшем подтвердятся, то время постоянного обитания обыкновенных ежей в окрестностях Алма-Аты можно отодвинуть к 50-60-м годам XX столетия. Такой вариант весьма вероятен.

По устному сообщению М.А. Затуринского, он в 50-е гг. несколько раз путешествовал с родителями на поезде в Западную Сибирь к родственникам. Во время остановок на станциях в Северном Казахстане и в Сибири к ним в вагон неоднократно заходили местные жители и предлагали купить для детей морских свинок и ежей. Такого рода торговля была в то время весьма распространена. Многие пассажиры, чтобы скоротать время в пути покупали живые игрушки. Одного ёжика Марк привез домой в Алма-Ату. Но долго он в их доме не прожил. Характер у него оказался такой же колючий, как и он сам. Едва освоившись с новой обстановкой этот с виду симпатичный зверёк начал кусать хозяев, даже когда они предлагали ему с рук самые вкусные лакомства. Будучи очень прожорливым существом, грязи и запахов он воспроизводил тоже не меряно. В конечном итоге обыкновенного ежа выпустили в сад. Подобный итог клеточного содержания ежей, попавших в Алма-Ату с севера, был явно не единичным. Марк неоднократно находил обыкновенных ежей в посадках дендрария, который располагался недалеко от их дома на месте нынешнего цирка. В те годы обширные колхозные сады вплотную подступали к городу. Так что обыкновенным ежам попасть в привычную среду обитания больших трудов не составляло. И только редкость и случайность во времени и пространстве их выпуска в природу, позволили им долго оставаться незамеченными, и не позволили (пока) стать действительно обычными здесь животными.

Литература

Афанасьев А.В. Зоогеография Казахстана. Алма-Ата, 1960. 259 с.

Дворянов В.Н. О появлении обыкновенного ежа (*Erinaceus europaeus*) в окрестностях Алматы//Selevinia, 2009, Алматы, 2010. С. 230-231. Дворянов В.Н. Новые данные о распространении обыкновенного ежа (*Erinaceus europaeus*) в Талгарском районе Алматинской области//Selevinia, 2012, Алматы, 2013. С.178.

Стогов В.И. Серая крыса//Позвоночные животные Алма-Аты. Алма-Ата, 1988. С. 23-26.

Шнитников В.Н. Млекопитающие Семиречья. М.-Л., 1936. 323 с.

ЗАМЕТКИ

УДК 595.384 (574.42)

Новый объект промысла (Astacus leptodactylus Eschholz) в Алакольской системе озёр (Казахстан)

Начиная с 2013 г. при исследовании оз. Кошкарколь в бредневых уловах стали отмечаться единичные экземпляры раков нового для Алакольских озёр объекта. По опросным данным рыбаков и местного населения, было выяснено, что неустановленным любителем несколько экземпляров рака было завезено из оз. Зайсан ещё в 2007 г. и выпущено в оз. Коржинколь, которое в многоводные годы имеет связь с оз. Кошкарколь поверхностным переливом в «Сухую речку» и дальше в озеро.

В оз. Кошкарколь рак начал отмечаться с 2010 г. В лабораторных условиях ТОО КазНИИРХ определили, что выловленные особи являются длиннопалым раком (*Astacus leptodactylus* Eschholz) из семейства речных раков (*Astacidae*). От краснокнижного туркестанского рака длиннопалый отличается формой тельсона и рострумом. В отличие от туркестанского рака форма задней части тельсона не полукруглая, а имеет вид прямоугольника; а серединное рёбрышко рострума хорошо развито и несёт шипики. В текущем году установлено, что длиннопалый рак распространён по акватории озера почти повсеместно, однако больше всего он сосредоточен в районах Уялы, Кауыспай, Елемес и возле посёлка Алаколь. Доминирующее положение в популяции (до 58%) занимают раки длиной тела 10-12 см при колебаниях её от 7 до 14 см.

Соотношение полов по размерным группам показывает, что с 6 до 8 см в популяции раков доля самцов больше 1:1.5, 1:2.6 и 1:2. Начиная с 9 см длины, это соотношение меняется в пользу самок. У раков же размером 14 см самок не обнаружено, что связано с особенностями индивидуального развития полов. Масса тела 7-75 г, в среднем 72 г. На 2017 г. по оз. Кошкарколь установлен лимит на вылов рака — 12 тонн.

Е.К. Данько, Алматы.

Длиннопалый рак оз. Кошкарколь, 2016 г. Фото Е.Т. Сансызбаева

УДК 562/569: 599.61 (575.2)

Трогонтериевый слон в Иссык-Кульской котловине

В 1960 г. на правом высоком берегу реки Жергалан (Джергалан), в 19.5 км к востоку от её устья, почти против впадения в неё речки Аксу, в 1 км к югу от посёлка Орлиное и в 17 км к северо-востоку от города Каракол (Пржевальска), в обрыве четвёртой речной террасы высотою около 35 м, на глубине 15 м от её поверхности (рис. 1) в гравийно-галечниковой прослойке я обнаружил нижнюю челюсть древнего слона. Координаты этого места: 42°35′28″ с. ш. и 78°33′12″ в.д. Абсолютная высота подножья 1669 м.

Рис. 1. Место находки – обрыв р. Джергалан

Рис. 2. Челюсть на месте раскопки

Рис 3. Реставрация внешнего вида

Четвёртая терраса Джергалан сложена перемежающимися речными и озёрными отложениями. Они представлены илами, суглинками, супесями, песками, галечнико-гравийными прослойками среднеплейстоценового возраста. В позднем плейстоцене эти отложения подвергались многолетнему промерзанию, о чём свидетельствуют многочисленные и разнообразные криогенные деформации.

В найденной мною челюсти (рис. 2) был лишь один зуб, другой был потерян животным ещё при его жизни. Его альвеола заросла почти полностью костной тканью. Я решил, что это останки мамонта. Однако по предварительному определению заведующего лабораторией палеозоологии Института зоологии АН КазССР проф. В.С. Бажанова (сделанному им по эстампу зуба) челюсть принадлежала трогонтериевому слону, который обитал в этих краях предположительно около 200 000 лет назад, ещё до появления мамонта

Он был значительно крупнее мамонта. Самцы достигали в высоту в холке почти 5 м. Известно, что у мамонтов и африканских слонов эта величина не превосходит 3.5 м (рис. 3). Следует также упомянуть, что много позднее К. Жылкибаевым (1975) обработана и изучена коллекция нижних и верхних зубов палеолоксодонтных слонов (*Paleoloxodon dzhergalanicus* sp. nov.) из местонахождения близ пос. Орлиное на р. Джергалан. Возраст находки — нижний плейстоцен. По последней Международной стратиграфической схеме средний плейстоцен охватывает период с 126 000 по 781 000 лет назад.

А.П. Горбунов, Алматы

От редакции. Мы попросили директора Музея природы «Ғылым Ордасы» палеобиолога Ф.А. Тлеубердину прокомментировать это сообщение ведущего криолога Казахстана проф. А.П. Горбунова. Вот её комментарий.

В последнее время в ряде СМИ и Интернете появилось сообщение, что местные жители 10 марта в 2016 г. обнаружили на территории сельской управы Отрадное в 30 м от реки Жергалан в стене обрыва бивни и зубы мамонта или мастодонта. Эта местность находится примерно в 25 км к юго-востоку от Каракола, а в местном музее демонстрируются скелетные остатки мамонтов. По данным некоторых источников, в 1958 г. в окрестностях Пржевальска (Каракол) на берегу реки Жергалан были также обнаружены бивень и части черепа мамонта. Судя по представленным в СМИ фотографиям (верхняя челюсть с зубами и бивнями), находку можно отнести к древним степным мамонтам (трогонтериевый слон) — *Mammuthus trogontherii*. Степной мамонт считается очень близким родственником шерстистого мамонта, его предковой формой. В принципе трогонтериевый слон занимает промежуточное положение между плиоценовыми слонами — архидискодонами (Archidiskodon) и плейстоценовыми шерстистыми мамонтами (*Mammuthus primigensis*). По своему строению и внешнему виду эти слоны близки настолько, что их иногда помещают в единую группу Архидискодонов. В среднем плейстоцене на территории Европы он появился около 800 тыс. лет назад, по-видимому, вытеснив своего предка — южного мамонта. Эти огромные животные проникли глубоко в степные районы, приспособились питаться жёсткой травянистой растительностью. Стада трогонтериевых слонов в обилии мигрировали по территориям современного Казахстана, Ставропольского и Краснодарского края, Киргизии и все известные и новые находки подтверждают этот факт.

Ф.А. Тлеубердина, Алматы

УДК 598.826 (574.42)

О летних встречах сибирской чечевицы (Carpodacus roseus) на Западном Алтае

Основной гнездовой ареал сибирской чечевицы расположен в Средней и Восточной Сибири и лишь на самом крайнем юго-западе, на Алтае, он заходит на территорию Казахстана. Сведения по биологии этого таёжного вида для казахстанской части Алтая, скудны и отрывочны. Здесь сибирская чечевица найдена на гнездовании только у Белоубинских озер и на хр. Ивановском (Щербаков, 1978), молодых наблюдали на северных склонах Южно-Алтайского хребта, в начале августа (Щербаков, 1995) и на Курчумском хребте у Маркаколя (Зинченко и др., 1992). Большинство же наблюдений относится к зимнему периоду, причем отмечается у нас сибирская чечевица не каждый год (Гаврилов, 1974, 1999).

В верховьях бассейна реки Чёрная Уба (Становой хр.) за 6-часовую экскурсию 18 августа 2016 г. на стыке субальпийской зоны и верхней границы леса, состоящего из редко стоящих кедров и лиственниц, было встречено 15 сибирских чечевиц (3, 1, 3 и 8 птиц). По своей численности и встречаемости она уступала лишь горным конькам (Anthus spinoletta), кедровкам (Nucifraga caryocatactes) и темнозобым дроздам (Turdus atrogularis). Большая часть из встреченных мной чечевиц оказались молодыми особями (сеголетками). По характеру их поведения, было очень похоже, что это, скорее всего, местные птицы. Такое предположение вполне вероятно, так как на Алтае, именно аналогичный биотоп, является гнездовым для данного вида (Сушкин,1938). Нужно отметить, что места обитания этой недостаточно изученной у нас чечевицы, труднодоступны, и попасть туда можно только на спецтранспорте (гусеничный вездеход). И ещё один интересный момент, многие виды птиц, в природной обстановке, в первую очередь, обращают на себя внимание наблюдателя своим характерным голосом. Поначалу, услышав позывку сибирской чечевицы, я был немало удивлён – так она не походила на голоса других видов наших чечевиц. Их тихий короткий посвист, больше напоминал перекличку обыкновенных овсянок.

Гаврилов Э.И. Род Чечевица//Птицы Казахстана т.5, Алма-Ата, 1974. С. 290-318. Гаврилов Э.И. Фауна и распространение птиц Казахстана. Алматы, 1999. 198 с. Зинченко Ю.К., Стариков С.В., Шакула В.Ф. К фауне редких и малоизученных видов птиц Маркакольской котловины//Состояние и пути сбережения генофонда диких растений и животных в Алтайском крае. Барнаул, 1992. С. 23-25. Сушкин П.П. Птицы Советского Алтая. М.-Л., 1938, т. 2, 438 с. Щербаков Б.В. Экологические сведения о гнездящихся птицах, новых для Западного Алтая и Казахстана//Биология птиц в Казахстане. Тр. Ин-та зоологии АН КазССР, т. 38. Алма-Ата, 1978. С. 127-132. Щербаков Б.В. Заметки о расселении птиц в Юго-Западном Алтае//Актуальные вопросы биологии. Барнаул, 1995. С. 191-193.

Ф.Ф. Карпов, Алматы

УДК 598.333 (574.52)

О высыпках гаршнепа (Lymnocryptes minimus) в период сезонных миграций на юго-востоке Казахстана

Гаршнеп птица определённо скрытная, вследствие чего относительно редко попадается на глаза. Наверное, поэтому в материалах по этому виду, для территории Казахстана, имеются некоторые пробелы. В частности, это относится к регистрациям скоплений, так называемых "высыпок" этих куликов в период сезонных миграций в нашей республике. В основной сводке по птицам Казахстана (Долгушин, 1962), говорится следующее: как во время пролёта, таки и на зимовках, гаршнеп держится одиночками и не образует таких стай как бекас, не бывает и высыпок. Близ Алма-Аты мне не известно случаев добычи больше шести гаршнепов в одну охоту. Правда, этот же автор пишет, что в районе Чимкента-Туркестана, в окрестностях Алма-Аты и долине Иртыша, гаршнеп обычен, иногда даже многочислен (!). После издания второго тома Птиц Казахстана (1962), до настоящего времени, во всех фаунистических публикациях, касающихся территории Казахстана, в том числе и для юго-востока, если и говорится о гаршнепе, то как правило, о встречах одиночных птиц и очень редко о двух-трех вместе. Объяснить это можно следующим – как уже упоминалось, во время миграций гаршнеп строго придерживается заболоченных мест, малодоступных для человека без соответствующей экипировки, к тому же, без рабочей охотничьей собаки поднять этих птиц на крыло можно только случайно. Поэтому, даже при присутствии птиц (порой не малом) в угодьях, они нередко остаются незамеченными. Насколько известно, из казахстанских орнитологов, этим видом, специально никто не занимался.

Считаясь охотничьим видом, он никогда не попадает в учёты специалистов охотничьих хозяйств, так как в нашей стране почти не развита (близка к нулю) охота на болотную дичь, к которой относятся эти кулики. Гаршнеп же, из-за своих небольших размеров (50-70 г.) вообще не обращает на себя внимания большинства современных отечественных охотников. Что же касается орнитологов-любителей (бёдвотчеров), ставших заметными в последние годы, и уже достаточно много сделавших для казахстанской фаунистики, то и для них, гаршнеп не совсем удобный объект — редко держится на открытых местах, и на записанный голос его тоже не подманишь. Тем не менее, высыпки гаршнепов, в Казахстане всё же бывают.

"Высыпка" – термин охотничий. Его применяют к временным скоплениям (не стаям!) некоторых птиц в местах отдыха и кормежки. Классические высыпки образуют пять видов охотничьих птиц: перепел, бекас, гаршнеп, дупель и вальдшнеп (Мальчевский, 1981). Как уже говорилось выше, в некоторых районах нашей страны гаршнеп бывает многочисленным (Долгушин,1962), а это уже может подразумевать их кормовые скопления (т.е. высыпки). На весеннем пролёте, в районе Копала В.Н. Шнитников встречал гаршнепа в изобилии. Как показательный пример, он приводит случай, когда 25 апреля 1910 г. один из местных охотников Н.И. Мекленбурцев, добыл в одном месте 15, а 30 апреля ещё 11 птиц этого вида (Шнитников, 1949). На южном берегу Капчагайского вдхр., в районе с. Маловодное, 9 октября 2001 г. на небольшом участке (1 га) заболоченного берега, мне удалось за час поднять около 30 гаршнепов, из которых добыто 13 птиц.

Долгушин И.А. Отряд Кулики-Limicolae//Птицы Казахстана. Т. 2. Алма-Ата,1962. С. 40-245. Мальчевский А.С. Орнитологические экскурсии//Серия: Жизнь наших птиц и зверей. Вып. 4. Л.: Изд-во Ленингр. ун-та, 1981. 296 с. Шнитников В.Н. Птицы Семиречья. М.-Л., 1949. 665 с.

Ф.Ф. Карпов, Алматы

УДК 598.826 (575.2)

О находке лапландского подорожника (Calcarius lapponicus) на территории Кыргызстана

5 января 2016 г. в окрестности с. Семёновка (Иссык-Кульская область), на поле в стае рогатых жаворонков (*Eremophila alpestris*) обнаружен один лапландский подорожник. Птицу удалось отловить, при осмотре она оказалась молодым самцом. Ранее этот вид на территории Кыргызстана не находили.

С.В. Кулагин, Бишкек, Кыргызстан

УДК 598.2/9 (575.2)

О гибели птиц от града на Иссык-Куле

25 сентября 2016 г. в юго-восточной части побережья озера Иссык-Куль на участке заповедника координаты (N4230038/E07803450) в 13 час 40 мин начался град, который продолжался около 15-20 минут. Размеры градин достигали размеров грецкого ореха, отдельные были до размеров куриного яйца (!). В заливе Бозбешик и на прилегающем болоте кормились утки. После града егерь Иссык-Кульского заповедника А. Калчаев зафиксировал на видео массовую гибель птиц от града. Совместно с местными жителями он собрал погибших птиц, определяя их видовую принадлежность. Выяснилось, что от града погибло около 500 птиц следующих видов: серая цапля – 2, белая цапля – 2, огарь – 10 погибших и 3 раненых, кряква и серая утка – 300 погибших и 18 раненых, чирки (трескунок, свистунок) – 15-20 погибших и 2 раненых, фазан – 2, сорока – 1, чибис – 3, голуби домашние – 13. Учёт погибших мелких птиц не проводился. Интересно, что не было погибших лысух, больших поганок, которые в большом количестве плавали на озере и на болоте. Погибшие утки были обнаружены не на самом болоте, а на близлежащем поле около 100-150 м от болота. Возможно, большая часть уток была убита градом во время взлёта, так у погибших цапель мы фиксировали переломы ног и клюва, а раненые и погибшие утки имели повреждения крыльев и головы. На следующий день егерь обнаружил в прибрежных зарослях облепихи 4 чернозобых дрозда и ещё 2 фазана, погибших от града.

С.В. Кулагин, Бишкек, Кыргызстан УДК 598.422 (574.12)

О встречах моевки (Rissa tridactyla) и клуши (Larus fuscus) в казахстанской части акватории Каспийского моря

Клуша и особенно моевка для территории Казахстана, по имеющимся литературным данным, являются редкими залётными видами (Долгушин, 1962; Гаврилов, 1999; Ковшарь, 2012). В последнее десятилетие, в связи с освоением шельфа Северного Каспия, у казахстанских орнитологов появилась возможность проводить мониторинговые исследования на обширной морской акватории. Наблюдениями были охвачены практически все сезоны года, благодаря чему был накоплен интересный орнитологический материал. Основные наблюдения проводились на акватории Северного Каспия, в 50-100 км от берега, и все ниже приведенные сведения, кроме мест, выделенных курсивом, будут относиться к этому району.

Моевка. В весенний сезон 2008 г. птицы отмечались 21 и 25 апреля по одной особи; 30 апреля и 1 мая — по 1 птице в бухте *Тюп-Караган* (Баутино). В том же году 20 июня одна моевка встречена в *Среднем Каспии*. В 2012 г. самая ранняя за время наших наблюдений встреча (1 особь) произошла 23 марта, когда море было покрыто льдом и лишь кое-где стали появляться полыньи. Вторая встреча моевки этой весной произошла 24 мая на акватории *Среднего Каспия*. Осенью этого года одна моевка отмечена 23 ноября.

Наиболее часто моевки наблюдались в весенний сезон 2013 г. В апреле этого года птицы отмечались в следующие даты: 11-го (1 особь); 12 (1); 14 (3+1); 15(2); 17(1+2); 19(2); 21-го (1 особь). В мае: 4 (1+2 особи); 5 (1); 8 (6 одиночных птиц пролетели в восточном направлении, вместе с большими группами речных крачек); 28-го (1 особь). В летнем сезоне моевки нами не зарегистрированы. Осенью 2013 г. встречены дважды: 26 и 29 октября наблюдали по одной особи.

В 2014 г. мы видели моевку, только один раз – 6 мая – одну особь. Кроме нашей встречи в этом же районе Каспия 28 и 29 мая одиночных птиц сфотографировала Г.С. Кондратенко (www.birds.kz). В летнее и осеннее время моевок здесь не встречали. В 2015 г. моевок тоже отмечали только весной. По одной особи зарегистрировали 27 и 28 апреля. Несколько больше моевок было встречено в мае: 9 мая отмечена группа из трех птиц, которая села на воду возле судна, и 18 мая нами наблюдалась еще одна. В 2016 г. моевка была отмечена дважды по одной особи – 1 и 10 мая. Всего за эти годы (2008-2016) зарегистрировано 30 встреч моевок, из них 26 – весной, 1 – летом и 3 осенью. В основном встречались одиночные птицы, четыре раза отмечены по 2 и два раза – по 3 моевки одновременно.

Клуша. Весной клушу наблюдали дважды: 21 апреля и 3 мая – по одной особи. Также одна птица встречена 29 июня 2008 г. Весной 2011 г., 15 апреля, отмечена 1 птица. В 2012 г. клуша встречена всего один раз. В бухте Тюп-Караган среди большой стаи хохотуний 12 ноября отмечена одна клуша. В 2013 г. наиболее часто встречали клуш в апреле: 10-го (1 особь); 14 (1); 19 (2) и 20-го (1 особь). Кроме того, 11 апреля, клушу сфотографировала В.А. Ковшарь (www.birds.kz). В мае того же года наблюдали: 4-го (2 особи); 5 (1); 6 (1) и 7-го (1 особь). Летом клуш не регистрировали. В этом же районе 1 октября 2013 г. одну клушу сфотографировала Г.С. Кондратенко (www.birds.kz).

В 2014 г. известно две встречи клуш: 14 мая в стае из 40 хохотуний, наблюдали одну клушу и ещё одну 25 мая сфотографировала Г.С. Кондратенко (<u>www.birds.kz</u>). Летом и осенью клуш не наблюдали. В 2015 г. 21 мая, группа из трех клуш, держалась в скоплении хохотуний. Летом и осенью не встречена. В 2016 г. клуша также была отмечена только весной: 20 и 24 апреля, одиночные птицы наблюдались на насыпных ледовых барьерах, среди скопления других видов чаек.

Всего, за охваченный наблюдениями период зарегистрировано 20 встреч клуш, из них 17 — весной, 1 — летом и 2 осенью. Как и моевки, клуши встречались одиночными особями (в группах чаек других видов), лишь два раза отмечены по две и один раз три клуши одновременно.

Все встреченные нами моевки, оказались неполовозрелыми особями 1-2 года жизни. Напротив, все отмеченные клуши были взрослыми птицами. Здесь следует подчеркнуть, что речь идет именно о клуше (*L. fuscus*), а не о восточной клуше (*Larus heuglini*), подтверждением чему в большинстве случаев имеются фотографии. Последняя, хоть в целом была и немногочисленна в районе наших наблюдений, но всё же встречалась чаще первой.

Гаврилов Э.И. Фауна и распространение птиц Казахстана. Алматы, 1999. 198 с. **Долгушин И.А.** Отряд Чайки – Lariformes//Птицы Казахстана. Т. 2. Алма-Ата, 1962. С. 246-327. **Ковшарь А.Ф.** Ревизия орнитофауны и современный список птиц Казахстана//Орнитологический вестник Казахстана и Средней Азии. Вып. 1. Алматы, 2012. С. 51-70. **Gavrilov E., Gavrilov A.** The Birds of Kazakhstan//Tethys Ornithological Research. Volume II. Almaty, 2005. Pp.1-228.

УДК 598.826 (574.54)

О гнездовании краснокрылого чечевичника Rhodopechys sanguinea Gould, 1838 в горах Каратау

Для хребта Каратау краснокрылый чечевичник известен давно, но, хотя многочисленные встречи взрослых птиц в весенне-летний период указывали на гнездование, фактических подтверждения этому до сих пор не было. Впервые основанием предполагать гнездование послужила встреча И.А. Долгушиным (1951) в начале июня 1941 г. в Мынжилке стайки птиц, среди которых были самцы с увеличенными семенниками. Позже, в 1958 г. пары чечевичников встречены 10 апреля в горах Бурултау и 11 мая — на Кошкарате (Корелов, 2012). На хр. Боролдай птицы отмечены 11 мая 1968 г. и 12 мая 1969 г. (Кузьмина, 1974). В урочище Арпа-Узень гор Келиншектау 1 и 2 мая 2013 г. пару птиц этого вида несколько раз вспугивали в районе водопоя (О. Белялов, личн. сообщ.). На перевале Ащисай краснокрылый чечевичник наблюдался 8 мая 2014 г. (Корнев, 2016). А 17 мая 2014 г. одиночная птица сфотографирована М. Нукусбековым (Birds.kz) в пос. Ертай в Жуалинской долине.

Во время экспедиции по Южному Казахстану 7 июня 2016 г. в районе Турланского перевала, в 5 км восточнее пос. Ачисай (координаты: 43°33'49" с.ш. 68°58'02" в.д), на скалистом склоне на высоте 1050 м н. у. м., я наблюдал и сфотографировал взрослую особь краснокрылого чечевичника, которая кормила хорошо летающего птенца (В. Федоренко, Birds.kz). Слёток преследовал самца, выпрашивая корм. Птицы несколько раз улетали, а затем возвращались на то же место. Данный факт подтверждает гнездование краснокрылого чечевичника в этом районе. Кроме того, столь ранняя встреча летающего слётка указывает на очень раннее начало гнездового периода. Самые ранние нахождения летающих молодых птиц известны с перевала Алтын-Эмель – 9 июня 1962 г. и гор Монрак – 21 июня 1962 г. (Кузьмина, 1974).

Долгушин И.А. К фауне птиц Каратау//Изв. АН КазССР, сер. зоол., вып. 10, 1951. С. 72-117.

Корелов М.Н. Орнитологические экспедиции в Каратау в 1958 и 1960 гг.//Орнитологический вестник Казахстана и Средней Азии. Вып. 1. Алматы, 2012. С. 25-41.

Корнев С.В. Материалы к орнитофауне Приаралья и Юго-Западного Казахстана//Русский орнитологический журнал 2016, № 1286. С. 1770-1779.

Кузьмина М.А. Род Краснокрылый чечевичник//Птицы Казахстана, Алма-Ата, т. 5. 1974. С. 277-283.

Веб-сайт: <u>Birds.kz</u>

В.А. Федоренко, Алматы

УДК 598.33 (574)

О кормовом поведении галстучника (Charadrius hiaticula) в период осенней миграции в южных районах Казахстана

Наблюдения за кормодобывательным поведением галстучника проводились мной эпизодически, попутно с изучением осенней миграции птиц во второй половине сентября – начале октября 1978 и 1986 гг. на северо-восточном побережье Аральского моря (мыс Баян) и в низовьях р Сарысу. Использовался 8-кратный полевой бинокль и секундомер. Всего проведено около 2 ч наблюдений, в том числе 22 мин хронометража кормовой активности (число клевков в минуту).

Кормовыми биотопами зуйкам на Аральском море служили, главным образом, скопления водорослей (чалан) и небольшие лужицы на берегу. В низовьях Сарысу кулики кормились по урезу воды, на грязи среди лужиц и выброшенных водорослей. Галстучники наблюдались поодиночке или небольшими, до 9 особей, группами. В стайках птицы рассредоточиваются и кормятся разрозненно, на расстоянии 0.5-1 м друг от друга. Нередко вместе с ними наблюдались морские зуйки (Charadrius alexandrinus), чернозобики (Calidris alpina), кулики-воробьи (Calidris minuta), белые (Motacilla alba) и жёлтые (M. flava) трясогузки.

Кормящиеся галстучники, как и некоторые другие виды зуйков, бегают хаотично с частыми внезапными остановками: несколько шагов – остановка – клевок... (Козлова, 1961; Хроков, 2006). Корм собирают с поверхности водорослей, грязи и воды, реже зондируют водоросли и грязь. Иногда в поисках

добычи заходят в воду на глубину 1-2 см. При зондировании клюв погружают в субстрат наполовину и целиком. За 22 мин хронометража было зарегистрировано 488 клевков, в том числе 414 (84.8%) с поверхности и 74 (15.2%) зондирования. Некоторые кулики собирали корм только с поверхности субстрата (143 клевка), другие использовали 2 метода. Так, из 345 попыток взять корм, было совершено 74 (21.4%) зондирования водорослей и грязи, остальные — клевки с поверхности. Для примера: из 11 клевков — 6 зондирований, из 12-2, из 23-2, из 23-10, из 24-18, из 26-5, из 27-6, из 32-8 и т.д. Зондирование бывает разным: однократное и многократное — по 2-4 в одно место без вытаскивания клюва. Одна молодая особь в низовьях Сарысу из 18 зондирований дважды достала и проглотила какуюто крупную добычу. На Арале наблюдался молодой зуёк, пытавшийся вытянуть из чалана живую медведку, но это оказалось ему не под силу.

Интенсивность кормодобывания галстучников в среднем составляет 22.2 клевка в минуту (от 11 до 39), в том числе на Аральском море -17.0 (n=5 мин) и в низовьях Сарысу -23.7 (n=17) кл/мин. Молодые птицы кормились несколько активнее (22.4 кл/мин, n=13), чем взрослые (21.9 кл/мин, n=9). Между клевками птицы делают от одного до 6 (в среднем 2.7) шагов, но иногда пробегают от 1 до 3 м. За 1 мин галстучники проходят 65-70 (в среднем 68.8) шагов.

В желудках 4 галстучников, добытых мной в августе и сентябре 1969-1972 гг. на Кургальджинских озёрах были обнаружены личинки и мелкие части имаго жесткокрылых (*Coleoptera sp.*), полужесткокрылых (*Hemiptera sp.*), двукрылых (*Diptera sp.*), а также осколки моллюсков и семена растений – рдеста (*Potamogeton sp.*) и осоки (*Carex sp.*). Гастролиты присутствовали во всех желудках – от 6 до 40 шт. Основным кормовым биотопом для зуйков там служат открытые солончаковые берега озёр и соров (Хроков, 1978).

Галстучник, как и малый зуёк, не обладает высокой степенью социальности. Интенсивность кормодобывания у него несколько выше, чем у малого зуйка (Хроков, 2006).

Козлова Е.В. Ржанкообразные. Подотряд Кулики//Фауна СССР. Птицы. Т. 2, вып. 1, ч. 2. М.-Л., 1961: 501 с. **Хроков В.В.** Питание зуйков на Кургальджинских озёрах//Мат-лы конфер. молодых учёных Ин-та зоол. Алма-Ата, 1978: 66-68. **Хроков В.В.** О кормодобывательном поведении малого зуйка (*Charadrius dubius Scop.*) в Казахстане//*Selevinia*, 2006: 182-184.

 ${\it B.B. X poкos}$ Общество любителей птиц «Ремез», Алматы, Казахстан

УДК 598.842 (574.54)

Встреча черного чекана в городе Чимкент (Южный Казахстан)

На окраине города Чимкент 6 июня 2015 г. встречен поющий самец чёрного чекана (Saxicola caprata). На момент наблюдений в микрорайоне Кайпас-2, являющемся новостройкой частного сектора, было застроено и заселено 60% участков. Остальные стройки были «заморожены». Выложенные фундаменты домов заросли высокой травянистой растительностью, а временные саманные постройки успели обвалиться. В полукилометре от места наблюдения на всхолмленном участке начинались целинные земли. Самец чекана беспрерывно пел на столбе линии электропередач в течение 10 минут, а затем исчез. К сожалению, нам не удалось посетить место повторно, но эта встреча может свидетельствовать о возможном гнездовании вида в данном городском районе.

E.C. Чаликова Мензбировское орнитологическое общество

ЗООЛОГИЧЕСКИЕ КОЛЛЕКЦИИ

УДК 598.2/9 (574)

Оологические сборы Е.П. Спангенберга в Казахстане

Джусупов Талгат Кайсарович

Россия, Новосибирск

Настоящая статья посвящена оологическим материалам, собранным в своё время известным орнитологомнатуралистом, коллекционером и популяризатором науки Е.П. Спангенбергом. В настоящее время готовится к
изданию каталог оологической коллекции, хранящейся в Зоомузее Института систематики и экологии животных СО
РАН (Новосибирск). Она включает в себя 1447 кладок 558 видов птиц, большая часть которых собрана Евгением
Павловичем во время его многочисленных экспедиций на территории бывшего СССР. В данной работе приведены
материалы по птицам Казахстана. В этом интереснейшем регионе Е.П. впервые побывал в 1924 г., когда вместе со
своим другом Г.А. Фейгиным приступил к орнитологическому обследованию нижнего течения Сырдары. В
результате цикла исследований, занявшего в общей сложности 9 лет экспедиционной работы, была создана база для
монографического описания птиц нижней Сырдарыи и прилежащих районов (Флинт, Бёме, 1973). Эта сводка была
опубликована в «Трудах Зоологического музея МГУ» в двух частях (Спангенберг, Фейгин, 1936; Спангенберг, 1941).
За время этих «среднеазиатских» экспедиций Е.П. Спангенберг коллектировал 205 кладок 102 видов птиц, ныне
хранящихся в Зоомузее ИС и ЭЖ СО РАН. Часть кладок (56) из этого числа была передана орнитологу от коллег:
А.А. Винокурова, В.А. Грачёва, В.Л. Грозовой, В.М. Гудкова, И.А. Долгушина, А.П. Кузякина, В.С. Лобачёва,
Р.И. Малышевского, С.П. Наумова, В.С. Смирина, А.М. Чельцова-Бебутова, также работавших на территории
Казахстана в разные годы.

В статье принят следующий порядок описания: название вида; количество кладок (в скобках); дата; место сбора; число яиц в кладке и, если известна, степень их насиженности; размеры яиц (длина и наибольший диаметр, мм). Последние два показателя, ввиду их отсутствия на этикетках кладок, снимались штангенциркулем непосредственно с каждого яйца коллекции. При этом ни одно яйцо в коллекции не было повреждено. Отметим, что в некоторых случаях, число яиц в кладке (указанное в скобках) больше числа промеренных яиц. К большому сожалению, это свидетельствует о повреждениях яиц кладки, которые имели место ещё до начала работы по снятию промеров. Автор признателен В.К. Зинченко, Е.И. Жолнеровской, Д.Р. Хайдарову, Н.Н. Балацкому, В.С. Жукову, Т.А. Кузнецовой и А.К. Юрлову, оказавшим помощь в этой работе.

Черношейная поганка Podiceps nigricollis C.L. Brehm, 1831 (5)

```
25.06.1926 г., Кызылординская обл., оз. Алатай-Куль (3): 45.2 x 29.1; 44.6 x 30.0; 43.1 x 30.6 мм.
```

26.06.1926 г., там же (3): 43.0 х 29.7; 42.7 х 29.7; 42.5 х 29.9.

26.06.1926 г., там же (3): 42.7 х 30.8; 43.5 х 31.1; 42.8 х 30.7.

06.06.1927 г., там же (4 сильно насиж.): 43.9 x 30.5; 46.4 x 29.5; 43.4 x 30.0; 45.2 x 29.9.

06.06.1927 г., там же (4): 45.3 х 30.1; 41.7 х 30.0; 43.0 х30.4; 42.8 х 30.6.

Серощёкая поганка P. grisegena (Boddaert, 1783) (1)

22.05.1956 г., Алматинская обл., оз. Балхаш, дельта р. Или (3): 50.7 x 34.8; 50.0 x 35.7; 51.7 x 36.1.

Розовый пеликан Pelecanus onocrotalus Linnaeus, 1758 (1)

05.06.1960 г., дельта р. Или (2 слабо насиж.): 94.4 x 55.0; 99.7 x 58.1.

Кудрявый пеликан P. crispus Bruch, 1832 (1)

31.05.1947 г., Аральское море, о. Узун-Каир (2 слабо насиж.): 91.6 x 58.0; 92.0 x 56.1.

Малый баклан Phalacrocorax pygmaeus (Pallas, 1773) (4)

27.05.1925 г., Кызылординская обл., оз. Аяк-Куль (4): 47.0 x 29.0; 45.7 x 29.8; 48.2 x 29.7; 46.2 x 29.7.

10.06.1926 г., там же (5): 50.9 х 30.5; 49.5 х 31.2; 46.4 х 30.8; 50.1 х 30.7; 46.1 х 30.5.

10.06.1926 г., там же (4): 51.3 х 29.2; 53.9 х 29.0; 50.0 х 29.9; 48.8 х 30.0.

10.06.1926 г., там же (6 сл. насиж.): 48.3 х 30.1; 50.2 х 29.4; 47.6 х 30.0; 48.4 х 29.8; 49.2 х 29.7; 49.0 х 29.7.

Малая выпь Ixobrychus minutus (Linnaeus, 1766) (1)

03.06.1963 г., Кызылординская обл., Шиелийский р-он, ст. Байгакум (5 ненасиж.): 34.0 х 26.0; 34.0 х 25.7; 34.4 х 25.4; 34.9 х 25.3; 34.4 х 25.7.

Кваква Nycticorax nycticorax (Linnaeus, 1758) (4)

- **24.05.1925** г., Кызылординская обл., оз. Аякколь (Аяк-Куль) близ г. Кызылорда (3 слабо насиж.): 47.0×35.0 ; 46.2×35.5 ; 45.5×34.7 .
- **24.05.1925** г., там же (3 насиж.): 47.3 х 34.1; 44.1 х 33.2; 46.6 х 34.2.
- **29.05.1925** г., там же (3 насиж.): 45.6 х 33.3; 47.2 х 32.6; 51.2 х 32.5.
- **29.05.1925** г., там же (3 насиж.): 46.8 х 33.9; 46.2 х 35.7; 46.0 х 34.6.

Рыжая цапля Ardea purpurea Linnaeus, 1766 (2)

- **18.06.1930** г., Кызылординская обл., окр. ст. Байгакум, р.Чиилинка (4 насиж.): 57.6 х 37.9; 56.0 х 39.0; 57.4 х 39.3; 56.7 х 38.0.
- **20.05.1963** г., там же, Чиилийское вдхр. (4 насиж.): 54.0 х 39.7; 53.2 х 40.9; 54.3 х 38.9; 53.2 х 39.8.

Колпица Platalea leucorodia Linnaeus, 1758 (3)

- **28.05.1925** г., Кызылординская обл., оз. Аякколь (Аяк-Куль) близ г. Кызылорда (3 ненасиж.): 70.8 х 47.4; 70.2 х 48.2;68.5 х 49.2.
- **10.06.1926** г., там же (3 слабо насиж.): 66.2 x 44.0; 68.3 x 44.0; 71.4 x 43.2.
- **10.06.1926** г., там же (3 слабо насиж.): 72.4 х 44.8; 70.7 х43.4; 72.7 х 44.5.

Каравайка Plegadis falcinellus (Linnaeus, 1766) (3)

- **24.05.1925** г., Кызылординская обл., оз. Аякколь (Аяк-Куль) близ г. Кызылорда (4 слабо насиж.): 53.5×37.1 ; 53.4×36.7 ; 51.9×36.2 ; 52.4×37.1 .
- **28.05.1925** г., там же (4 слабо насиж.): 52.3 x 35.1; 54.5 x 36.3; 51.8 x 37.1; 51.9 x 36.7.
- **10.06.1926** г., там же (4 слабо насиж.): 52.8 х 34.6; 51.4 х 35.6; 52.7 х 33.4; 51.1 х 36.2.

Серый гусь Anser anser (Linnaeus, 1758) (3)

- **17.04.1927** г., Кызылординская обл., ст. Караозек (Кара-Узяк) (4 слабо насиж.): 86.4 х 62.8; 89.1 х 61.0; 89.4 х 61.1; 87.6 х 60.1.
- **24.04.1941** г., Гурьевская обл., устье р. Урал (4 насиж.): 91.7 х 62.3; 87.2 х 61.5; 89.2 х 63.1; 92.5 х 63.0.
- **13.05.1947** г., Аральское море, залив Чумыш-Куль (5): 88.8 х 58.6; 86.0 х 57.1; 83.6 х 58.3; 87.2 х 58.4; 92.0 х 60.9.

Кряква Anas platyrhynchos Linnaeus, 1758 (1)

04.05.1930 г., Кызылординская обл., окр. с Джулек (11 слабо насиж.+ 2 насиж. яйца фазана): 57.7 х 40.0;59.7 х 40.4; 59.2 х 39.6; 58.1 х 40.4; 57.4 х 39.7; 59.6 х 40.3; 57.2 х 40.0; 57.1 х 40.2; 56.4 х 39.0; 56.6 х 40.2; 56.0 х 39.9; 44.8 х 33.9; 46.0 х 35.8.

Серая утка A. strepera Linnaeus, 1758 (1)

01.06.1947 г., Аральское море, залив Паскевича, о. Узун-Каир (10 ненасиж.): 51.3 х 38.0; 53.2 х 38.1; 51.5 х 39.6; 53.5 х 40.0; 51.6 х 38.3; 54.1 х 39.2; 51.0 х 38.5; 53.1 х 38.9; 53.2 х 39.3; 51.5 х 39.3.

Широконоска A. clypeata Linnaeus, 1758 (1)

03.05.1932 г., Кызылординская обл., окр. ст. Байгакум (8 слабо насиж.): 50.1 х 36.5; 49.6 х 36.6; 49.4 х 36.4; 49.9 х 36.1; 48.9 х 36.7; 49.5 х 36.4; 49.7 х 36.0; 49.7 х 34.9.

Красноносый нырок Netta rufina (Pallas, 1773) (2)

- **26.05.1932** г., Кызылординская обл., ст. Байгакум (5 слабо насиж.): 53.4 х 42.1; 54.1 х 43.0; 55.0 х 43.7; 52.3 х 41.5; 54.0 х 42.5.
- **28.05.1958** г., Алматинская обл., дельта р. Или, о. Каракуль (9 ненасиж.): 54.7 х 40.0; 57.7 х 40.2; 50.3 х 38.4; 60.1 х 41.6; 53.2 х 40.0; 55.0 х 43.2; 57.3 х 40.5; 50.9 х 38.7; 54.8 х 40.2.

Белоглазая чернеть Aythya nyroca (Güldenstädt, 1770) (1)

14.06.1930 г., Кызылординская обл., ст. Байгакум, оз. Кривое (7 ненасиж.): 52.4 х 37.1; 51.8 х 37.4; 52.3 х 37.2; 52.9 х 36.6; 52.0 х 37.3; 51.3 х 37.4; 52.1 х 36.9.

Савка Oxyura leucocephala (Scopoli, 1769) (2)

- **14.06.1930** г., Кызылординская обл., оз. Кривое (5 ненасиж.): 69.4 х 50.9; 69.2 х 50.3; 67.1 х 49.9; 68.4 х 51.1; 68.6 х 49.5.
- **14.06.1930** г., там же (6): 67.4 х 50.1; 68.3 х 50.1; 68.0 х 48.7; 68.0 х 48.0; 67.7 х 49.7; 68.2 х 49.5.

Луговой лунь Circus pygargus (Linnaeus, 1758) (1)

08.06.1947 г., Аральское море, средняя часть песков Большие Барсуки (5 ненасиж.): 40.0 х 30.3; 40.0 х 31.1; 42.1 х 30.2; 39.4 х 30.8; 40.0 х 31.3.

Болотный лунь *C. aeruginosus* (Linnaeus, 1758) (2)

02.05.1927 г., Кызылординская обл., Шиелийский р-он, Чиилийская протока (5 слабо насиж.): 51.5 х 39.3; 51.2 х 39.4; 52.2 х 38.9; 51.9 х 38.7; 47.9 х 37.1.

20.04.1941 г., Атырауская обл., окр. г. Атырау (Гурьев), устье р.Урал (4 ненасиж.): 50.0 х 39.1; 47.7 х 41.2; 48.6 х 39.2; 47.7 х 39.6.

Тювик Accipiter badius (J.F. Gmelin, 1788) (3)

29.05.1927 г., Кызылординская обл., Шиелийский р-он, с. Джулек (4 насиж.): 41.9 х 32.5; 42.3 х 32.4; 42.1 х 31.6; 41.1 х 33.2.

01.06.1927 г., там же (3 ненасиж.): 39.2 х 30.0; 38.6 х 29.2; 37.5 х 29.5.

26.05.1932 г., там же (4 ненасиж.): 38.8 х 30.6; 38.0 х 32.0; 41.1 х 31.5; 36.9 х 31.0.

Курганник Buteo rufinus (Cretzschmar, 1829) (4)

25.05.1927 г., Кызылординская обл., Шиелийский р-он, окр. с. Джулек (2 насиж.): 56.7 х 43.4; 56.5 х 45.0.

02.04.1930 г., там же, СЗ отроги хр. Каратау (2 ненасиж.): 56.3 х 44.4;56.2 х 44.4.

24.04.1930 г., там же, окр. с. Джулек, пустыня Кызыл-Кум (3 насиж.): 55.8 х 45.6; 55.2 х 45.3; 53.6 х 45.5.

23.04.1932 г., там же, СЗ отроги хр. Кара-Тау (4 насиж.): 59.9 х 47.1; 58.3 х 47.2; 59.0 х 46.8; 58.8 х 46.9.

Змееяд Circaetus gallicus (J.F. Gmelin, 1788) (1)

25.05.1932 г., Кызылординская обл., пустыня Кызыл-Кум, в 100 км от ст. Байгакум (1 насиж.): 72.5 x 55.8.

Орел-карлик *Hieraaetus pennatus* (J.F. Gmelin, 1788) (1)

16.05.1963 г., Кызылординская обл., пос. Джулек (2 ненасиж.): 59.6 x 44.4; 58.0 x 45.6.

Могильник Aquila heliaca Savigny, 1809 (3)

03.04.1930 г., Кызылординская обл, СЗотроги хр. Каратау (2 ненасиж.): 72.3 х 59.0; 72.5 х 59.7.

03.04.1930 г., там же (2 ненасиж.): 72.2 х 58.3; 72.7 х 58.4.

23.04.1930 г., там же, Кызыл-Кум, ур. Алабис (3 слабо насиж.): 74.0 х 58.8; 75.0 х 57.4; 74.4 х 59.0.

Беркут A. chrysaëtos (Linnaeus, 1758) (1)

27.04.1956 г., Алматинская обл., горы Ельчин-Буйрюк (2 сильно насиж.): 79.5 x 62.5; 80.7 x 63.4.

Орлан-долгохвост *Haliaeetus leucoryphus* (Pallas, 1771) (1)

07.04.1949 г., Алматинская обл., ур. Баканас (2 ненасиж.): 69.8 х 51.1; 70.1 х 53.1.

Орлан-белохвост *H. albicilla* (Linnaeus, 1758) (1)

13.03.1957 г., дельта р. Или, протока Конузек (3 слабо насиж.): 71.0 x 57.3; 72.4 x 56.0; 71.7 x 56.3.

Балобан Falco cherrug Gray, 1834 (1)

27.05.1950 г., Кустанайская обл., Наурзумский заповедник (5 слабо насиж.): 52.4 х 40.2; 50.8 х 38.8; 50.7 х 39.6; 51.7 х 41.2; 51.0 х 39.3.

Чеглок F. subbuteo Linnaeus, 1758 (1)

16.06.1931 г., Вост.-Каз. обл., с. Катон-Карагай (3 слабо насиж.): 40.9 х 33.0; 41.6 х 34.0; 42.0 х 33.1.

Обыкновенная пустельга F. tinnunculus Linnaeus, 1758 (3)

30.04.1927 г., Кызылорд. обл., с. Теренозек (4 ненасиж.): 37.4 х 32.5; 37.7 х 31.4; 38.0 х 32.0; 38.0 х 32.3.

05.05.1927 г., там же, пос. Джулек (5 насиж.): 39.6 х 31.7; 39.8 х 31.9; 41.6 х 31.5; 39.8 х 31.5; 41.2 х 31.1.

04.05.1930 г., там же (5): 36.4 х 31.1; 35.0 х 30.8; 36.4 х 31.2; 35.7 х 30.7; 36.9 х 31.3.

Глухарь Tetrao urogallus Linnaeus, 1758 (1)

26.05.1931 г., Восточно-Казахстанская обл., с. Катон-Карагай (7 ненасиж.): 57.6 х 41.2; 57.8 х 43.1; 59.0 х 42.9; 57.6 х 42.7; 59.1 х 42.6; 58.8 х 43.1; 58.1 х 43.0.

Фазан Phasianus colchicus Linnaeus, 1758 (4)

16.06.1924 г., Кызылординская обл., ст. Караозек (Кара-Узяк) (9 слабо насиж.): 44.8 х 35.4; 46.8 х 36.1; 45.3 х 36.0; 45.2 х 35.1; 45.7 х 34.8; 44.6 х 35.1; 42.0 х 35.1; 42.8 х 35.0; 46.4 х 35.4.

08.06.1925 г., там же, с. Аякколь (8 насиж.): 48.2 х 35.8; 46.8 х 34.2; 45.4 х 35.4; 46.4 х 36.4; 46.9 х 35.7; 47.8 х 35.4; 48.7 х 35.9; 45.8 х 35.8.

26.05.1930 г., там же, ст. Байгакум (13 насиж.): 44.2 х 35.7; 46.1 х 36.9; 45.3 х 36.4; 46.6 х 35.7; 47.9 х 36.4; 48.1 х 36.3; 47.3 х 36.1; 46.8 х 36.6; 48.1 х 37.6; 45.7 х 35.8; 46.6 х 36.7; 47.4 х 36.3; 48.1 х 36.6.

09.05.1955 г. оз. Балхаш, дельта р. Или (9 ненасиж.): 47.0 х 36.4; 46.7 х 36.9; 46.7 х 36.1; 46.1 х 35.8; 45.2 х 36.7; 45.9 х 36.1; 46.6 х 36.1; 47.2 х 36.7; 47.2 х 36.5.

Серый журавль Grus grus (Linnaeus, 1758) (2)

21.05.1927 г., Кызылординская обл., долина р. Сарысу (2 слабо насиж.): 86.4 x 57.1; 84.5 x 56.6.

07.05.1931 г., Восточно-Казахстанская обл., окр. с. Катон-Карагай (2): 87.4 х 60.0; 87.9 х 61.4.

Красавка Anthropoides virgo (Linnaeus, 1758) (1)

22.05.1931 г., Актюбинская обл., с. Чанки близ г. Акбулак (2): 75.5 х 46.0; 84.3 х 50.1.

Лысуха Fulica atra Linnaeus, 1758 (2)

- **14.05.1932** г., Кызылординская обл., ст. Байгакум (8): 54.1×38.1 ; 54.8×37.2 ; 56.9×37.9 ; 50.0×35.2 ; 54.8×37.4 ; 55.7×37.8 ; 53.8×37.0 ; 55.4×38.0 .
- **14.05.1932** г., там же (10): 54.3 х 35.5; 54.2 х 36.4; 52.9 х 36.1; 53.4 х 35.4; 53.2 х 35.2; 53.3 х 35.2; 52.0 х 35.2; 52.2 х 34.0; 54.1 х 35.8; 54.4 х 36.2.

Стрепет Tetrax tetrax (Linnaeus, 1758) (1)

15.06.1928 г., Кызылорд. обл., ст. Тюмень-Арык (2 из 11 яиц, куплены на базаре): 48.0 х 38.1; 47.0 х 37.4.

Дрофа-красотка Chlamydotis undulata (Jacquin, 1784) (1)

21.05.1927 г., Кызылординская обл., р. Сарысу (2 насиж.): 60.9 x 45.7; 58.4 x 45.4.

Авдотка Burhinus oedicnemus (Linnaeus, 1758) (2)

17.05.1928 г., Кызылорд. обл., р. Куандарья, пустыня Кызыл-Кум (2 ненасиж.): 51.3×37.2 ; 53.3×37.0 .

18.05.1928 г., там же (2 сильно насиж.): 52.1 x 36.6; 53.6 x 36.3.

Толстоклювый зуёк Charadrius leschenaultii Lesson, 1826 (1)

30.04.1936 г. Кызыл-Кум на широте ж. д. ст. Яны-Курган (3 ненасиж.): 41.5 х 28.2; 40.4 х 27.2; 38.4 х 27.9.

Каспийский зуёк С. asiaticus Pallas, 1773 (1)

22.04.1955 г., Мангистауская обл., Ю. Мангышлак, с. Сенек (2 ненасиж.): 36.6 x 27.7; 35.2 x 27.6.

Морской зуёк С. alexandrinus Linnaeus, 1758 (3)

08.06.1928 г., Кызылорд. обл., г. Аральск, залив Сары-Чеганак (3): 33.3 х 22.8; 33.6 х 22.2; 34.2 х 22.8.

08.06.1928 г., там же (3): 33.1 х 23.2; 31.6 х 23.0; 31.4 х 23.1.

15.06.1931 г., Актюбинская обл., оз. Шалкар (Челкар) (3): 32.3 x 23.1; 31.5 x 23.4; 33.5 x 23.1.

Кречётка Chettusia gregaria Pallas, 1771 (1)

21.04.1947 г., Арал, пески Малые Барсуки (4 ненасиж.): 46.3 x 34.2; 47.2 x 33.6; 46.4 x 34.0; 48.7 x 34.1.

Белохвостая пигалица Vanellochettusia leucura (М.Н.С. Lichtenstein, 1823) (2)

- **21.05.1927** г., Кызылординская обл., Шиелийский р-он, оз. Тели-Куль (4 сильно насиж.): 38.9 х 28.6; 38.9 х 29.1; 38.9 х 29.7; 39.8 х 28.5.
- **19.05.1957** г., Кызылординская обл., с. Соло-Тюбе (4 слабо насиж.): 40.2 х 29.0; 40.2 х 29.4; 41.0 х 29.3; 40.9 х 28.8.

Ходулочник Himantopus himantopus (Linnaeus, 1758) (6)

- **20.05.1927** г., Кызылорд. обл., оз. Тели-Куль (4): 46.8 x 31.3; 46.4 x 31.8; 47.4 x 31.7; 44.9 x 31.7.
- **20.05.1927** г., там же (4): 44.2 х 29.8; 44.3 х 30.2; 44.0 х 30.0; 44.3 х 29.1.
- **23.05.1927** г., там же (4 слабо насиж.): 46.2 x 30.7; 43.5 x 30.7; 44.7 x 31.5; 45.5 x 30.4.
- **10.06.1931** г., Актюбинская обл., оз. Шалкар (Челкар) (4): 44.0 x 32.9; 43.4 x 32.0; 44.1 x 32.3; 44.3 x 32.4.
- **10.06.1931** г., там же (4): 42.1 х 32.0; 47.1 х 33.3; 47.8 х 32.7; 45.7 х 31.7.
- **26.05.1963** г., Кызылорд. обл., ст. Байгакум (4 насиж.): 44.5 x 30.8; 43.4 x 31.0; 44.9 x 30.2; 44.8 x 30.8.

Шилоклювка Recurvirostra avosetta Linnaeus, 1758 (1)

21.05.1927 г., Кызылорд. обл., оз. Тели-Куль (4 сильно насиж.): 52.6 х 34.3; 51.8 х 33.1; 52.0 х 33.4; 53.2 х 35.0.

Травник *Tringa totanus* (Linnaeus, 1758) (1)

23.05.1927 г., Кызылорд. обл., оз. Тели-Куль (4 ненасиж.): 48.5 х 29.7; 44.7 х 29.4; 43.8 х 29.2; 44.0 х 29.2.

Луговая тиркушка Glareola pratincola (Linnaeus, 1766) (3)

- **06.07.1924** г., Кызылорд. обл., оз. Жаманколь (3): 31.7 x 24.8; 31.3 x 24.1; 31.5 x 24.3.
- **19.05.1927** г., там же, оз. Теликуль, устье р. Сары-Су (3): 31.8 x 24.1; 32.2 x 24.0; 31.7 x 24.1.
- **19.05.1927** г., там же (3 насиж.): 30.1 х 23.9; 31.1 х 24.0; 30.8 х 23.7.

Степная тиркушка G. nordmanni J.G. Fischer, 1842 (3)

- **19.05.1927** г., Кызылорд. обл., оз. Теликуль (4): 30.4 x 24.5; 31.4 x 24.8; 30.7 x 25.2; 30.4 x 24.8.
- **23.05.1927** г., там же (4 насиж.): 31.4 х 25.0; 30.5 х 25.6; 30.5 х 25.6; 31.7 х 26.4.
- **23.05.1927** г., там же (4 ненасиж.): 32.0 х 26.7; 31.4 х 26.6; 31.9 х 26.6; 30.6 х 25.9.

Озёрная чайка Larus ridibundus Linnaeus, 1766 (4)

- **22.05.1927** г., Кызылорд. обл., оз. Теликуль (3 ненасиж.): 52.7 x 36.4; 52.4 x 36.7; 52.8 x 37.1.
- **24.05.1927** г., там же (3 ненасиж.): 52.4 х 37.2; 52.8 х 36.6; 49.2 х 36.8.
- **24.05.1927** г., там же (3): 53.4 х 38.1; 50.7 х 37.1; 52.5 х 36.8.
- **06.06.1927** г., там же, оз. Алатай-Куль (3 сильно насиж.): 51.8 х 35.1; 51.8 х 36.5; 52.2 х 36.0.

Xохотунья L. cachinnans Pallas, 1811 (1)

30.05.1947 г., Аральское море, о. Узун-Каир (3 слабо насиж.): 70.6 х 48.7; 68.7 х 50.3; 66.1 х 48.2.

Белощекая крачка Chlidonias hybrida (Pallas, 1811) (4)

- **01.07.1924** г., Кызылординская обл., оз. Баран-Куль (3): 39.0 x 27.9; 38.4 x 28.0; 40.4 x 27.3.
- **01.07.1924** г., там же (3): 38.3 х 27.4; 39.3 х 28.2; 39.2 х 28.6.
- **01.07.1924** г., там же (3): 38.1 х 27.8; 39.6 х 27.9; 39.2 х 27.7.
- **26.06.1926** г., там же, оз. Алатай-Куль (3): 38.2 x 28.2; 40.4 x 27.6; 38.3 x 28.6.

Чайконосая крачка Gelochelidon nilotica (J.F. Gmelin, 1789) (4)

- **30.06.1928** г., Кызылорд. обл., г. Казалинск, оз. Ак-Пай (3): 48.1 x 35.2; 49.6 x 34.9; 46.2 x 34.0.
- **30.05.1946** г., там же, Аральское море, о. Узун-Каир (3 ненасиж.): 47.9 x 33.7; 48.6 x 34.0; 47.5 x 33.1.
- **31.05.1947** г., там же (3 ненасиж.): 47.2 х 36.2; 47.1 х 34.9; 45.1 х 35.6.
- **01.06.1947** г., там же (3 ненасиж.): 47.2 х 33.9; 48.1 х 34.6; 46.8 х 34.2.

Чеграва Hydroprogne caspia (Pallas, 1770) (3)

- **31.05.1928** г., Аральское море, о. Аталык (3): 62.7 x 42.8; 67.2 x 42.7; 65.7 x 44.1.
- **31.05.1947** г., там же, о. Узун-Каир (3 ненасиж.): 70.5 х 43.1; 67.1 х 42.4; 66.4 х 44.3.
- **01.06.1947** г., там же (3 ненасиж.): 66.2 х 43.7; 67.0 х 42.8; 62.0 х 42.4.

Малая крачка Sterna albifrons Pallas, 1764 (2)

- **31.05.1947** г., Аральское море, о. Узун-Каир (3 ненасиж.): 33.1 x 22.0; 32.8 x 22.3; 31.2 x 23.3.
- **31.05.1947** г., там же (3 ненасиж.): 31.8 х 23.4; 31.5 х 23.5; 32.5 х 23.7.

Чернобрюхий рябок Pterocles orientalis (Linnaeus, 1758) (1)

20.06.1928 г., Кызылорд. обл., Аральские Каракумы, кол. Тюлек (2 насиж.): 48.9 x 34.0; 47.4 x 33.7.

Белобрюхий рябок Р. alchata (Linnaeus, 1776) (1)

17.05.1928 г., СВ часть пустыни Кызыл-Кум (3 ненасиж.): 44.2 x 30.4; 45.8 x 30.7; 46.1 x 30.7.

Cаджа Syrrhaptes paradoxus (Pallas, 1773) (5)

- **25.06.1928** г., Аральские Кара-Кумы (2 из 3 насиж.): 43.2 х 29.5; 41.1 х 28.8.
- **15.04.1936** г., Кызыл-Кум (3 сильно насиж.): 42.5 x 30.3; 43.7 x 29.7; 42.4 x 30.7.
- **12.06.1957** г., Кызылорд. обл., ур. Арысь-Кура (3 ненасиж.): 43.1 х 30.1; 42.8 х 30.1; 43.4 х 29.8.
- **12.06.1957** г., там же (2 ненасиж.): 41.6 х 29.2; 43.1 х 29.3.
- **26.04.1962** г., там же, Казалинский р-он, Кызыл-Кум (3): 40.4 х 29.6; 41.1 х 29.0; 40.4 х 28.8.

Бурый голубь Columba eversmanni Bonaparte, 1856 (1)

04.06.1927 г., Кызылорд. обл., окр. г. Кызылорда (Перовск) (2): 34.1 x 26.1; 37.2 x 26.8.

Обыкновенная горлица Streptopelia turtur (Linnaeus, 1758) (2)

- **04.06.1928** г., Кызылорд. обл., окр. г. Казалинск (2): 34.0 х 22.2; 31.2 х 22.2.
- **16.07.1928** г., там же, окр. г. Кызылорда (2): 30.6 x 22.3; 32.4 x 22.5. Е.П.

Малая горлица S. senegalensis (Linnaeus, 1766) (2)

- **30.04.1927** г., Кызылорд. обл., г. Кызылорда (2): 26.5 x 19.7; 27.0 x 19.6.
- **30.04.1927** г., там же (2): 27.1 х 22.3; 28.8 х 21.7.

Филин *Bubo bubo* (Linnaeus, 1758) (1)

21.04.1932 г., Кызылорд. обл., хр. Каратау, горы Ак-Тау (3 ненасиж.): 56.8 х 47.1; 56.1 х 46.8; 56.2 х 48.0.

Ушастая сова Asio otus (Linnaeus, 1758) (1)

06.05.1930 г., Кызылорд. обл., Джумалан-Тугай (3 насиж.): 40.2 x 32.2; 41.2 x 33.3; 40.5 x 33.4.

Буланая совка Otus brucei (Hume, 1872) (5)

- **05.05.1932** г., Кызылорд. обл., пос. Джулек (5 насиж.): 33.7 х 26.1; 32.6 х 26.0; 32.6 х 26.7; 33.7 х 27.0; 32.6 х 26.4.
- **05.05.1932** г., там же (6): 31.2 x 27.1; 33.5 x 27.0; 32.1 x 27.0; 32.6 x 26.3; 30.7 x 27.4; 31.0 x 27.0.
- **05.05.1932** г., там же (6): 31.7 х 28.5; 31.6 х 28.4; 30.5 х 27.5; 31.5 х 28.1; 31.4 х 28.3; 31.5 х 28.3.
- **08.05.1932** г., там же (5): 30.9 х 27.3; 30.7 х 27.2; 31.7 х 27.8; 30.4 х 27.1; 31.5 х 27.4.
- **23.05.1932** г., там же (4 насиж.): 31.1 х 27.6; 31.0 х 27.6; 31.2 х 27.8; 31.5 х 27.8.

Домовый сыч Athene noctua (Scopoli, 1769) (3)

- **26.04.1930** г., Кызылорд. обл., Шиелийский р-он, окр. пос. Джулек (6 сильно насиж.): 34.7 х 28.3; 34.7 х 27.4; 31.5 х 26.5; 34.3 х 27.3; 32.7 х 27.4; 33.5 х 27.1.
- 30.04.1932 г., там же, окр. ст. Байгакум (7 сильно насиж.): 32.7×27.7 ; 31.6×28.0 ; 32.4×27.7 ; 33.3×28.3 ; 31.4×28.3 ; 33.4×28.3 ; 32.4×28.2 .
- **03.05.1936** г., там же, окр. ст. Туркестан и Беш-Арык (6 ненасиж.): 34.0 х 27.4; 33.9 х 26.7; 34.0 х 27.7; 33.5 х 27.7; 33.1 х 27.2; 33.8 х 27.0.

Обыкновенный козодой Caprimulgus europaeus Linnaeus, 1758 (1)

04.06.1937 г., Караганд. обл., Сев. Прибалхашье, горы Бектау-Ата (2 ненасиж.): 28.4 x 21.8; 27.4 x 21.4.

Буланый козодой С. aegyptius M.H.C. Lichtenstein, 1823 (3)

- **26.05.1927** г., Карагандинская обл., степь близ горы Ак-Тау (2): 31.8 x 23.2; 33.1 x 22.9.
- **26.05.1928** г., там же, сев. Кызылкум (2 слабо насиж.): 31.1 x 22.7; 31.6 x 22.7.
- **07.07.1957** г., Кызылорд. обл., близ г. Джусалы (2 слабо насиж.): 30.2 x 21.4; 31.0 x 21.6.

Зеленая щурка Merops superciliosus Linnaeus, 1766 (5)

- **04.06.1925** г., Кызылорд. обл., ст. Караозек (5 ненасиж.): 25.7 х 21.8; 25.7 х 21.2; 25.3 х 21.7; 25.3 х 21.6; 25.7 х 21.2.
- **05.06.1925** г., там же (4 ненасиж.): 25.9 х 22.2; 26.3 х 22.1; 26.1 х 21.6; 26.2 х 22.1.
- **19.06.1927** г., там же (5 слабо насиж.): 25.4 х 21.0; 25.2 х 21.2; 25.6 х 21.2; 26.1 х 21.0; 25.1 х 21.1.
- **19.06.1927** г., там же (5 из 6 насиж.): 25.0 х 22.2; 25.9 х 20.6; 24.0 х 22.0; 24.3 х 21.7; 24.7 х 21.7.
- **19.06.1927** г., там же (6 насиж.): 25.1 х 21.5; 25.2 х 21.7; 25.7 х 21.3; 26.2 х 22.0; 26.4 х 21.1; 25.3 х 21.5.

Удод *Upupa epops* Linnaeus, 1758 (1)

13.06.1927 г., Кызылорд. обл., ст. Байгакум (8): 25.1 х 17.1; 23.8 х 16.4; 24.2 х 17.2; 25.3 х 17.0; 24.9 х 16.9; 23.5 х 16.6; 24.2 х 17.0; 23.9 х 17.2.

Белокрылый дятел Dendrocopos leucopterus (Salvadori, 1870) (1)

29.04.1964 г., Кызылорд. обл., ст. Байгакум (5 ненасиж.): 23.9 х 18.5; 23.4 х 18.2; 23.2 х 19.0; 23.3 х 18.5; 23.0 х 18.7.

Деревенская ласточка Hirundo rustica Linnaeus, 1758 (1)

28.06.1926 г., Кызылординская обл., окр. ст. Караозек (Кара-Узяк) (4): 20.1 х 14.4; 20.1 х 14.5; 21.2 х 14.9; 16.1 х 13.0 ("карлик").

Малый жаворонок Calandrella cinerea (J.F. Gmelin, 1789) (1)

01.06.1928 г., Кызылорд. обл., Казалинский р-н, (5): 20.9 х 14.0; 21.1 х 14.1; 20.9 х 14.2; 19.7 х 13.7; 20.4 х 13.8.

Серый жаворонок С. rufescens (Vieillot, 1820) (1)

20.05.1927 г., Кызылорд. обл., оз. Кутан-Камыс (5): 20.9 х 15.2; 20.2 х 15.2; 21.0 х 15.0; 21.0 х 15.4; 21.2 х 15.4.

Степной жаворонок Melanocorypha calandra (Linnaeus, 1766) (2)

- **12.05.1936** г., Кызылорд. обл., Арысь (5 ненасиж.): 24.9 х 17.4; 23.0 х 17.3; 24.5 х 17.6; 24.1 х 17.2; 24.4 х 17.6.
- **23.04.1941** г., Атурауская обл., г. Атырау (Гурьев), устье р. Урал (5 сильно насиж.): 24.5 х 18.6; 24.4 х 19.0; 24.3 х 18.8; 25.1 х 18.0; 24.5 х 18.3.

Двупятнистый жаворонок M. bimaculata (Ménétries, 1832) (2)

- **04.05.1936** г., Кызылорд. обл., Кызыл-Кум (5 ненасиж.): 24.5 х 18.1; 23.7 х 17.6; 23.1 х 17.5; 24.2 х 17.6; 22.7 х 17.7.
- **02.06.1946** г., СЗ берег Аральского моря, ур. Кульмес (4 ненасиж.): 22.8 х 16.6; 23.4 х 16.8; 23.1 х 17.1; 23.7 х 17.1.

Белокрылый жаворонок *M. leucoptera* (Pallas, 1811) (1)

01.06.1936 г., Акмолинская обл., (возможно Северо-Казахстанская обл.), оз. Чулак-Челкар (5 насиж.): 20.8 х 15.2; 21.6 х 15.5; 21.3 х 15.4; 21.8 х 15.6; 21.6 х 15.4.

Чёрный жаворонок M. yeltoniensis (J.R. Forster, 1768) (1)

05.06.1936 г., Акмолинская обл., оз. Кургальджин (3 ненасиж.): 24.2 х 18.2; 24.3 х 18.1; 24.7 х 18.2.

Рогатый жаворонок Eremophila alpestris (Linnaeus, 1758) (1)

20.06.1957 г., Алматинская обл., верховье р. Каркара (Кокжар) (4 сильно насиж.): 23.2 х 17.0; 23.2 х 16.9; 22.6 х 16.7; 23.1 х 17.0.

Жёлтая трясогузка Motacilla flava Linnaeus, 1758 (3)

- **15.06.1927** г., Кызылорд. обл., ст. Байгакум (5): 18.4 х 14.3; 18.6 х 14.1; 18.8 х 15.0; 18.3 х 14.3; 18.7 х 14.9.
- **15.06.1927** г., там же (4): 17.4 х 14.4; 18.0 х 14.6; 17.7 х 14.2; 18.0 х 14.4.
- **16.05.1928** г., там же, оз. Утюбас (вероятно, Аральский р-он, оз. Тущыбас) (6): 18.5 х 13.6; 19.2 х 14.0; 19.6 х 14.0; 18.6 х 13.3; 19.2 х 14.0; 19.2 х 13.9.

Серый сорокопут Lanius excubitor Linnaeus, 1758 (2)

05.06.1927 г., Кызылорд. обл. (6): 25.8 x 20.2; 25.2 x 20.0; 24.6 x 19.8; 25.1 x 19.6; 25.3 x 19.8; 24.0 x 19.8.

05.05.1935 г., Кызылорд. обл, пустыня Кызыл-Кум (5 ненасиж.): 23.4 х 19.5; 24.0 х 19.3; 23.1 х 19.1; 23.7 х 18.7; 23.2 х 19.2.

Розовый скворец Sturnus roseus (Linnaeus, 1758) (4)

- **26.05.1924** г., Кызылорд. обл., окр. г. Кызылорда (4): 27.8 x 21.2; 28.0 x 21.3; 28.4 x 21.3; 28.5 x 21.5.
- **04.06.1924** г., там же (5): 28.2 x 21.3; 27.2 x 21.0; 28.3 x 20.9; 28.8 x 21.1; 28.8 x 21.1.
- **04.06.1924** г., там же (5): 28.5 х 21.8; 28.7 х 21.7; 25.7 х 21.6; 28.3 х 21.5; 28.2 х 21.8.
- **04.06.1924** г., там же (6): 26.4 х 21.1; 26.6 х 21.1; 26.7 х 20.9; 26.7 х 21.3; 26.2 х 20.1; 26.4 х 21.0.

Сорока Pica pica (Linnaeus, 1758) (3)

- **06.05.1928** г., Кызылорд. обл., пос. Джулек (7): 35.4 х 24.5; 37.5 х 24.8; 37.7 х 24.4; 35.1 х 24.2; 35.7 х 24.5; 34.4 х 25.1; 35.7 х 23.6.
- **05.05.1932** г., там же, пос. Оторвановка (5): 33.3 х 23.6; 33.1 х 23.4; 32.6 х 23.4; 34.0 х 23.7; 34.6 х 23.8.
- **05.05.1936** г., там же, ст. Утро-Баш (6): 34.5 х 23.8; 34.1 х 23.8; 33.4 х 23.8; 34.1 х 23.8; 34.1 х 23.8; 34.1 х 23.7.

Саксаульная сойка Podoces panderi J.G. Fischer, 1821 (1)

25.05.1932 г., Кызылорд. обл., пос. Джулек (5 ненасиж.): 31.3 х 20.7; 31.3 х 20.5; 30.5 х 21.0; 31.4 х 20.9; 31.2 х 20.7.

Галка Corvus monedula Linnaeus, 1758 (2)

- **30.04.1927** г., Кызылорд. обл., ст. Кара-Узяк (4): 37.0 x 25.7; 37.4 x 25.6; 38.8 x 26.0; 39.6 x 25.4.
- **07.05.1928** г., там же (6): 36.4 х 24.8; 34.4 х 25.2; 37.4 х 24.7; 37.2 х 24.6; 37.1 х 25.2; 34.6 х 25.1.

Грач C. frugilegus Linnaeus, 1758 (3)

- **23.04.1927** г., окрестности Кызылорды (5 из 6): 38.3 х 28.2; 42.0 х 27.8; 39.3 х 28.4; 38.1 х 27.8; 40.1 х 28.2.
- **23.04.1927** г., там же (5): 35.5 х 25.3; 34.1 х 24.9; 35.9 х 26.1; 35.1 х 24.5; 36.9 х 25.7.
- **23.04.1927** г., там же (6): 42.3 х 30.5; 41.0 х 29.3; 42.4 х 29.7; 38.6 х 28.0; 39.3 х 28.6; 40.9 х 29.3.

Чёрная ворона С. corone Linnaeus, 1758 (4)

- **12.04.1927** г., окр. г. Кызылорда (Перовский р-он) (4): 45.0 x 31.0; 45.4 x 31.5; 44.0 x 30.9; 45.1 x 30.6.
- **22.04.1927** г., там же (5): 44.8 х 30.2; 44.7 х 30.2; 43.4 х 30.0; 43.2 х 30.0; 41.2 х 29.0.
- **06.06.1928** г., там же, пос. Джулек (5): 43.1 х 29.7; 43.8 х 29.5; 42.3 х 30.0; 43.5 х 30.5; 43.4 х 29.3.
- **26.04.1932** г., там же, ст. Байгакум (5): 43.4 х 31.1; 42.7 х 32.1; 43.0 х 30.1; 43.2 х 31.3; 43.0 х 31.7.

Серая ворона *C. cornix* Linnaeus, 1758 (1)

18.04.1941 г., устье р. Урал (6 ненасиж.): 44.6 х 30.3; 43.7 х 30.8; 44.6 х 30.7; 43.4 х 31.1; 44.2 х 30.9; 43.7 х 30.9.

Пустынный ворон C. ruficollis Lesson, 1831 (6)

- **16.04.1932** г., Кызылорд. обл., горы Ак-Тау (5): 47.0 х 32.4; 47.5 х 33.0; 48.2 х 33.3; 46.6 х 32.7; 46.2 х 33.2.
- **20.04.1932** г., там же (4): 44.7 х 33.5; 46.2 х 32.4; 43.0 х 33.2; 44.8 х 32.8.
- **20.04.1932** г., там же (6): 45.0 х 31.2; 44.1 х 31.3; 43.2 х 31.1; 43.7 х 31.1; 43.8 х 30.8; 43.8 х 30.7.
- **21.04.1932** г., там же (4): 44.4 х 31.6; 45.1 х 31.6; 43.3 х 31.0; 44.2 х 32.0.
- **05.05.1936** г., там же, пустыня Кызыл-Кум (4 ненасиж.): 42.2 х 28.9; 42.8 х 29.6; 40.0 х 28.6; 41.1 х 28.8.
- **07.05.1936** г., там же (5 ненасиж.): 42.2 х 31.1; 40.7 х 30.0; 38.7 х 30.3; 42.2 х 31.1; 42.0 х 30.1.

Индийская камышевка Acrocephalus agricola (Jerdon, 1845) (1)

03.06.1947 г., Аральское море, о. Узун-Каир (5 ненасиж.): 16.2 х 12.3; 16.1 х 12.2; 15.2 х 11.6; 16.4 х 12.4; 16.5 х 12.4.

Дроздовидная камышевка A. arundinaceus (Linnaeus, 1758) (1)

08.06.1963 г., Кызылорд. обл., ст. Байгакум (3 из 5 насиж.): 23.6 x15.5; 23.2 x 15.6; 22.8 x 15.9.

Южная бормотушка Hippolais rama (Sykes, 1832) (1)

11.06.1949 г., пойма р. Или (5 насиж.): 16.8 х 11.8; 16.9 х 11.4; 16.7 х 11.9; 16.2 х 12.2.

Белоусая славка Sylvia mystacea Ménétries, 1832 (1)

09.06.1927 г., Кызылорд. обл., ст. Байгакум (4): 16.1 х 13.2; 15.9 х 13.3; 16.8 х 13.1; 16.1 х 13.5.

Каменка-плешанка Oenanthe pleschanka (Lepechin, 1770) (1)

11.05.1952 г., Кызылорд. обл., г. Аральск (5 насиж.): 18.7 х14.0; 18.3 х 14.0; 18.3 х 13.6; 18.5 х 14.0; 18.7 х 14.2.

Синий каменный дрозд Monticola solitarius (Linnaeus, 1758) (1)

24.05.1937 г., Чу-Илийские горы, Коп-тау, (вероятно, Жамбыльская обл., пос. Хантау,) (5 ненасиж.): 27.7 х 19.1; 26.2 х 19.7; 27.1 х 19.8; 27.4 х 19.6; 26.4 х 19.5.

Южный соловей Luscinia megarhynchos C. L. Brehm, 1831 (1)

15.06.1927 г., Кызылорд. обл., ст. Байгакум (4): 18.7 х 15.2; 20.0 х 15.6; 19.4 х 15.5; 18.8 х 15.0.

Усатая синица Panurus biarmicus (Linnaeus, 1758) (3)

- **06.06.1946** г., СЗ берег Аральского моря, п-ов Кокарал, урочище Кульмес (7 ненасиж.): 16.6 х 13.7; 16.6 х 13.5; 16.7 х 13.2; 16.2 х 13.1; 17.7 х 12.7; 17.2 х 13.0; 16.9 х 13.0.
- **11.06.1957** г., Казахстан, дельта р. Или (7 слабо насиж.): 16.3 х 13.5; 16.3 х 13.6; 17.0 х 13.4; 17.1 х 13.9; 16.7 х 13.7; 15.4 х 13.2; 17.1 х 13.8.
- **Даты нет**, там же (6 ненасиж.): 17.3 x 14.2; 16.7 x 14.2; 16.2 x 14.1; 17.1 x 14.1; 17.1 x 14.0; 17.5 x 14.3.

Обыкновенный pemes Remiz pendulinus (Linnaeus, 1758) (1)

22.05.1932 г., Кызылорд. обл., пос. Джулек (6): 15.2 х 10.4; 15.2 х 10.0; 15.3 х 10.2; 15.1 х 10.5; 15.6 х 10.5; 15.1 х 10.1.

Джунгарская гаичка Parus songarus Severtzov, 1873 (1)

01.06.1957 г., Алматинская обл., Нарынкол (4 насиж.): 17.8 x 13.1; 17.6 x 13.1; 17.8 x 13.0; 17.3 x 12.9.

Белая лазоревка P. cyanus Pallas, 1770 (2)

- **18.06.1957** г., Алматинская обл., дельта р. Или (6 слабо насиж.): 17.2 х 12.4; 16.7 х 12.7; 16.4 х 12.3; 17.2 х 12.7; 17.6 х 12.8; 17.8 х 12.7.
- **05.06.1960** г., там же (6 слабо насиж.): 16.6 х 12.7; 16.7 х 12.8; 16.6 х 12.8; 16.2 х 13.0; 16.2 х 12.5; 16.3 х 12.5.

Индийский воробей Passer indicus Jardine et Selby, 1831 (1)

29.05.1927 г., Кызылорд. обл., пос. Джулек (6 ненасиж.): 20.0 х 14.7; 19.6 х 14.5; 19.6 х 14.7; 20.0 х 14.7; 19.2 х 14.9; 20.8 х 14.8.

Саксаульный воробей *P. ammodendri* Gould, 1872 (3)

- **03.06.1958** г., Алматинская обл., с. Баканас (5 ненасиж.): 22.5 х 15.2; 23.0 х 15.3; 23.2 х 15.1; 22.8 х 15.1; 22.6 х 15.1.
- **07.05.1964** г., Кызылорд. обл., ст. Байгакум (6 ненасиж.): 21.1 х 14.7; 21.3 х 14.7; 21.6 х 14.7; 21.0 х 14.4; 20.5 х 14.1; 21.0 х 14.6.
- **08.05.1964** г., там же (5 ненасиж.): 19.8 х 15.0; 20.3 х 15.3; 20.7 х 15.3; 20.3 х 15.0; 20.6 х 15.2.

Снежный вьюрок Montifringilla nivalis (Linnaeus, 1766) (1)

14.06.1957 г., Алматинская обл., Нарынкольский р-он, верховье р. Кокжар (4 из 5 насиж.): 23.9 х 16.5; 23.7 х 16.8; 23.7 х 17.0; 24.6 х 16.6.

Тростниковая овсянка Emberiza schoeniclus (Linnaeus, 1758) (1)

21.04.1962 г., Алматинская обл., дельта р. Или (3): 22.2 х 15.7; 22.0 х 15.7; 21.7 х 15.7.

Литература

Спангенберг Е.П., Фейгин Г.А. 1936. Птицы нижней Сыр-Дарьи и прилегающих районов//Сб. тр. Зоол. Музея (при МГУ), т. 3, 41-184. **Спангенберг Е.П.** 1941. Птицы нижней Сыр-Дарьи и прилегающих районов//Сб. тр. Зоол. музея МГУ, т. 6, 77-140.

Флинт В.Е., Бёме Р.Л. 1973. Памяти Евгения Павловича Спангенберга//Исследования по фауне Советского Союза. Сб. тр. Зоомузея МГУ, т. 14, 39-49.

Summary

Talgat K. Dzhusupov. Egg collection of E.P. Spangenberg from Kazakhstan.

E.P Spangenberg worked on the territory of Kazakhstan since 1924 for 9 years. During this period he collected 205 egg-layings of 102 bird species. This collection is now stored in Novosibirsk. Sizes and descriptions of eggs are given in this article.

ИСТОРИЯ ЗООЛОГИИ

Пётр Симон Паллас (1741–1811), учёный и путешественник¹

Боркин Лев Яковлевич

почётный председатель правления Санкт-Петербургского союза учёных, председатель правления Палласовского фонда, Санкт-Петербург, Россия

22 сентября 2016 г. исполняется 275 лет со дня рождения замечательного учёного и путешественника, члена Императорской Петербургской академии наук Петра Симона Палласа (Peter Simon Pallas, 1741–1811). Уже при жизни он получил огромную международную известность благодаря своим научным трудам в разных областях науки, а также длительным путешествиям по бескрайним просторам Российской империи.

Рис. 1. Портреты П.С. Палласа в разном возрасте.

Слева: картина неизвестного художника, холст, масло; хранится в ЗИН РАН. В центре: Паллас в экспедиции — вероятно, май 1793 г., Азгир (ныне западный Казахстан). Акварель Х. Гейслера (из книги Х. Гейслера, М., 2015). Справа: Гравюра с рисунка Амбруаза Тардьё (из книги: Б.Е. Райков (1952).

Тем не менее с Палласом связан один грустный парадокс. С одной стороны, его имя легко найти во многих энциклопедиях или справочниках, и про учёного написано множество статей и даже книг [1]. Однако, с другой, о нём даже в научных кругах мало знают, а нередко и не слышали ничего. Между тем историки науки подчас сравнивают Палласа с М.В. Ломоносовым, символом нашей науки второй трети XVIII века, не без оснований полагая, что Пётр Паллас был знаковой фигурой Императорской Академии наук последней трети века Просвещения.

В XIX и XX ст. многие выдающиеся учёные в России и за рубежом восторженно отзывались о вкладе Палласа в науку. Назову лишь имена французского зоолога и историка науки Жоржа Кювье, немецкого путешественника и натуралиста Александра Гумбольдта, одного из основателей

.

¹ Перепечатка: Л. Боркин «Парадокс Палласа». В газете «Троицкий вариант – наука» 19 (213), СПб., 20 сент. 2016. С. 6-7.

отечественной экологии и зоогеографии Н.А. Северцова. Однако сегодня многие члены Российской академии наук имеют (если имеют) о своем великом предшественнике весьма смутное представление. Кроме того, хотя целый ряд трудов Палласа считаются основополагающими, но что в них написано, большинству ныне [живущих учёных -AK] практически неизвестно, так как они не переведены на русский язык.

Будущий «академикус» родился в Берлине в зажиточной семье военного хирурга-профессора. Мать происходила из французской гугенотской диаспоры. Германии как единой страны тогда ещё не существовало. Берлин был столицей амбициозного и воинственного Прусского королевства, в котором царствовала бранденбургская династия Гогенцоллернов.

Петер был третьим и последним ребёнком. Он получил хорошее домашнее образование, которое сводилось к изучению языков. В результате мальчик освоил, помимо родного немецкого и французского (языка матери), ещё латынь, а также древнегреческий и английский, которые не были тогда в моде. В 13 лет отец отдал ребенка в Берлинскую медико-хирургическую коллегию, которая отличалась передовыми взглядами на медицину и естествознание. По её подобию позже в России создали Медико-хирургическую академию в Санкт-Петербурге и Москве (ныне Военно-медицинская академия).

Из естественных наук в коллегии преподавали ботанику, которая была необходима в медицинских целях. Зоологии как учебной дисциплины тогда ещё не было, и Петер, который увлёкся изучением животных, занимался ею самостоятельно. Отец, преподававший в коллегии хирургию, хотел сделать из сына практикующего врача. Окончив коллегию, Петер, как это было принято среди немецких студентов, отправился повышать свое образование в университеты Галле и Гёттингена, а также в голландский Лейден, где в 19 лет защитил диссертацию на звание доктора медицины. Она была посвящена изучению паразитических червей и считается началом гельминтологии как науки. Недавний студент посмел поправить самого Карла Линнея.

В 1760-е гг. Паллас жил в Англии и Нидерландах, где познакомился со многими известными коллекционерами и натуралистами. Он посещал знаменитые ботанические сады и изучал богатейшие коллекции «натуралий», как тогда называли предметы природы. Тогда же Петер решил отказаться от медицинской карьеры и заняться естественными науками, что не нашло поддержки у отца.

Благодаря полезным знакомствам с влиятельными людьми, а также собственным познаниям Паллас в июне 1764 г. был избран членом Лондонского Королевского общества, а в ноябре того же года — членом Кайзеровской Леопольдино-Каролинской академии естествоиспытателей (кратко «Леопольдина»). Избрание столь молодого натуралиста, которому не исполнилось и 23 лет, было, конечно, неслыханной честью, особенно если учесть отсутствие у него опубликованных работ (не считая диссертации).

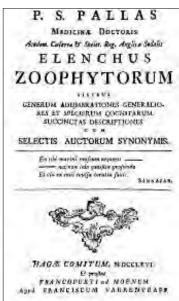


Рис. 2. Титульные листы монографических научных трудов П.С. Палласа

Тем не менее столь щедрый аванс оказался оправданным. В 1766 г. в Гааге Паллас напечатал сразу две монографии. В первой из них ("Elenchus Zoophytorum") он дал описание загадочных тогда зоофитов («животно-растений»), т.е. прикреплённых к грунту существ (губки, коралловые полипы, мшанки), подтвердив их принадлежность к животным (рис. 2). Молодой натуралист, показав, что между растениями и животными нет такой принципиальной границы, как думало тогда большинство, противопоставил царство живых организмов минералам. Это идею в 1920-е гг. высоко оценил В.И. Вернадский в своей книге о живом веществе. Другая книга ("Miscellanea Zoologica") содержала описание самых различных животных, от антилоп до низших существ. В ней, кстати, Паллас первым выделил морских свинок в отдельный род *Cavia*.

В Нидерландах начинающий, но уже известный натуралист мечтал о далёкой экспедиции в одну из голландских колоний: на самый юг Африки или на восток – в Азию. Однако его мечты прервал отец, вызвавший сына домой. В семье назревал конфликт. Петер находился в полной финансовой зависимости от отца, но не хотел становиться врачом.

Неожиданное предложение пришло из России. От имени Екатерины II Палласа-младшего приглашали на работу в Санкт-Петербург, столицу огромной империи. Ему пообещали место действительного члена и профессора естественных наук Императорской Академии наук, а также руководство большой экспедицией в Сибирь. Поколебавшись, П.С. Паллас принял приглашение и уже летом 1767 г. заседал в Академии наук. В Петербург Паллас приехал не один, а с молодой женщиной, имя которой осталось неизвестным. Позже она стала его женой, и у них была дочь.

Летом 1768 г. Паллас во главе отряда из 7 человек покинул Санкт-Петербург, отправившись в долгое путешествие вглубь обширной неведомой страны (рис. 3). Он прошёл Поволжье, Урал, северный Прикаспий, Западную Сибирь и достиг на востоке Забайкалья (Даурии). Его отряд входил в состав так называемых «физических» экспедиций, которые стали одной из наиболее славных страниц в истории отечественной науки. Согласно официальной инструкции, помимо «натуральной истории», следовало описывать географию посещаемого края, его природные ресурсы, экономику, историю и обычаи местных народов. Фактически это были комплексные экспедиции с необычайно широким спектром задач от физической и экономической географии до народной медицины и верований.

Экспедиция оказалась нелёгкой. 30 июля (10 августа) 1774 г., претерпев многие испытания, невзгоды и лишения тяжёлой кочевой жизни, понеся потери среди подчинённых, 33-летний естествоиспытатель вернулся на берега Невы. Он выглядел как измождённый болезнями полу-старик с седеющими волосами.

В ходе длительных странствий П.С. Палас вёл подробный дневник, который частями отсылал в Академию наук. Он был опубликован под названием «Путешествие по разным провинциям Российской империи» в Санкт-Петербурге по-немецки (1771–1776), а затем по-русски (1773–1788) в трёх частях и пяти книгах. Это удивительное по своей широте произведение, переиздававшееся на разных языках более 20 раз, выдвинуло его автора в число выдающихся европейских ученых.

Рис. 3 и **4**. Карта путешествий академика П.С. Палласа (по книге: Соколов, Парнес, 1993) и титулы первых немецкого (1771) и русского (1773) изданий с описаниями этих путешествий

Фактически П.С. Паллас создал грандиозную панораму огромной, многоликой и тогда мало изученной страны, обрисовав её разнообразную природу и многочисленные народы от Балтики до Забайкалья и от полярной тундры до прикаспийской пустыни. «Путешествие» стало настоящей энциклопедией России второй половины XVIII ст. Оно привлекало внимание не только различных

учёных (от ботаников до востоковедов), но и таких замечательных писателей и поэтов, как Николай Гоголь (при подготовке им «Мёртвых душ») и Осип Мандельштам [2]. С годами научная и историческая ценность этого обширного труда Палласа только возрастает, так как его сведения о природе и населении позволяют при сопоставлении с современными данными оценивать те изменения, которые произошли за последние столетия.

После экспедиции Паллас прожил в Санкт-Петербурге почти 20 лет, ведя размеренную жизнь учёного и выполняя различные поручения Императорской Академии наук и других ведомств Российской империи. Он писал многочисленные статьи и книги, редактировал труды своих коллег, посещал академические и другие заседания, вёл обширную переписку с российскими и зарубежными учёными, выпускал издание «Neue Nordische Beyträge» (1781–1796) и т.д. Следует отметить его многочисленные объёмистые книги по этнографии, зоологии, ботанике, энтомологии, «Сравнительные словари всех языков и наречий» и т.д. В 1777 г. академик выдвинул свою концепцию строения и образовании гор и изменений на Земном шаре. В 1780 г. он выступил с публичной речью в Императорской Академии наук об изменчивости животных, опровергнув концепцию Карла Линнея о гибридизации видов и взгляды не менее знаменитого Жоржа Бюффона о влиянии климата.

Постепенно П.С. Паллас становился всё более важной фигурой, чьё влияние выходило за пределы Императорской Академии наук. Благодаря покровительству Екатерины II он был принят при дворе, преподавал естественные науки её внукам Александру (будущему императору Александру I) и Константину, был назначен историографом Адмиралтейств-коллегии.

Однако милость императрицы не была вечной, а придворные недоброжелатели Палласа не дремали. Осенью 1792 г. он был освобожден от дел по Адмиралтейств-коллегии и получил высочайшее разрешение на путешествие в Крым, присоединенный к России в 1783 г. Фактически его с почётом отправили в дальнюю ссылку. Хотя называют разные поводы для опалы, но её реальная причина неизвестна.

Свое второе большое путешествие П.С. Паллас совершил в 1793—1794 гг. за свой счет. Зимний путь прошел через Москву и Волгу на юг России через Прикаспий в Крым. Ехал он в кибитках с уже третьей женой Каролиной Ивановной и дочкой Альбертиной от первого брака.

В 1795 г. в Санкт-Петербурге на французском и русском языках появилось краткое описание Крымского полуострова, составленное Палласом по поручению молодого фаворита императрицы, графа Платона Зубова. За одно десятилетие (1796–1806) последовало 11 переизданий «Тавриды» на немецком и французском языках. Вероятно, это объяснялось не просто любопытством, но и геополитическими интересами. Вскоре на немецком языке в Лейпциге (1799–1801) появилось двухтомное описание путешествия самого Палласа «по южным наместничествам Русского государства», которое также неоднократно переиздавалось в Европе.

Екатерина II щедро наделила академика землями и домом в Крыму близ Симферополя (рис. 5). Здесь Паллас прожил около 15 лет (1795–1810), успешно сочетая жизнь помещика и учёного. Помимо занятий садоводством и виноградарством, он составил ещё одну ботаническую монографию и завершил главный научный труд своей жизни «Zoographia Rosso-Asiatica» («Русско-Азиатская зоография»). В её 3 томах, напечатанных по-латыни в Санкт-Петербурге (1811 и 1814), описаны 874 вида позвоночных животных.

В апреле 1810 г. постаревший учёный с овдовевшей дочкой и внуком вернулся в Берлин. Жена осталась в Крыму. 8 сентября 1811 г. великий натуралист умер от хронического энтерита, которым страдал всю жизнь. П.С. Паллас был похоронен на Иерусалимском кладбище в Берлине (рис. 6), не дожив всего двух недель до своего 70-летия.

Научное наследие Палласа огромно. Если не учитывать переиздания, то он за 51 год (1760–1811) написал 20 книг и 131 статью, отредактировал множество рукописей, а также перевёл 1 книгу и 7 статей. Наиболее продуктивен ученый был в Санкт-Петербурге с 1776 по 1789 г. Если рассортировать его работы по направлениям, то получается, что исследователь внёс вклад, как минимум, в 14 наук. Помимо зоологии и ботаники, это — география, геология, палеонтология, этнография, востоковедение, религиоведение (буддология), история и археология. Ему принадлежат также печатные труды по лингвистике, нумизматике, археологии, метеорологии, медицине, сельскому и лесному хозяйствам, горному делу, различным ремеслам и технологиям. П.С. Паллас опубликовал несколько работ даже о Тибете, а купленная им в Яицком городке (Уральск, ныне Казахстан) коллекция божков-бурханов положила начало буддийскому собранию нашей Академии наук.

Рис. 5 и **6**. Дом в Крыму, где П.С. Паллас прожил 15 лет (фото И.В. Доронина), и надгробие на его могиле в Берлине.

Привезенная П.С. Палласом из Сибири большая железокаменная глыба (более 40 пудов), известная как *Палласово железо*, оказалась первым отождествлённым наукой небесным телом. С изучением этого «аэролита» (тогдашний термин) связывают начало научной метеоритики, а метеориты такого типа получили название *палласиты*.

В 1895 г. натуралист и библиограф Ф.П. Кёппен (1833–1908), составивший подробный список работ Палласа и изложивший его биографию, предложил поставить в Санкт-Петербурге *памятник* этому замечательному учёному, а также издать в Академии наук *полное собрание его сочинений*. В 1904 г. железнодорожной станции в степном Нижнем Поволжье на линии, ведущей к Астрахани, дали название *Палласовка* (город с 1967 г.). Там же в советское время появился и единственный в мире памятник этому выдающемуся учёному и путешественнику (рис. 7).

Казалось бы, страна должна гордиться таким великим исследователем. Однако 275-летие со дня рождения П.С. Палласа в России вряд ли будет отмечаться на высоком официальном уровне; по крайней мере, решения РАН на эту тему мне и моим коллегам неизвестны. Несмотря на явное отсутствие интереса в верхах, энтузиасты, конечно, проведут серию Палласовских заседаний в регионах. 22 сентября в Берлине немецкие и российские коллеги, живущие в Германии, планируют возложить цветы на могилу выдающегося учёного, объединяющего обе наши страны.

Конечно, очень огорчает отсутствие интереса и понимание значимости Палласа в руководстве наукой, а также в органах власти. Радует, что его имя помнят и им гордятся учёные, краеведы и учителя в различных городах и селах нашей необъятной родины, особенно в тех областях, где проходили экспедиции Петра Семеновича Палласа. Радует также то, что благодаря скромной провинциальной интеллигенции его наследие изучают в школах и местных музеях.

Мудрый В.И. Вернадский так отозвался о трудах Палласа: «Они лежат до сих пор в основании наших знаний о природе и людях России. К ним неизбежно, как к живому источнику, обращается геолог и этнограф, зоолог и ботаник, геолог и минералог, статистик, археолог и языковед <...>. Паллас до сих пор ещё не занял в нашем сознании того исторического места, которое отвечает его реальному значению».

Хотелось бы, чтобы это понимали и руководители науки, и власть на разных её уровнях.

1. **Боркин Л.Я., Ганнибал Б.К., Голубев А.В.** Дорогами Петра Симона Палласа (по западу Казахстана). СПб; Уральск: Евразийский союз учёных, 2014. 310 с. Сытин А.К. Ботаник Петр Симон Паллас. М., 2014. 456 с.; Wendland F. Peter Simon Pallas (1741–1811). Materialien einer Biographie. Teil I–II. Berlin; New York: Walter de Gruyter, 1992. XVIII+1176 S. (Veröffentlichungen der Historischen Komission zu Berlin, Bd. 80/I–II); **Боркин Л.Я.**

Добавления к библиографии Петра Симона Палласа//Историко-биологические исследования. СПб, 2011.Т. 3, № 3. С. 130–157.

Рис. 7. Участники конференции памяти П.С. Палласа, у его памятника. Город Палласовка, 2011 г. Φ ото И. Сорокина

2. Сытин А.К. Живая география России: Н.В. Гоголь изучает естественно-исторические труды П.С. Палласа //Природа. 2000. № 6. С. 93–96; **Боркин Л.Я.** Осип Мандельштам и П.С. Паллас (послесловие)//Родник знаний. СПб. 2013. № 1 (8). С. 31–33.

От редакции: Спустя почти 250 лет группа петербургских учёных прошла по маршруту сибирской экспедиции Петра Симона Палласа. Ниже публикуем интервью на эту тему, опубликованное в газете «Санкт-Петербургские ведомости», № 199 (5816) за 25 октября 2016 г.

Паллас и палласоведы

(интервью с Л.Я. Боркиным)

22 сентября исполнилось 275 лет со дня рождения Петра Симона Палласа — учёного, которого даже в родной Германии называют «русско-немецким». Он состоял в Лондонском Королевском обществе и двух академиях (германской «Леопольдине» и Императорской Петербургской), но на его могиле в Берлине написано по-латыни «академик петербургский». В Русском биографическом словаре, издававшемся с 1896 по 1918 г., о Палласе сказано: «один из наиболее выдающихся естествоиспытателей всех стран и времён». Санкт-Петербургский союз ученых, в течение многих лет исследуя научное наследие Палласа, предпринял несколько экспедиций по местам, которые открывал для русской науки Паллас — дважды были в Казахстане, в этом году посетили Сибирь. С научным руководителем экспедиций, почётным председателем правления СПбСУ, зоологом и историком науки Львом Боркиным мы и беседуем.

- Лев Яковлевич, Паллас ведь незаурядным образом попал в Россию...
- Паллас заведовал зоологической частью нашей Кунсткамеры. 43 года проработал на благо Петербургской академии наук и России. И так получилось, что именно в Петербурге сосредоточились

люди, которые много знают о жизни и трудах Палласа – я их называю «палласоведы», по аналогии с пушкиноведами: я бы вообще обозначил палласоведение как отдельную область истории науки.

Паллас родился в 1741 году, отец его был известный берлинский военный хирург, профессор Медико-хирургической коллегии (кстати, по ее подобию создали нашу ныне Военно-медицинскую академию), а мать француженка из семьи эмигрантов-гугенотов, так что для ребёнка немецкий и французский были родными языками. В детстве он выучил и латынь, древнегреческий и даже английский, что по тем временам было редкостью. Отец хотел, чтобы сын пошёл по его стопам, в 13 лет мальчика отдали учиться в Медико-хирургическую коллегию, где тогда преподавали европейские светила — Иоганн Готлиб Гледич и Иоганн Фридрих Меккель-старший. Но мальчик заинтересовался зоологией: в 15 лет составил классификацию птиц по строению клюва, а в 19 лет в голландском Лейдене защитил диссертацию «О врагах, живущих внутри живых». То есть о глистах — о том, что они появляются не сами собой, как полагали. Эта диссертация считается основанием гельминтологии, науки о червях-паразитах. В ней он поправил самого Карла Линнея!

- В 19 лет стал основателем науки?

- Ну, он-то просто проводил исследование. Люди, которые управляют наукой сейчас, не понимают, что открытия совершаются теми, кто «просто проводит исследования»... Но вернусь к Палласу. Он поехал в Англию, где стал исследовать частные «курьёзные кабинеты». В те времена среди богатых было модно не яхту покупать, а заводить такие личные «кунсткамеры» - собрания необычных растений, редких животных, минералов и ископаемых организмов. Эти частные коллекционеры сыграли серьёзную роль в становлении государственной науки.

Паллас на основе коллекций и наблюдений написал монографию о зоофитах – кораллах, губках и прочих сидячих существах, о которых наука тогда толком не знала, отнести их к животным или растениям. Паллас доказал, что это животные. Книга была переведена с «научной» латыни на голландский и немецкий и разошлась по Европе. Но отец был недоволен: он видел в сыне врача, а тогда ослушаться родителя было нельзя. И вдруг 25-летний Паллас получает приглашение Екатерины II приехать в Петербург! Ему пообещали звание академика, профессора естественной истории, оклад в 800 рублей и руководство большой экспедицией в Сибирь.

- Как бы приглашение «ведущего учёного» в Россию?

- Это была прагматическая задача. Империя гигантская – а что в ней имеется? Деньги были только металлические; чтобы их делать, нужны медь и серебро, и надо было знать, где их искать. Появилась надобность срочно создать описание России. Но кто это будет делать? Своих учёных в России было мало, и стали вновь, как при Петре, приглашать заграничных. В Россию мало кто решался ехать.

- А Паллас не испугался?

- Тут два любопытных обстоятельства. Во-первых, в Европе он не смог получить место учёногонатуралиста и находился в полной финансовой зависимости от отца. Но есть и романтическая история. В Петербург Паллас приехал не один, а с женщиной, имя которой осталось неизвестным. По некоторым сведениям, Паллас женился на ней официально чуть ли не за несколько дней до её кончины. Представляете себе: крупный учёный, принят при дворе – а никто не знает, на ком он женат.

- Жёлтой прессы не было?

- Видимо, да. Вообще он был трижды женат последовательно, как честный человек. Богатства не скопил: по воспоминаниям французского посланника, Паллас ради приданого для дочери пытался продать свою коллекцию. Об этом прослышала Екатерина II и мало того, что дала ему за коллекцию больше, чем он просил ещё и оставила ему эту коллекцию для изучения пожизненно.
- Но все это было много позже его возвращения из первой, той самой, «сибирской» экспедиций, которую вы некоторым образом повторили?
- Екатерина повелела Академии наук организовать экспедиции, и Паллас возглавил один из пяти отрядов. Для многих руководителей и участников тех отрядов путешествие завершилось трагично. Иоганн Фальк, которому было чуть за 40, он считался «стариком» по сравнению с другими покончил жизнь самоубийством. Руководитель другого отряда, Самуил Готлиб Гмелин умер в 30 лет в плену на территории нынешнего Дагестана. Иоганн Антон Гюльденштедт вернулся, но тоже умер молодым. Астронома Георга Ловица повесили пугачёвцы. А Паллас... Его экспедиция длилась 6 лет. Когда он вернулся, ему было 33 года, но он выглядел, как изможденный полу-старик с седыми волосами.
 - Сейчас петербургские ученые, идя «по стопам Палласа», тех трудностей не испытывали?
- Наш Союз учёных уже проводил экспедиции по маршрутам Палласа в северном Прикаспии в Казахстане в 2010 и 2012 гг. Это была одна из территорий, которую он «открыл» для науки: в Среднюю Азию европейцы тогда если и попадали, то мигом лишались головы.

Паллас внёс большой вклад и в изучение Сибири, где его особенно поразила Даурия. В мае этого года мы повторили его путь по Омской области. Нашу экспедицию фактически организовал историк науки Виктор Иванович Гохнадель, в её составе были ботаник Б.К. Ганнибал, молекулярный зоолог С.Н. Литвинчук и энтомолог А.Г. Мосейко. И на месте присоединились два омских ученых. Вообще мы упор делали на те научные направления, которые в тех краях не очень развиты. Школа орнитологов в Омске, к примеру, сильная, гидробиологи хорошие. А герпетологов нет.

Мы намеренно шли в те же сроки, что и Паллас. Учёный, увидев за рекой Ишим необычную местность, решил её изучить: равнины с берёзовыми рощами, многочисленные озёра и болота. Очень привлекло озеро Мангут, откуда ему местные охотники доставили белого журавля. Это был стерх, которого Паллас и описал первым.

В те времена в Омской области вдоль Сибирского тракта деревень было очень мало. Изредка попадались почтовые избы, где можно было попить чаю и покормить лошадей. На Мангуте тогда жилья не было. Поэтому Паллас встал на ночлег в деревне на речке Крутая. И в тех местах он обнаружил тоже необычное животное – белку-летягу.

Та деревня и сейчас есть, мы в ней останавливались. Называется Крутинка. В XXI веке, кстати, тоже возникли сложности с передвижением. В поселке Мангут ж/д станцию «оптимизировали», и поезда там теперь не останавливаются. Мы вынуждены были проехать на поезде дальше, километров за 70 — а оттуда уже возвращаться в Мангут. Погода была холодная, шёл дождь — как и у Палласа, судя по его записям о весенней волне холода. Но у него были шубы, а у нас нет. А вот принимали нас очень радушно и сердечно. В поселке были готовы к нашему приезду и даже создали Палласовскую комнату-музей в доме культуры. Мы от имени СПбСУ открыли мемориальную доску в честь Палласа, прочитали лекции — для жителей посёлка это было, конечно, событие. Приехало даже начальство из района и Омска. Вообще местная интеллигенция — и в Мангуте, и в Крутинке — меня порадовала: замечательные энтузиасты и настоящий, не показной патриотизм! Тамошний художник А.А. Куроедов, член Союза художников России, нарисовал портрет Палласа, фотокопию которого нам подарили.

- На этом портрете ученый в парике, в камзоле и вот этак он по болотам ходил?
- А вы знаете, есть портрет Палласа, нарисованный художником Гейслером во время экспедиции в Прикаспий. Он и там в цилиндре, фраке и жилетке, несмотря на жару! При этом с лопаткой и папкой для растений...
- Ваша экспедиция ведь не просто «мемориальная», вы проводили исследования. Что за 250 лет изменилось?
- Некоторые намеченные исследования провести не удалось: после сильных паводков не смогли подобраться к озёрам. К сожалению, в тех местах исчез стерх. И белка-летяга. Но появился пеликан! Представляете, какие изменения в природе происходят?

Из Крутинки мы поехали в Омск, откуда выезжали на полевые исследования к реке Иртыш. По пути обследовали несколько мест и озер. Одна из современных экологических проблем — «вселенцы», пришлые растения и животные. В одних случаях это вторжение не мешает, в других приносит колоссальный вред. В Омске появилась новая лягушка — озёрная. Она вообще-то южная, что ей делать в Сибири? Мы планируем с помощью молекулярно-генетического анализа понять, откуда она. Полагают, что эти лягушки попали из Казахстана по Иртышу. Мы нашли их также к югу от Омска в горячем источнике на территории православного женского монастыря. А наш энтомолог обнаружил около сотни видов жуков-листоедов, из них большинство ранее в Омской области не были зафиксированы.

Собранный нами материал будет обрабатываться в разных институтах РАН. Но не менее важно, что во всех местах, где мы останавливались, мы читали лекции для школьников и взрослых, встречались с учителями и краеведами, дарили книги и журналы. Омские власти обещали нам в честь Палласа назвать безымянное озеро около Мангута и сосновый бор рядом с Крутинкой, а сосновый бор для лесостепи – редкость.

Радует, что краеведы на местах помнят о великом Палласе. И вот в Академии наук с латыни так и не переведены на русский важные сочинения этого выдающегося ученого, в том числе его главный труд «Zoographia Rosso-Asiatica», первое описание животного мира России...

Анастасия Долгошева газета «Санкт-Петербургские ведомости» dolgoshova@spbvedomosti.ru

Вид на Чокпакские ворота с Майликентского перевала (Буранши-асу). Май 2016 г. Стрелкой указано место расположения орнитологического стационара. Φ omo $A.\Phi$. Ковшаря

Участники юбилейного совещания 10 сентября 2016 г.

Фото О.В. Белялова

Празднование двойного юбилея – 50 лет Чокпаку и 80 лет Икару. Чокпак, 10 сентября 2016 г.

Фото О.В. Белялова и А.Ф. Ковшаря

К истории создания и становления Чокпакского орнитологического стационара

(в день его 50-летнего юбилея)

«Актуальные проблемы изучения миграций птиц срединного региона (Сибирь – Казахстан – Средняя Азия)» – под таким названием на орнитологическом стационаре Чокпак 10 сентября 2016 г. прошло региональное орнитологическое совещание, посвящённое 50-летнему юбилею Чокпакского стационара и 80-летнему юбилею его основателя Икара Фёдоровича Бородихина. Помимо ныне работающих на стационаре орнитологов Института зоологии МОН РК (А.Э. Гаврилов, А.Ж. Абаев, С.Х. Зарипова) в празднике приняли участие ветераны Чокпака (И.Ф. Бородихин, А.Ф. Ковшарь, А.С. Левин, О.В. Белялов, А.В. Коваленко), сотрудники заповедника Аксу-Джабаглы (Е.М. Белоусов, В.Г. Колбинцев), гости из соседней Киргизии (А.Н. Остащенко, С.А. Торопов) и Узбекистана (Л.Б. Мардонова, М.Г. Митропольский) и группа орнитологических туристов из Канады (см. цветную вклейку 2).

Основным докладом на совещании стала презентация, посвящённая 50-летней истории Чокпака. Но для начала — немного географии. Сам Чокпак — 7-8 км шириной седловина с нижней точкой у ст. Чокпак (1204 м над уровнем моря) между отрогами Таласского Алатау (горы Джабаглытау) с юга и Сырдарьинского Каратау (горы Боралдайтау) с севера (см. вклейку 2). Днище этой седловины — самая высокая точка широкого межгорного пространства, которое к западу, постепенно понижаясь, переходит в густонаселённую долину реки Арысь (правого притока Сырдарьи) а к востоку — в Джувалинскую долину, расположенную между Таласским Алатау на юге и двумя грядами Каратау на севере. Каменистые склоны Таласского Алатау и Каратау в этом месте совершенно безлесные, местами покрыты кустарником; днище «ворот» — некогда типчаково-пырейная степь, давно распаханная; первичная растительность сохранилась лишь на каменистых склонах холмов. Вдоль железной дороги — лесопосадки, местами очень старые, высокие и густые.

Именно через Чокпакскую седловину («перевал», «ворота») проходит в наше время железная дорога из Москвы и Ташкента на Алма-Ату и Бишкек, а также автострада между этими же городами. А несколько веков назад здесь же проходила одна из основных ветвей Великого Шёлкового пути. Не удивительно, что и перелётные птицы используют этот удобный коридор для совершения своих сезонных миграций весной и осенью. Основное направление осенних миграций – с северо-востока на юго-запад, т.е. с Чокпакского перевала на Майликентский (Буранши-асу) перевал в западных отрогах Таласского Алатау недалеко от известной железнодорожной станции Тюлькубас. Между этими двумя перевалами – широкая степная долина реки Арысь с лентой лесопосадок вдоль железной дороги и сёлами Кумусбастау и Жабагылы (б. Новониколаевка); в последнем из них – центральная усадьба старейшего в Казахстане биосферного заповедника Аксу-Джабаглы, которому в этом году исполнилось 90 лет. Такова вкратце география окрестностей Чокпака.

Что касается его *истории*, то для меня лично она началась в сентябре 1961 г., когда, будучи орнитологом упомянутого заповедника, я приехал верхом из Новониколаевки на ГМС Чокпак (напрямую здесь всего 12 км) за метеорологическими данными для Летописи природы. Меня поразил массовый пролёт крупных хищных птиц (в основном канюков и орлов), которых за один лишь час пролетело несколько десятков.

Начальник метеостанции И.Г. Колоднов рассказал, что здесь такой пролёт наблюдается ежегодно, и местные люди с ружьями заготавливают этих «коршунов» на перо для подушек. Мой научный руководитель профессор И.А. Долгушин на мой восторженный рассказ о таком пролёте спокойно объяснил, что об этом знал ещё Л.М. Шульпин, работавший в этих местах в 30-х гг. и написавший в своих неопубликованных дневниках, что место это (он называл его «Бурнинский перевал») издавна было известно, как удачливое для охоты на дроф! А через три года, когда зашла речь об организации орнитологического стационара по отлову перелётных птиц, Игорь Александрович Долгушин вернулся к обсуждению вопроса о Чокпаке как вероятном месте для такого стационара. Именно И.А. Долгушин и его команда (рис. 1) и стали создателями будущего широко известного стационара по отлову птиц, причём каждый из этой четвёрки сыграл в его создании и становлении свою незаменимую роль.

Исполнителем этого, как сейчас бы назвали, проекта Игорь Александрович выбрал Икара Фёдоровича Бородихина, которого сначала командировал на Куршскую косу в Балтийском море для изучения бесценного опыта работы первой в СССР ловушки Рыбачинского типа (бывшая станция Росситен), а затем Икар Фёдорович вместе с Мстиславом Николаевичем Кореловым приехали ко мне в Аксу-Джабаглы, чтобы я показал им место моих наблюдений осенью 1961 г. После осмотра перевала и

его окрестностей место для будущей ловушки было выбрано в полукилометре западнее точки моих наблюдений.

Рис. 1. Инициаторы и создатели Чокпакского орнитологического стационара. Слева направо: И.А. Долгушин, И.Ф. Бородихин, Э.Ф. Родионов, Э.И. Гаврилов.

Вскоре на Чокпак приехала уже целая «бригада» алматинских орнитологов для производства бетонных работ по созданию оснований для крепления столбов. Из заповедника к этой бригаде на недельку был прикомандирован и я. Ввиду важности такого исторического события, как закладка стационара, лаборант долгушинской лаборатории Дамир Уваисов снимал весь процесс на узкоплёночный киноаппарат (впоследствии получившийся киносюжет показывали директору Института зоологии академику И.Г. Галузо, но куда потом девался этот «фильм», мне не известно).

К сожалению, инициатор этих работ Игорь Александрович Долгушин по состоянию здоровья уже не смог посетить Чокпак, и практическое руководство проектом осуществлял Эдуард Иванович Гаврилов, ставший после Долгушина заведующим орнитологической лабораторией Института. Вместе с ними на самой первой странице я не мог не поместить Эвальда Фёдоровича Родионова, который своими руками скроил и сшил в тесном городском помещении саму сеть для ловушки – да так, что при установке её на металлические конструкции в поле ничего не пришлось переделывать! Он же в первые годы и обслуживал это громоздкое сооружение, когда сеть надо было то опускать при снегопадах, то зашивать после сильных порывов ветра. Весенние сезоны 1967, 1968 и 1970 гг. мы работали на Чокпаке вместе. Кстати, Эвальд Фёдорович – тоже юбиляр: в июне 2016 года ему исполнилось бы 90 лет...

Первая ловушка была поставлена между автострадой и железной дорогой совсем недалеко от границы Джамбулской и Южно-Казахстанской областей. Здесь ловушка работала оба сезона 1966 г. (май и сентябрь-октябрь), 1967 г. (конец марта – май и сентябрь-октябрь) и 1968 г. (середина февраля – май и сентябрь-октябрь). Она была почти точной копией рыбачинской: высота 12 м, ширина 35 м, длина 75 м; сшита из тяжёлой хлопчатобумажной рыболовецкой сети (см. рис. 2), поскольку все были уверены, что капроновые сети не выдержат палящих лучей нашего южного солнца. Впоследствии, убедившись в гораздо большей его устойчивости, заменили х/б сети капроновыми. Как и планировалось, самые высокие передние «столбы» (хотя в действительности это были ажурные металлические опоры) служили для обоих сезонов: весной ловушка была обращена на запад, как на рис. 2, а осенью - на восток. Около приёмной камеры устанавливался маленький фанерный домик-лаборатория для обработки и кольцевания пойманных птиц, а в небольшом понижении среди невысокой лесополосы – жилая палатка для персонала. На невысоком бугре между палаткой и полотном железной дороги, откуда открывался достаточно хороший обзор, была вкопана в землю лавочка для наблюдателя-учётчика. Учёт пролетающих птиц проводился ежедневно в течение 4 часов, по 2 часа утром и вечером, а раз в 5 дней пролетающих птиц учитывали в течение всего светлого времени суток; при этом учётчики сменяли друг друга через каждые 3 – 4 часа.

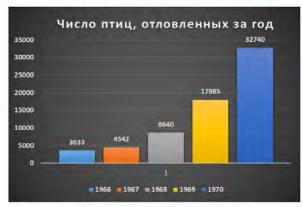
Всё это вместе с упоминанием экспериментов по форме ловушки и подробностям её установки мы В результате многочасовых учётов была не только получена количественная характеристика весеннего и осеннего пролёта различных видов и групп видов птиц и её динамика по годам и в течение сезона, но и установлено, что иногда, даже при очень интенсивном пролёте, основной поток мигрантов проходит намного правее или левее ловушки. Поскольку основная *учётная полоса* была принята нами между шоссе и полотном железной дороги (ширина около 100 м), то все стаи и группы птиц, пролетавшие вне этой полосы, также записывались в журнал, но цифры эти обводились кружком с примечанием: «за

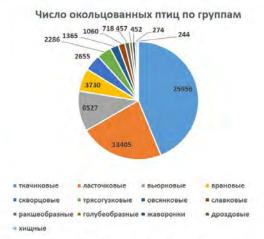
шоссе» или «за ж-д». Выяснилось, что наибольшая часть птиц пролетала над склоном каменистостепного холма за полотном ж-д, что в конечном счёте привело к переносу осенних ловушек на этот склон.

Рис. 2. Первая чокпакская ловушка, 1966 г. Справа – Э.Ф. Родионов, А.Ф. Ковшарь, И.Ф. Бородихин, Э.И. Гаврилов с трудом удерживают тяжёлую хлопчатобумажную сеть. *Фото Д.Т. Уваисова*

Занесенный снегом весенний лагерь (рис. 3а) - не просто оригинальная картинка. Это яркий показатель попыток организовать отлов рано пролетающих птиц и прежде всего - жаворонков и скворцов, которые, по моим наблюдениям 1960-1966 г. в Аксу-Джабаглы, летят уже в феврале. Несколько раз я предлагал Эдуарду Ивановичу оставить на Чокпаке по окончании осеннего сезона одного опытного орнитолога, чтобы он провёл маршрутные количественные учёты птиц с осени до весны, после чего можно было бы точнее планировать сроки весеннего выезда (а кроме того, выяснить сроки окончания осеннего и начала весеннего пролёта, не говоря уже о получении интереснейших сведений о зимней фауне птиц данной местности). Однако по разным причинам этого сделать не удалось. Вместо этого решили сдвинуть сроки выезда на конец зимы. И в 1968 г. мы выехали на Чокпак в середине февраля. Обстановка этого времени показана на снимках. Постановка ловушки при таком глубоком снеге оказалась не просто трудной, а спуск её при каждом очередном снегопаде приводил к примерзанию сети к насту и необходимости ожидания - когда она оттает и её можно будет поднять, не порвав. Как назло, именно в это время над примёрзшей сетью начинался пролёт стай жаворонков... Не выдержав этой картины, Э.И. Гаврилов начинал «бороться со стихией», предлагая всему личному составу топтаться по лежащей на снегу сети (чтобы ускорить таяние), однако эффект оказался прямо противоположным (нетронутый рыхлый снег стаивал быстрее!). То же продолжалось и ранней весной 1969 г., когда мне не пришлось работать на Чокпаке. В этот раз для более быстрого стаивания предпринимались попытки посыпать снег пеплом (об этом писал мне в письме сам Эдуард Иванович), но и это не помогло. Так и не удалось победить весеннюю непогоду и наладить отлов жаворонков и

Поскольку первоначально выбранное для установки ловушки место оказалось не самым удачным, для поиска новых, более перспективных мест решили соорудить более транспортабельную ловушку, установка которой не была бы связана с рытьём ям и бетонированием площадок для крепления каркаса. Облегчённая капроновая конструкция самой ловушки вполне позволяла справиться с такой задачей. Длина и ширина входа в ловушку практически не изменились, но высоту первых столбов пришлось уменьшить до 8 м, вторых – до 4-5 м. Столбы изготовили из стальных водопроводных труб диаметром 100 мм, сверху на них приварили площадку (15 х 15 см) для крепления тросов, снизу – более крупное основание (50 х 50 см у первых столбов и 30 х 30 см у вторых) с четырьмя отверстиями для металлических кольев. В качестве якорей для крепления рамных тросов использовали забитые в землю ломы, свободные верхние концы которых крепились проволочными оттяжками к кольям, вбитым в землю на расстоянии 0.5 – 1 м позади ломов. На установку такой ловушки 4 человека тратили не более двух дней, демонтировали её вдвое быстрее – за один день. Ставить её можно было в любом месте с твёрдым грунтом. Изучив с помощью таких передвижных ловушек различные места в районе Чокпакского перевала, удалось выбрать две наиболее удачные точки (Бородихин, Гаврилов, Ковшарь, 1974).


Рис. 3. Рабочие моменты на Чокпаке весной 1968 и 1970 гг. Фото К.Т. Юрлова


Для весны выбрали место в истоках реки Арысь – в 2 км южнее поляны, на которой стояла первая ловушка. Для осеннего отлова, как я уже упоминал, избрали каменистые склоны холма сразу же за полотном железной дороги (всего в 150-200 м от первоначального места). Осенью 1969 г. впервые освоили новое место для осеннего отлова, а весной 1970 г. – место для весенней ловли. При этом основной, базовый лагерь весной 1970 г. оставался прежний (в нём работали Бородихин, Родионов, Ковшарь и О.К. Петров), а в фанерном домике у ловушки в истоках Арыси (Олег Петров окрестил это место «Иордань») поселились Э.И. Гаврилов, В.В. Филатов и молодой лаборант Саша Филимонов; они периодически приходили в базовый лагерь за продуктами питания. Такое разделение весенней и осенней ловушек сохранилось на все последующие годы, только осенний лагерь позднее перенесли за железную дорогу, ближе к ловушкам (т.е. на то место, где он находится и сейчас), а весенний постоянно базировался на Арыси, пока его не ликвидировали местные жители, спилив металлические столбы...

Важным событием весеннего сезона 1970 г. стало проведение на Чокпаке *симпозиума* во главе с научным руководителем общей для республик Средней Азии и Западной Сибири тематики по миграциям птиц — директором Института биологии АН Киргизской ССР член-корр. АН КиргССР Александром Ивановичем Янушевичем (см. рис. 3). Вместе с ним на одной машине прибыл Константин Тимофеевич Юрлов — руководитель Новосибирской группы орнитологов и близкий друг Янушевича. Представитель Узбекистана Даниил Юрьевич Кашкаров к их приезду опоздал, он приезжал позже. Цель этого собрания была — выработать единую программу, стратегию и тактику только начинавшейся общей научной тематики по изучению миграции птиц в т.н. «Срединном» (Среднеазиатско-Сибирском) регионе. Более практическая цель — изучить опыт казахстанцев, которые занимаются на Чокпаке отловом птиц уже 5 лет, тогда как узбеки только начинают переключаются на эту тематику (до этого они занимались птицами антропогенного ландшафта), а киргизы ещё заканчивают сводку по млекопитающим и только со следующего года намерены создавать свои стационары по изучению миграций птиц. Как раз в дни приезда гостей мы с Эдуардом Ивановичем сделали вручную первую тысячу казахстанских колец для

мелких птиц (изготовление показанного на рис. 3 агрегата стоило Э.И. немало сил и времени). Второй подарок гостям преподнёс Филимонов, который при помощи мощного фонаря поймал руками пролетавшего поздно вечером журавля-красавку... Янушевич был так впечатлён последним фактом, что воскликнул: «Мне бы десяток таких Санек, и мы бы переловили всех журавлей». Очень понравились ему и сами ловушки, поэтому на осенний сезон он прислал в наш лагерь мастера на все руки Георгия Васильевича Вердина с наказом всё это перерисовать, записать и представить в Институт биологии, что и было выполнено им в точности. После этого в Киргизии тоже закипела работа. Так Чокпакский стационар уже в 1970 г. стал флагманом изучения миграций птиц в Срединном регионе. Ниже (рис. 4) — некоторые результаты первых 5 лет работы.

Некоторые результаты отлова и кольцевания за первую пятилетку (1966-1970)

Примечания: из-за нехватки колец выпущены неокольцованными: в 1969 г. — 3400 ласточек, в 1970 г. — 4658 испанских и индийских воробьёв. Масштабы отлова несопоставимы с 70 и 80-ми годами.

Две трети окольцованных птиц (66%) представлено двумя видами воробьёв (Passer indicus, Passer hispaniolensis) и 5 видами ласточек (Hirundo rustica, H. daurica, Delichon urbica, Riparia riparia, R. diluta). Среди остальных групп преобладали следующие виды:

Вьюрковые (6 527) — зяблик и юрок, реже — коноплянка и два вида шеглов (обыкновенный и седоголовый), чечевица, зеленушка, краснокрылый чечевичник, монгольский пустынный снегирь и буланый вьюрок. Врановые (3 730) — галка, грач, реже — серая ворона и единично — сорока.

Скворцовые (2 655) на 98% представлены обыкновенным скворцом (розовых скворцов – всего 41).

Ракшеобразные (718) на 77% представлены золотистой шуркой; зелёная и сизоворонка значительно уступают ей. Голубеобразные (457). Преобладает большая горлица (305), реже ловились клинтухи (60), бурые голуби (49) и обыкновенная горлица (32); египетских горлиц поймано всего 11.

Хищные птицы (244) представлены 15 видами: перепелятник (132), луговой лунь (30), пустельга (14), сарыч (12), тювик (11), степной лунь (10), чеглок (8), дербник (6), степная пустельга (6), осоед (4), полевой и болотный луни (по 3), хохлатый осоед и коршун (по 20), тетеревятник (1).

Рис. 4. Некоторые результаты отлова и кольцевания птиц на Чокпаке за первые 5 лет (1966-1970)

Так завершилось становление Чокпакского стационара как научной ячейки, которая в последующие три десятилетия приобрела международную известность среди орнитологов — особенно среди специалистов, изучающих миграции птиц. Этому способствовала кипучая энергия Эдуарда Ивановича Гаврилова, который к 1970 г. всецело переключился на миграционную тематику и ориентировал на неё практически весь штат лаборатории, которая к концу 70-х гг. выросла вдвое по сравнению с 1967 г. (рис. 5 а, б).

Благодаря тому же Эдуарду Ивановичу, помимо орнитологов, которых одновременно работало обычно не больше 4-5, на стационаре, начиная с 1968 г. стали регулярно работать так называемые «комплексаторы»: сначала паразитологи Института зоологии, затем – сотрудники Казахского института эпидемиологии, микробиологии; вирусологи из других учреждений, а позже – даже энтомологи (например, по изучению массового пролёта стрекоз). Этими специалистами собран значительный материал по паразитам крови птиц, пухоедам, мухам-кровососкам и другим эктопаразитам; проведено вирусологическое обследование мигрантов. С ростом известности на стационар всё чаще стали приезжать специалисты из других союзных республик (России, Украины, Киргизии, Узбекистана – см.

рис 6), а в последнее десятилетие XX ст. – также из стран дальнего зарубежья. После 1970 г. мне уже не приходилось работать на Чокпаке, лишь изредка бывал в качестве гостя...

Рис. 5. Состав лаборатории орнитологии Института зоологии АН КазССР: в 1967 г. (слева) и в 1979 г. (справа).

1967, слева направо: Э.И. Гаврилов, Э.Ф. Родионов, А.Ф. Ковшарь, М.Н. Корелов, М.А. Кузьмина, И.Ф. Бородихин, С.В. Шимов, Ю.Н. Грачёв, К.И. Искакова, А.П. Нестеров, Д.Т. Уваисов.

1979, слева направо сидят: Ю.Г. Савин, О.М. Губина, О.П. Зуева, З.К. Брушко, О.Н. Латина, Ю.Н. Грачёв. Стоят: В.В. Хроков, В.В. Лопатин, С.В. Кислицын, С.В. Шимов, С.А. Брохович, Э.И. Гаврилов, С.Н. Ерохов, А.П. Гисцов, Р.А. Кубыкин, И.Ф. Бородихин, водитель, лаборант, А.М. Сема, Б.М. Губин, А.С. Левин, В.Г. Березовский, Э.М. Ауэзов (неполный состав).

Рис. 6. Гости Чокпака: Р.Н. Мекленбурцев (второй слева, около А.П. Гисцова – крайнего слева; 70-е гг.) и Д.Ю. Кашкаров (правый снимок, 1970 г.)

К сожалению, начало первого века нового тысячелетия (долгожданного *миллениума*) оказалось далеко не благосклонным к наукам вообще и к орнитологии в частности. Не стал исключением и Чокпакский стационар, пострадавший вместе со всей миграционной тематикой. Финансирование науки государством практически сошло на-нет, поиски проектов оказались делом хлопотным и далеко не всегда успешным. К тому же, после нескольких удачных находок средств не стало и главного движителя всех этих работ – неутомимого Эдуарда Ивановича Гаврилова. Сменивший его на этом посту Андрей Эдуардович Гаврилов вот уже ряд лет прилагает неимоверные усилия, берясь за любые проекты прикладного характера (от птичьего гриппа до туберкулёза), и стационар продолжает существовать – но

силами всего трёх орнитологов, которые перечислены в самом начале этого очерка. Правда, иногда им удаётся привлечь любителей-бёрдвотчеров в качестве волонтёров – и тогда лагерь орнитологов оживает, как в старые добрые времена. Пожелаем же им успеха и удачи в этой нелёгкой, но такой нужной и интересной работе!...

А поскольку юбилей Чокпакского стационара неотделим от юбилея его создателя (недаром день рождения И.Ф. Бородихина – 10 сентября – чокпакчане нарекли официальным «Днём Чокпака»), я хочу закончить этот текст на более оптимистичной ноте – рассказом об этом замечательном орнитологе и очень интересном человеке, с которым мы знакомы более полувека – с 1960 г., когда он приезжал в заповедник Аксу-Джабаглы вместе с Э.Ф. Родионовым в составе экспедиции М.Н. Корелова.

Родился Икар в городе Урумчи (Синьцзян, Китай), где отец его работал на дипломатической службе, но вырос в Алма-Ате. Здесь он с детства постиг великолепный мир окружающей природы и особенно птиц, в чём особую роль сыграл школьный учитель Георгий Григорьевич Прыгунов, которого с благодарностью вспоминали многие учившиеся у него зоологи — Э.Ф. Родионов, А.М. Сема, Р.И. Зайнутдинов. В 1955-1960 гг. Икар обучался на кафедре зоологии Казахского государственного университета и после её окончания был зачислен сразу младшим научным сотрудником в лабораторию птиц, амфибий и рептилий Института зоологии Академии наук Казахстана (небывалый случай! Обычно начинали с лаборантов, в которых засиживались иногда по нескольку лет). Ещё будучи студентом, в 1958 г., он проводил наблюдения в колонии черноголового хохотуна на озере Тенгиз в Кургальджинском заповеднике; в том же и в 1960 г. принимал участие в экспедиции лаборатории орнитологии Института зоологии в Западный Тянь-Шань, посетив Киргизский Алатау, Каратау и заповедник Аксу-Джабаглы.

В лаборатории птиц Института зоологии Икар Федорович работал в 1960-1972 и 1973-1976 гг. За первые четыре года (1960-1963) он собрал большой материал по птицам города Алма-Аты и впоследствии опубликовал книгу «Птицы Алма-Аты» (1968). Великолепно зная полевые признаки и повадки птиц, к тому же решив проблему добычи коллекционного материала в сложных городских условиях при помощи замены бесполезного здесь ружья обычной рогаткой (которой он пользовался просто виртуозно!), Икар собрал значительный материал о птицах в условиях города. Его небольшая по объёму книжка на долгие годы стала основным источником сведений о птицах, обитающих в столице Казахстана в середине 60-х гг. ХХ столетия. Через 20 лет она послужила нам главным сравнительным материалом при подготовке и составлении коллективной сводки «Позвоночные животные Алма-Аты» (1988).

В эти же годы, по поручению Главного управления заповедников и охотничьего хозяйства, Икар занимался акклиматизацией птиц в Алма-Ате, для чего завёз из Новосибирска больших синиц, а из Ташкента — египетских горлиц. Они прижились в городе и вскоре стали фоновыми видами. Особенно хорошо акклиматизировалась большая синица, которая проникла и в соседние с городом горные леса (а оттуда — и на территорию соседней Киргизии!). Египетская горлица, в 70-80-х гг. также стала многочисленной на улицах города, но в 90-х гг. численность её резко упала и только сейчас постепенно восстанавливается.

Уже в студенческие годы Икар был широко известен в городе Алма-Ата как большой знаток комнатного содержания диких и декоративных птиц. Он самый первый выкормил птенцов синей птицы и содержал их у себя дома, опубликовав в Трудах Института зоологии (1960) первую статью по биологии этой редкой и малоизученной птицы. В дни работы IV Всесоюзной орнитологической конференции, проходившей в Алма-Ате в сентябре 1965 г., он организовал выставку комнатных певчих Участвовал в написании очерков воробьиным птицам в классической сводке «Птицы Казахстана», начиная с 3-го тома; в котором его перу принадлежат очерки семейств ласточковых (5 видов) и оляпковых (2 вида); в 4-м томе – поползневых (2 вида) и пищуховых (2 вида); в 5-м томе – двух видов щеглов.

Рис. 7. Икар Бородихин с балобаном. Фото О. Белялова

Но главным в жизни Икара стал проект под названием «**ЧОКПАК**», которому он отдал 8 лет (1964 – 1972), начиная с поездки на Балтику, откуда привёз весь опыт создания рыбачинской ловушки на

Куршской косе, кончая выбором места, установкой самой ловушки и 6 годами руководства чокпакским стационаром, когда отрабатывались все стороны жизнеобеспечения этого нового по тем временам научного стационара, способы отлова птиц и многое другое. Обо всём этом уже сказано выше.

Сделав перерыв на год (октябрь 1972 — сентябрь 1973), во время которого он заведовал секцией птиц Алматинского зоопарка, Икар возвращается в лабораторию орнитологии, но не на Чокпак, которым уже управляет А.П. Гисцов под неусыпным надзором Э.И. Гаврилова, а в только что созданный мобильный отряд по кольцеванию колониальных птиц на юго-востоке Казахстана, который он возглавлял до конца 1976 г. После этого снова уходит из родного Института, на сей раз — окончательно.

С 1977 по 1984 г. Икар Фёдорович работает орнитологом в Главном Ботаническом Саду, где занимается привлечением в искусственные гнездовья синиц и других дуплогнездников. Благодаря его заботам, в эти годы значительно увеличилась обитавшая на территории Ботсада городская популяция семиреченского фазана (Икар сумел «приструнить» даже охранников, которые стреляли зимующих здесь фазанов, используя для этой цели воздушные и мелкокалиберные винтовки).

Перейдя в 1984 г. на работу в Алма-Атинский зоопарк, Икар Федорович создал здесь соколиный питомник и занялся разведением хищных птиц. Этот питомник, после нескольких лет работы с ним *И.Ф.* в Карачингильском ГОХ, в сущности, положил начало специализированному соколиному питомнику «Сункар» (1989), в котором Икар Федорович проработал с 1991 по 1994 г.

Рис. 8. Поместье Икара Бородихина в селе Куш. Июнь 2016 г. Фото А.Ф. Ковшаря

С 1995 г. Икар Фёдорович, как было принято на Руси у дворянского сословия в старые добрые времена, выходит в отставку, оставляет всякую службу и поселяется в деревне Куш (ур. Карачингиль в устье р. Тургень), где вот уже более 20 лет ведёт исключительно здоровый образ жизни на лоне природы. На своей усадьбе он создал редкую по своей красоте и богатству ассортимента оранжерею кактусов, разведением которых занимается уже более 20 лет и стал признанным авторитетом в этой отрасли, принимая участие в ежегодных выставках. Волею случая я стал свидетелем появления у него этой страсти ещё в далёком августе 1960 г., когда на Вторую Всесоюзную конференцию по зоогеографии суши в Алма-Ату приехал Борис Владимирович Образцов (родной брат знаменитого артиста,

руководителя кукольного театра Сергея Владимировича Образцова). Именно он заразил Икара любовью ко всему «мохнатенькому», как *Б.В.* называл кактусы. Сейчас Икар Фёдорович — признанный авторитет в этой области и вообще по части цветоводства. Не только крытая оранжерея, но и весь двор его усадьбы представляет собой удивительную коллекцию растений, с оформленной альпийской горкой, миниатюрным водоёмом, в котором плавают головастики и прочие водные обитатели, со сказочными пнями-корягами и пр. Представленное на рис. 8 — это лишь небольшая часть всего богатства флоры бородихинского поместья...

Хочется пожелать Икару Фёдоровичу *многая лета* любования плодами рук своих, а его детищу – Чокпакскому орнитологическому стационару – возрождения и процветания в новых, очень нелёгких экономических условиях...

Бородихин И.Ф., Гаврилов Э.И., Ковшарь А.Ф. Из опыта работы Чокпакского орнитологического стационара (Зап. Тянь-Шань)//Сообщ. Прибалт. комис. по изуч. мигр. птиц, 1974. 8. С. 81-97. **Ковшарь А.Ф.** Осенний пролет птиц в верховьях р. Арысь (бассейн Сырдарьи)//Мат-лы 3-й Всесоюзн. орнитол. конф., кн. 2. Львов, 1962. С. 31-33. **Ковшарь А.Ф.** Осенний пролет птиц в заповеднике Аксу-Джабаглы//Орнитология, вып. 6. М., 1963. С. 360-363

А.Ф. Ковшарь

УДК 598.2/9 (574.54)

Материалы по срокам пролёта и численности мигрантов на Чокпакском перевале (предгорья Западного Тянь-Шаня) в период 1982 – 2016 гг.

Сообщение 1. Неворобьиные (Podicipediformes – Piciformes)

Гаврилов Андрей Эдуардович, Абаев Алмат Жолдасбаевич, Зарипова Сырымгуль Хайруллаевна Институт зоологии МОН РК, Алматы, Казахстан, e-mail: aegavrilov@bk.ru

В 2016 г. исполнилось 50 лет Чокпакскому стационару — единственному в казахстанскосреднеазиатском регионе постоянно действующему в течение полувека орнитологическому подразделению по отлову и кольцеванию мигрирующих птиц. Результаты первых 15 лет работы стационара опубликованы в ряде статей и в монографии «Сезонные перелёты птиц в предгорьях Западного Тянь-Шаня» (Гаврилов, Гисцов, 1985). Ниже публикуются накопившиеся за последние 35 лет (1982-2016 гг.) сведения о календарных сроках пролёта и численности мигрирующих неворобьиных птиц: полный список отмеченных за эти годы на перевале видов, крайние даты их пролёта и данные о числе окольцованных птиц, а также показатели количественных учётов и просто визуальных наблюдений. Для некоторых птиц, не отмеченных на самом перевале, но несомненно пролетающих через него транзитом, приводятся даты их встреч на Терс-Ащибулакском вдхр. (30 км северо-восточнее) и в других близлежащих от перевала местах.

В полевых работах 1982-2016 гг. кроме авторов участвовали Э.И. Гаврилов, А.М. Сема, А.П. Гисцов, С.А. Брохович, Ю.Г. Савин, А.С. Левин, С.В. Шимов, Е. Бекбаев, Д. Алимжанов, П.В. Пфандер, А.Б. Голощапов, А. Грязнов, С. Шмыгалёв, С.Н. Ерохов, Ю.Н. Грачев, В. Могутнов, Л. Дремлюк, А.Т. Давлетбаков, А.Н. Диханбаев, Н. Караходжаев, В.А. Ковшарь, А.В. Коваленко, Е.С. Чаликова. Обработка материала была бы значительно более трудоёмкой без электронных баз данных кольцевания и визуальных учетов птиц, созданных сотрудниками лаборатории орнитологии под руководством Э.И Гаврилова и программным обеспечением, разработанным А.Е. Морозовым и Р.И. Егизбаевой. Большую помощь оказал электронный каталог орнитологической коллекции Института зоологии, набранный Р. Бекбосыновой. Идею и план публикации этих материалов подал авторам А.Ф. Ковшарь, который также сделал ряд замечаний по тексту рукописи. Всем перечисленным лицам выражаем глубокую признательность. В данном сообщении мы излагаем только результаты, полученные на Чокпаке, без привлечения и анализа литературных данных.

Tachybaptus ruficollis. Малая поганка. Добыта 31 марта 1982 г.

Podiceps cristatus. Чомга. На Терс-Ащибулакском вдхр. видели одну 6 мая 1998 г.

Pelecanus onocrotalus. Розовый пеликан. Одиночный встречен 28 сентября 1997 г.

Реlecanus crispus. **Кудрявый пеликан**. Стая из 17 особей пролетела 22 сентября 2004 г., одиночки -2 октября 2004 г. и 16 октября 2003 г. Кроме того, пеликаны не определенного вида (36 особей) отмечались 4 сентября $(1989^2) - 9$ октября (1982), а 1 октября 1993 г. видели максимум -27 пеликанов.

Phalacrocorax carbo. **Большой баклан**. Одиночный отмечен 6 мая 1998 г. на Терс-Ащибулакском вдхр. Стаю из 35 птиц видели на Чокпакском перевале 10 октября 2004 г.

Phalacrocorax pygmaeus. Малый баклан. Один 28 августа 2015 г. на Терс-Ащибулакском вдхр.

Botaurus stellaris. **Большая выпь**. Одиночку видели 17 апреля 1983 г. На Терс-Ащибулакском вдхр. добыт самец 7 октября 1982 г.

Ixobrychus minutus. **Малая выпь**. Взрослая самка поймана паутинной сетью в лесополосе 17 мая 2001 г. Осенью с 25 (2008) по 29 августа (2004) по голосам зарегистрировано 45 птиц.

Nycticorax nycticorax. **Кваква**. Отмечено 7 особей 18 сентября 1984 г.; одиночки 11 и 16 октября 1984, 1985 гг. В сумерках 3 октября 2011 г. наблюдали трёх особей.

Egretta alba. **Большая белая цапля**. Во время учётов одиночки отмечены 13 октября 1996 г и 16 октября 1985 г., а две птицы 3 декабря 2014 г. держались на речке близ пос. Калинин

Аrdea cinerea. Серая цапля. Весной наблюдали 18 птиц. Первую отмечали 2 апреля (1986), последнюю — 21 мая (1991). Срединная дата пролёта приходится на 27 апреля, в 1986 г. в этот день отмечено 7 птиц. Осенью отмечено 962 цапли. Первых 17 птиц наблюдали 20 августа 1985 г. Самая поздняя встреча приходится на 24 октября 1999 г. (2 особи). Срединная дата пролёта 22 сентября, в 2000 г. в этот день пролетело 33 цапли. Максимальное количество (92) отмечено 11 сентября 1998 г. Стаю из 17 особей видели 4 декабря 2014 г.

Ardea purpurea. Рыжая цапля. Одиночная особь отмечена 7 сентября 2015 г.

 $Platalea\ leucorodia.$ Колпица. Весной наблюдали 48 птиц. Первые (4) отмечены 16 апреля 1983 г., последние (2) — 26 апреля 1989 г. А 25 апреля 1992 г. пролетело 42 колпицы. Осенью отмечено 210 колпиц. Первых (41) наблюдали 11 сентября 1983 г., последних (43) — 11 октября 1986 г. Срединная дата пролёта 7 октября, в 1993 г. в этот день отметили 27 птиц. Максимальное количество (50) видели 8 октября 1985 г.

Ciconia nigra. **Чёрный аист**. Осенью наблюдали 54 особи. Первая встречена 29 августа (2008), а наиболее поздняя – 16 октября (1984). Срединная дата пролета 25 сентября.

 $Cygnus\ species.$ Лебеди неопределенного вида отмечены 18 сентября 1991 г. (три особи) и 2 октября 1982 г. (65 птиц).

Таdorna ferruginea. Огарь. Весной наблюдали 12 особей с 20 марта (1986) по 25 мая (1994). Срединная дата пролёта 30 апреля. В апреле видели одиночных птиц, а в мае огари перемещались парами, за исключением последней встречи (25 мая 1994 г.). Осенью наблюдали 40 особей с 19 сентября (2000 г.) по 10 октября (1997 г.). В октябре отмечено 97.5% пролетевших птиц. С наступлением заморозков (-20°C) 21 ноября 2016 г. видели две стаи огарей, более 100 и 200 особей в каждой.

Апаѕ platyrhynchos. **Кряква**. Весной, со 2 апреля по 20 мая отмечено 67 особей. Срединная дата пролёта приходится на 28 апреля. Следует отметить, что птицы (12), пролетевшие в обратном направлении, возможно, гнездились в районе исследований. Осенью, с 31 августа по 21 октября отмечено 158 особей, причем 144 из них пролетели в генеральном (юго-западном) направлении и 14 — на восток. Срединная дата пролёта приходится на 5 октября. Птицы летели парами (3 октября 1999 г.), небольшими группами (3-6 особей), стаями (40 особей — 5 сентября 1999 г., 12 — 3 октября 1995 г., 16 — 5 октября 1998 г., 27 — 18 и 21 октября 1999 г.).

Апаз стесса. **Чирок-свистунок**. Весной с 27 марта по 25 апреля отмечено 44 птицы. Срединная дата пролета приходится на 28 марта. Осенью, наблюдали 166 чирков со 2 сентября по 21 октября, срединная дата пролета — 25 сентября.

Anas strepera. Серая утка. С 2 по 26 сентября в разные годы отмечено 38 особей.

.

² Здесь и далее при взятии года в скобки обозначение «г.» опускается. – прим. ред.

Anas penelope. Свиязь. 6 и 7 особей встречены 20 и 30 марта 1986 г.

Апаз асита. Шилохвость. Весной отмечены 3 особи 19 марта 1986 г. и 24 птицы наблюдали 28 марта 1988 г. Осенью встретили 2067 шилохвостей; первых птиц - 5 сентября 1990 г. (35 особей), последних - 27 октября 1990 г. (30 птиц). Срединная дата 3 октября, в 1995 г. в этот день отмечено 150 шилохвостей.

Anas querquedula. **Чирок-трескунок**. Весной отмечено 11 птиц. Первую наблюдали 10 апреля (в 1984 г. добыта самка на втором году жизни), последних – 5 мая (в 1996 г. видели 4 особи). Срединная дата пролёта приходится на 27 апреля (в 1998 г. в этот день добыто два взрослых самца). Осенью видели 62 чирка. Первых птиц отмечали 29 августа (взрослый самец и самки двух возрастов были добыты в 1995 г.), последних – 8 октября (5 особей наблюдали в 1995 г.). Срединная дата пролёта – 4 сентября.

Anas clypeata. **Широконоска.** Весной, со 2 апреля по 13 мая отмечено 9 особей. Две взрослых самки добыты 11 и 12 апреля 1997 г. Во время визуальных учетов наблюдали две 2 апреля 1988 г. и три - 13 мая 1989 г. На Терс-Ащибулакском вдхр. видели ещё двух птиц 6 мая 1998 г.

Ауthya ferina. Голубая чернеть. Отмечено 517 в период с 27 августа (1994 г. – 17 птиц) по 26 октября (1990 г. – 60 особей). Срединная дата осеннего пролета – 25 сентября (в 1996 г. наблюдали 172 чернети).

Pandion haliaetus. **Скопа**. Весной две одиночки видели 15 апреля 1985 г. и 29 апреля 1987 г. Осенью отмечали с 1 сентября (1994) по 9 октября (1987). Отловлены три особи: 26 сентября 1984 г. (взрослая), 25 сентября 1988 (молодая) и 2000 гг. (в возрасте более двух лет). Всего наблюдали 37 скоп, срединная дата осеннего пролета — 18 сентября.

Pernis apivorus. **Обыкновенный осоед**. Одиночных осоедов неопределённого вида видели 23 апреля 1987 г. и 29 апреля 1996 г. Осенью обыкновенных осоедов наблюдали с 31 августа (1999) по 17 октября (1997). Всего отмечено 206, а отловлено 60 особей с 30 августа (1992) по 9 октября (1984 и 1993). Срединная дата осеннего пролета — 9 сентября.

Pernis ptilorhynchus. **Хохлатый осоед**. Весной видели лишь однажды -12 мая 2001 г. Осенью визуально отмечали (всего 26 особей) с 5 сентября (2000) по 14 октября (1997), отловлено всего 38 птиц с 27 августа (2005) по 21 октября (1984). Срединная дата осеннего пролёта -9 сентября.

Milvus migrans. **Чёрный коршун**. Весной наблюдали с 24 марта (1987) по 19 мая (1995). Всего отмечено 280 коршунов, из которых два было отловлено 30 апреля 2004 г., срединная дата весеннего пролёта - 14 апреля. Осенью видели 4393 птицы с 27 августа (1994) по 25 октября (1984), а 628 было отловлено с 27 августа (2009) по 22 октября (2013). Срединная дата пролета - 15 сентября.

Сігсиѕ суапеиѕ. Полевой лунь. Весной наблюдали с 18 марта (1986) по 5 мая (1996), а отлавливали с 31 марта (1986) по 29 апреля (1991). Во время учётов было отмечено 38 луней и окольцовано 14. Срединная дата весеннего пролета -9 апреля. Осенью во время визуальных учётов видели 16 и поймали 143 особей с 1 сентября (1987) по 29 октября (1983). Срединная дата осеннего пролета -16 октября.

Сігсия тасгоития. Степной лунь. Весной отмечали с 25 марта (1987) по 13 мая (1990) во время визуальных учетов (36 особей) и поймали (10 птиц). Срединная дата весеннего пролёта — 25 апреля. Осенью с 25 августа (1986) по 22 октября (2004 г.) учтено 100, а окольцовано 156 особей. Срединная дата осеннего пролёта — 23 сентября.

Circus pygargus. **Луговой лунь**. Весной наблюдали с 1 апреля (в 1983 г. окольцована одна особь в возрасте более двух лет) по 26 мая (в 1983 г. отловлено три птицы). Всего отмечено 659, а окольцовано 153 луня. Срединная дата весеннего пролёта — 6 мая. Осенью с 20 августа (1985) по 15 октября (1992) учтено 86 и поймано 127 особей. Срединная дата осеннего пролёта — 5 сентября.

Circus aeruginosus. **Болотный лунь.** Весной с 24 марта (1987) по 11 мая (1982) видели 47 и поймали 6 птиц. Срединная дата весеннего пролёта - 9 апреля. Осенью болотных луней визуально (143 особей) и в отловах (35 птиц) наблюдали с 28 августа (в 1997) по 25 октября (1987). Срединная дата осеннего пролёта - 23 сентября.

Accipiter gentilis. **Тетеревятник**. Весной одиночек наблюдали 14 апреля 1982 г., 22 апреля 1983 г. и 1 мая 1984 г. Осенью с 4 сентября (1982) по 29 октября (1983) учтено 101 и отловлено 28 (из них 27 молодых). Срединная дата осеннего пролета – 12 октября.

Ассірітег nіsus. Перепелятник. Весной первых наблюдали 24 марта (1986 и 1987), последних — 24 мая (1988). Всего поймано 288, а учтено 553 птиц. Срединная дата весеннего пролёта — 1 мая. Осенью с 20 августа (1985) по 31 октября (2010) учтено 3441 и отловлено 3568 перепелятников. Срединная дата осеннего пролета — 3 октября

Accipiter badius. **Туркестанский тювик**. Весной отловлено 8 особей с 27 апреля (2001) по 8 мая (2014). Одиночку видели 8 мая 1997 г., взрослая самка добыта 1 мая 1985 г. Срединная дата весеннего пролёта – 29 апреля. Осенью с 21 августа (1985) по 20 октября (1988) отловлено 159, в учетах отмечено 27 тювиков. Срединная дата осеннего пролета – 4 сентября.

Витео lagopus. Зимняк. Весной наблюдали 12 особей с 24 марта (1987) по 8 мая (1996). Отловлено две птицы 31 марта и 4 апреля 1986 г. Срединная дата весеннего пролёта — 12 апреля. Осенью с 6 сентября (1985) по 21 октября (1990) видели 29 канюков, а 14 сентября 1983 г. и 5 октября 1985 г. пойманы взрослая и молодая птицы. Срединная дата осеннего пролёта — 15 октября.

Buteo hemilasius. **Мохноногий курганник**. Окольцовано четыре особи: 10 октября 2003 г. (молодая птица), 12 и 14 октября 1991 г. (две взрослые), 19 октября 1982 г. (неопределенного возраста).

Витео rufinus. **Курганник**. Весной наблюдали с 5 апреля (1982) по 20 мая (1999) 40 птиц. Окольцована одна особь в двухлетнем возрасте 16 апреля 1984 г. Срединная дата весеннего пролёта — 20 апреля. Осенью с 4 сентября (2000) по 30 октября (1985) встретили 810, окольцевали 130 курганников. Срединная дата осеннего пролёта — 9 октября. Кроме того, две особи были отловлены 1 и 2 декабря 2014 г. специальной ловушкой для хищных птиц с подсадным голубем.

Buteo buteo. **Сарыч**. Весной с 24 марта (1987) по 17 мая (1997) отмечено 67 особей. Срединная дата весеннего пролета – 15 апреля. Осенью с 27 августа (1989) по 29 октября (1987) учтено 3909 и окольцовано 502 птицы. Срединная дата осеннего пролёта – 15 сентября.

Circaetus gallicus. **Змееяд.** Одиночку наблюдали 11 мая 2000 г. Осенью с 29 августа (2006) по 20 октября (2004) видели 42 змееяда. Срединная дата осеннего пролёта – 5 октября.

Hieraaetus pennatus. **Орёл-карлик**. Осенью с 3 сентября (2004) по 24 октября (1997) наблюдали 54 и поймали 10 орлов. Срединная дата осеннего пролёта -20 сентября.

Aquila nipalensis. Степной орёл. Одиночных птиц наблюдали 2 апреля 1983 г. и 19 апреля 2001 г. Осенью с 28 августа (2008) по 30 октября (2011) учтено 794 и окольцовано 36 орлов. Срединная дата осеннего пролёта – 11 октября.

Aquila clanga. **Большой подорлик.** Двухлетняя особь окольцована 19 апреля 1986 г. Осенью с 3 сентября (2008) по 24 октября (1997) видели 47, поймали 7 птиц. Срединная дата пролёта — 15 октября

Aquila heliaca. **Могильник**. Двух птиц наблюдали 11 апреля 1982 г., 8 апреля 1986 г. один добыт возле с. Бурное. Осенью с 10 сентября (1992) по 25 октября (1983) видели 13, поймали 1 могильника. Срединная дата осеннего пролёта — 16 октября.

Aquila chrysaetos. **Берку**т. Одиночку видели 24 марта 1987 г. Осенью с 3 сентября (1995) по 3 декабря (2014) наблюдали 30, поймали 3 беркута.

Haliaeetus albicilla. **Орлан-белохвост**. На Терс-Ащибулакском вдхр. 10 ноября 2016 г. было 5 особей.

Aegypius monachus. **Черный гриф**. Весной видели 5 особей 27 апреля 1986 г. Осенью с 24 августа (2004) по 30 октября (2011) наблюдали 105 и одного на Терс-Ащибакском вдхр. 28 сентября 2015 г.

Gyps fulvus. **Белоголовый сип**. Осенью с 29 августа (1998) по 24 октября (1987) отметили 11 особей.

Gyps himalayensis. Кумай. Одного видели 20 сентября 2003 г.

Gypaetus barbatus. Бородач. Одиночек наблюдали 2 и 4 октября 2003 г.

Neophron percnopterus. Стервятник. Одного видели 14 мая 1990 г. Осенью с 5 сентября (1987) по 26 сентября (1995) видели 6, окольцевали одного (1988). А 14 октября 1989 г. добыта молодая самка.

Falco cherrug. Балобан. Осенью с 31 августа (1987) по 8 ноября (1983) видели 37, окольцевали 15 соколов. Срединная дата осеннего пролёта 5 октября.

Falco pelegrinoides. Шахин. Поймана молодая птица 29 августа 2005 г.

Falco peregrinus. **Сапсан**. Окольцованы три молодых особи: 5 октября 1987 г., 9 октября 1997 г. и 14 октября 1990 г.

Falco subbuteo. **Чеглок**. Весной с 10 апреля (1988) по 27 мая (1993) видели 124, поймали 56 птиц. Срединная дата весеннего пролета 3 мая. Осенью с 25 августа (1985) по 25 октября (1987) наблюдали 931, отловили 580 особей. Срединная дата осеннего пролета – 22 сентября.

Falco columbarius. Дербник. Весной с 10 апреля (1986) по 14 мая (1982) видели 10, окольцовано 2 птицы (21 апреля 2001 г., 26 апреля 1982 г.). Срединная дата весеннего пролёта 26 апреля. Осенью с

11 сентября (2000) по 8 ноября (1985) учтено 71, поймано 63. Срединная дата осеннего пролёта 17 октября.

Falco vespertinus. Кобчик. Одиночный сидел на ловушке 6 сентября 2003 г.

Falco паитаппі. Степная пустельга. Весной с 1 апреля (1986) по 14 мая (1982) видели 157, окольцевали 21 птицу. Срединная дата весеннего пролёта 26 апреля. Осенью с 18 августа (2004) по 24 октября (1987) наблюдали 1164, поймали 683 особи. Срединная дата осеннего пролёта 19 сентября.

Falco tinnunculus. **Обыкновенная пустельга**. Весной с 24 марта (1987) по 23 мая (1983) учтено 93, отловлено 31 пустельга. Срединная дата весеннего пролета 24 апреля. Осенью с 24 августа (1986) по 26 октября (2012) учтено 606, окольцовано 499 птиц. Срединная дата осеннего пролёта 25 сентября.

Alectoris chukar. **Кеклик**. Осенью, с 27 августа (1989) по 22 октября (1999) добыто 35 птиц. Стаю из 20 особей видели 5 сентября 2016 г., голоса слышали 8 сентября 2009 г., 50 кекликов наблюдали 16 октября 2003 г. Всё это — местные птицы, никаких направленных миграционных подвижек не отмечено.

Perdix perdix. Серая куропатка. Весной с 8 апреля (2002, 2004) по 22 мая (1991) встретили 16, окольцевали 12 особей. Осенью с 27 августа (1989) по 24 октября (2009) видели 259, поймали 97 куропаток.

Perdix daurica. Бородатая куропатка. Молодой самец добыт 19 сентября 1995 г.

Сотигпіх сотигпіх. **Перепе**л. Весной с 22 апреля (2000) по 26 мая (1993, 1996) отметили 21, добыто 11, окольцовано 49 особей. Срединная дата весеннего пролета 9 мая. Осенью с 27 августа (1995) по 31 октября (1983) добыто 159, окольцовано 162 перепёлки. Срединная дата осеннего пролёта 27 сентября.

Phasianus colchicus. **Фазан**. Весной с 20 апреля (2001, 2005) по 6 мая (2005) видели 11 особей. Осенью с 15 сентября (1998) по 12 октября (2009) поймали 6, видели одного фазана.

Grus leucogeranus. Стерх. Видели две птицы в стае красавок 18 апреля 2005 г.

Grus grus. **Серый журавль.** Пару наблюдали 26 сентября 2015 г. на Терс-Ащибулакском вдхр., ещё двух птиц видели 28 сентября 2015 г.

Anthropoides virgo. **Журавль-красавка**. Весной с 24 марта (1986) по 18 мая (1996) учтен 28 771 журавль. Срединная дата весеннего пролёта 4 апреля. Осенью с 28 августа (1998) по 29 октября (1983) видели 6 276 особей. Срединная дата осеннего пролёта 13 сентября.

Rallus aquaticus. Пастушок. Самка добыта на Терс-Ащибулакском вдхр. 5 апреля 1983 г. Осенью с 8 сентября (2005) по 30 октября (2011) окольцовано 5, добыто 6 пастушков.

Porzana porzana. **Погоныш**. Окольцован один 11 сентября 2008 г., другой добыт 12 сентября 1984 г., а 9 октября 1996 г. пойманы две птицы.

Porzana parva. Малый погоныш. Молодой самец добыт 27 сентября 2001 г.

Porzana pusilla. **Погоныш-крошка**. Взрослый самец добыт 16 мая 1984 г. на Терс-Ащибулакском вдхр. Одиночки пойманы 14 и 22 сентября 1989 г., 7 сентября 1997 г., 17 сентября 1998 г.

 $Crex\ crex$. **Коростель**. Весной одиночек наблюдали 14 мая 1987 и 23 мая 1997 гг., ловили 15 мая 1992 и 19 мая 1995 гг. Осенью кольцевали 31 августа 2005, 11 сентября 1996 и 13 сентября 1999 гг., а 27 сентября 1998 г. добыт взрослый самец.

Gallinula chloropus. **Камышница**. Весной с 6 апреля (1983) по 17 мая (1985) добыли 24 особи, окольцована взрослая птица 7 мая 1986 г. Молодая самка добыта 29 августа 1983 г., а со 2 сентября (1997) по 23 октября (1991) поймано 8 камышниц.

Fulica atra. Лысуха. Окольцована взрослая особь 15 октября 1986 г.

Otis tarda. Дрофа. Весной с 12 апреля (2005) по 25 мая (1995) видели 16 птиц. Осенью с 5 сентября (2000) по 23 октября (2003) наблюдали 100 особей.

 $Tetrax\ tetrax$. Стрепет. В районе Терс-Ащибулакского вдхр. 8 апреля 2002 г. видели 15 особей. На Чокпакском перевале с 1 мая (2014) по 14 мая (2013) учтено 11 стрепетов. В 2009 г. 26 августа отметили 7 птиц, а одиночек видели 2 сентября 2009 г. и 2 октября 2015 г. Близ с. Бурное 9 сентября 2001 г. стая из 25 стрепетов летела на восток.

Burhinus oedicnemus. **Авдотка**. Окольцовано 4: 11 апреля 1987, 26 апреля 1986 и 1999, 25 октября 1998 гг.

Charadrius hiaticula. Галстучник. На Терс-Ащибулакском вдхр. видели одного 28 сентября 2015 г.

Charadrius dubius. **Малый зуёк**. Весной с 4 апреля (1988) по 9 мая (1982) наблюдали 100, окольцовали 15 зуйков. Срединная дата пролёта 17 апреля. На Терс-Ащибулакском вдхр. 28 сентября 2015 г. видели 8, а 24 сентября 2013 г., 29 – 30 сентября 2014 г. поймали 3 особи.

Charadrius alexandrinus. **Морской зуёк**. Наблюдали 10 особей 26 апреля 1986 г., 3-5 мая 1996 г. На Терс-Ащибулакском вдхр. видели одного 28 сентября 2015 г.

Vanellus vanellus. **Чибис**. Весной с 26 марта (1987) по 21 мая (1999) наблюдали 557, поймали 4 птицы (18 мая 1998). Срединная дата весеннего пролёта 29 марта. Осенью с 8 сентября (1997) по 26 октября (1990) видели 2 204 особи. Срединная дата осеннего пролёта 12 октября.

Himantopus himantopus. **Ходулочник**. Взрослая самка добыта 10 апреля 1984 г., 6 ходулочников наблюдали 6 сентября 2000 г.

Recurvirostra avosetta. **Шилоклювка**. На Терс-Ащибулакском вдхр. 28 сентября 2015 г. видели 10, 8 сентября 2016 г. -18 шилоклювок.

Tringa ochropus. **Черныш**. Весной с 14 апреля (1982) по 12 мая (1982) наблюдали 282, поймали 7 чернышей. Срединная дата весеннего пролёта 23 апреля. Осенью видели трёх - 7 сентября 2015, 28 сентября 2000, 6 октября 1983 гг.

Tringa glareola. **Фифи**. Отмечены 26-27 апреля 1999 г. 7 фифи, 11 сентября 1994 г пойманы 2, один добыт 13 сентября 1983 г.

Tringa nebularia. **Большой улит**. На Терс-Ащибулакском вдхр. 28 сентября 2015 г., 26 сентября 2016 г. видели по Зулита.

Tringa totanus. **Травник**. Самец добыт на Терс-Ащибулакском вдхр. 5 апреля 1983 г. Одиночку наблюдали 2 сентября 1998 г.

Tringa erythropus. **Щеголь.** На Терс-Ащибулакском вдхр. поймали две молодых птицы 25 сентября 2013 г.

Actitis hypoleucos. Перевозчик. Весной, с 15 апреля (1983) по 4 мая (1986) учтено 29 особей. Наблюдали два перевозчика 7 сентября 2015 г.

Phalaropus lobatus. **Круглоносый плавунчик**. Осенью с 31 августа (1986) по 6 октября (1984) видели 119, поймали 107 плавунчиков. Срединная дата осеннего пролёта 19 сентября.

Philomachus pugnax. **Турухтан**. На Терс-Ащибулакском вдхр. 23-25 сентября 2013 г. отловлено 21, 27-30 сентября 2014 г. – 12, 28 сентября 2015 г. учтено 105 турухтанов.

Calidris minuta. **Кулик-воробей**. Стационарными ловушками поймали 43 особи с 1 сентября (1999) по 21 сентября (1982). На Терс-Ащибулакском вдхр.24 сентября 2013 г. окольцевали 6 и 27, 29-30 сентября 2014 г. – 22 кулика-воробья.

Calidris alpina. **Чернозобик**. На Терс-Ащибулакском вдхр. поймано 4 особи 24, 25 сентября 2013 и 29,30 сентября 2014 гг.

Lymnocryptes minimus. **Гаршнеп**. Одиночку видели 23 марта 1986 г. Добыли 3 гаршнепа: 30 марта 1983, 2 апреля 1986, 5 апреля 1983 гг.

Gallinago gallinago. Бекас. Весной с 29 марта (1986) по 30 апреля (1986) видели 61 бекаса.

Gallinago solitaria. Горный дупель. Взрослый самец добыт 16 октября 1991 г.

Scolopax rusticola. Вальдшнеп. Самца и самку добыли 30 марта 1983 г. Осенью с 17 сентября (1982) по 26 октября (1995) поймали 8, а 20 сентября 1996 г. видели одного вальдшнепа.

Numenius arquata. Большой кроншнеп. Одиночек видели 31 марта 2003 г. и 13 сентября 2015 г.

Limosa limosa. **Большой веретенник**. Взрослого самца добыли 27 апреля 1996 г. На Терс-Ащибулакском вдхр. 28 сентября 2015 г. видели одного.

Glareola pratincola. **Луговая тиркушка**. Весной с 15 апреля (1982) по 14 мая (1982) видели 15, поймали одну 6 мая 1991 г. На Терс-Ащибулакском вдхр. добыли самца и самку 1 мая 1983 г.

Larus ichthyaetus. **Черноголовый хохотун**. Видели 22 особи 26 августа 1986 г.

Larus ridibundus. Озёрная чайка. Весной с 19 марта (1986) по 10 мая (1988) учтено 1 737 птиц. Срединная дата весеннего пролёта 1 апреля. Осенью с 4 сентября (1989) по 26 октября (1982) видели 758 озёрных чаек. Срединная дата осеннего пролёта 14 октября.

Larus cachinnans. **Хохотунья**. Одиночек отмечали 8 апреля 1987, 30 апреля 1986 и 2001 гг. Осенью с 28 августа (1995) по 27 октября (1990) видели 326 чаек. Срединная дата осеннего пролёта 13 октября.

Larus canus. Сизая чайка. Стаи из 15, 21 и 20 птиц видели 14, 19 и 29 сентября 2000 г.

Chlidonias niger. Черная крачка. Наблюдали 5 особей 11 сентября 1998 г.

Gelochelidon nilotica. **Чайконосая крачка**. Весной с 15 апреля (1983) по 19 мая (1984) учтено 13 крачек. Срединная дата весеннего пролёта 27 апреля.

Sterna hirundo. **Речная крачка**. Весной с 18 апреля (1988) по 21 мая (1997) видели 53 крачки. Срединная дата весеннего пролета 4 мая. Наблюдали 4 птиц 26 октября 1990 г. и 60 особей 20 ноября 2016 г. во время снежного бурана.

Pterocles orientalis. **Чернобрюхий рябок**. Весной с 18 марта (1986) по 10 мая (1988) учтено 581, срединная дата пролёта 10 апреля. Осенью с 15 октября (1988) по 25 октября (1997) видели 428 рябков.

Pterocles sp. Рябков неопределенного вида (221) наблюдали с 4 сентября (1986) по 22 октября (1987).

Columba palumbus. **Вяхирь**. Весной с 4 апреля (2003) по 25 мая (1995) учтено 3 705, окольцован один вяхирь. Срединная дата весеннего пролёта 9 мая. Осенью с 20 августа (1985) по 27 октября (1990) наблюдали 9 881, отловили 148 птиц. Срединная дата осеннего пролёта 15 сентября.

Columba oenas. Клинтух. Весной с 19 марта (1983) по 25 мая (1995, 2000) видели 2 687, поймали 37 клинтухов. Срединная дата весеннего пролёта 25 апреля. Осенью с 24 августа (1995) по 30 октября (1983) учтено 76055, окольцовано 8106 птиц. Срединная дата осеннего пролёта 29 сентября.

Columba eversmanni. **Бурый голубь**. Весной с 26 марта (1987) по 19 мая (1990) видели 246, поймали 60 голубей. Срединная дата весеннего пролёта 17 апреля. Осенью с 21 августа (1985) по 24 октября (1990) наблюдали 261, окольцевали 232 особи. Срединная дата осеннего пролёта 15 сентября.

Columba livia. Сизый голубь. Весной с 27 марта (1988) по 18 мая (2001) видели 1534, пометили 11 голубей. Срединная дата весеннего пролёта 19 апреля. Осенью с 23 августа (1985) по 26 октября (1995) учтено 313, отловлено 77 особей. Срединная дата осеннего пролёта 15 сентября.

Streptopelia decaocto. Кольчатая горлица. Весной с 24 марта (1987) по 25 мая (1998) наблюдали 76, поймали 11 горлиц. Осенью с 26 августа (1989) по 25 октября (1991) видели 112, окольцевали 8 птиц.

Streptopelia turtur. **Обыкновенная горлица**. Весной с 23 апреля (1990, 1997) по 26 мая (1985) учтено 1 083, отловлено 744 горлиц. Срединная дата весеннего пролёта 13 мая. Осенью с 18 августа (1988) по 15 октября (1987) видели 542, поймали 184 особи. Срединная дата осеннего пролёта 4 сентября.

Streptopelia orientalis. **Большая горлица**. Весной с 5 апреля (1988) по 26 мая (1995) наблюдали 18 429, отловили 3 233 птиц. Срединная дата пролёта 9 мая. Осенью с 20 августа (1985) по 28 октября (1983, 1989) учтено 20 287, поймано 3 666 горлиц. Срединная дата осеннего пролёта 15 сентября.

Streptopelia senegalensis. Малая горлица. Весной с 28 апреля (1982) по 23 мая (1984, 1994) встретили 10, отловили 14 особей. Осенью с 6 сентября (1993) по 26 октября (1984) поймано 24 горлицы.

Cuculus canorus. **Обыкновенная кукушка**. Весной с 20 апреля (1989) по 24 мая (1982) учтено 132, отловлено 79 кукушек. Срединная дата весеннего пролёта 13 мая. Осенью с 18 августа (2003) по 21 октября (1998) видели 61, поймано 100 птиц. Срединная дата осеннего пролёта 13 сентября.

Bubo bubo. **Филин**. Одиночку наблюдали 3 сентября 2016 г. Окольцовано 4 особи: 28 сентября, 3 октября 1993 г., 17 октября 1995 г., 18 октября 1994 г.

Asio otus. Ушастая сова. Весной с 29 марта (1987) по 26 мая (1994) поймано 54 совы. Срединная дата весеннего пролёта 11 мая. Осенью с 1 сентября (1997) по 1 ноября (2008) видели 10, отловили 305 птиц. Срединная дата осеннего пролёта 13 октября.

Asio flammeus. **Болотная сова**. Окольцовано 17 сов с 16 сентября (1991) по 26 октября (1987, 1995). Срединная дата осеннего пролёта 16 октября.

Otus scops. **Сплюшка**. Весной с 16 апреля (2002) по 21 мая (1995, 2005) поймано 72 особи. Срединная дата весеннего пролёта 1 мая. Осенью с 20 августа (2003) по 24 октября (2000, 2003) окольцована 201 сплюшка. Срединная дата осеннего пролёта 21 сентября.

Otus brucei. **Буланая совка**. Весной отловлено 3 совки: 28 апреля, 4 мая 2005 г., 7 мая 1997 г. Осенью с 28 сентября (1989) по 24 октября (2000) поймали 6 птиц.

Athene noctua. Домовый сыч. Отловили два сыча: 5 сентября 1986 г. и 4 октября 1982 г.

Caprimulgus europaeus. **Обыкновенный козодой**. Весной с 28 апреля (1985) по 27 мая (2002) поймали 918 козодоев. Срединная дата весеннего пролёта 18 мая. Осенью с 10 августа (2001) по 26 октября (1983, 1995, 1999) отловили 978 птиц. Срединная дата осеннего пролёта 28 сентября.

Ария ария. Чёрный стриж. Весной с 31 марта (1987) по 26 мая (1995) видели 4 049, поймали 206 особей. Срединная дата весеннего пролёта 5 мая. Осенью с 15 августа (1986) по 24 октября (1987) учтено 17 104, отловлено 859 стрижей. Срединная дата осеннего пролёта 2 сентября.

Apus melba. **Белобрюхий стриж**. Наблюдали 3 стрижа 3 апреля 1986 г. и 34 - c 28 августа (1991) по 24 октября (1987). Окольцевали одного 14 октября 2014 г.

Coracias garrulus. Сизоворонка. Весной с 19 апреля (1984) по 26 мая (1995) видели 2 856, поймали 876 сизоворонок. Срединная дата весеннего пролёта 7 мая. Осенью с 22 августа (1986) по 21 октября (1989) наблюдали 1 337, отловили 60 птиц. Срединная дата осеннего пролёта 8 сентября.

Alcedo atthis. Обыкновенный зимородок. Весной с 5 (1982, 1994) по 20 мая (1995) отметили 7 зимородков. Осенью с 3 сентября (1991) по 6 октября (1984) видели 4 птицы.

Merops apiaster. **Золотистая щурка.** Весной с 22 апреля (1996, 2001) по 28 мая (1993) учтено 3 860, окольцовано 3 997 особей. Срединная дата весеннего пролёта 12 мая. Осенью с 21 августа (2003) по 11 октября (1989) наблюдали 35 630, поймали 10 668 щурок. Срединная дата осеннего пролёта 12 сентября.

Merops superciliosus. **Зеленая щурка**. Весной с 22 апреля (1982) по 24 мая (1991, 1996) видели 114, поймали 125 птиц. Срединная дата весеннего пролёта 14 мая. Осенью с 28 августа (1996) по 11 октября (1989) наблюдали 389, отловили 135 особей. Срединная дата осеннего пролёта 21 сентября.

Uрира ерорѕ. **Удод**. Весной с 22 марта (1986) по 24 мая (1994) учтено 209, окольцовано 112 удодов. Срединная дата весеннего пролёта 27 апреля. Осенью с 18 августа (1985) по 19 октября (1993) видели 294, поймали 172 птиц. Срединная дата осеннего пролёта 5 сентября.

Jynx torquilla. **Вертишейка**. Весной с 26 апреля (1984) по 10 мая (1989) отловлено 9 особей. Осенью с 17 августа (1983) по 30 сентября (1984) поймано 13 вертишеек.

Dendrocopos major. **Большой пестрый дяте**л. Окольцовано 5 птиц: 5, 7 мая (2005, 2014), 27 августа 2010, 9 сентября 2007, 6 октября 2006 гг.

Dendrocopos leucopterus. **Белокрылый дятел**. Весной наблюдали 12 птиц с 28 апреля (1997) по 25 мая (2000). Осенью с 21 августа (2003, 2004) по 27 октября (2002) видели 10, окольцевали 12 дятлов.

(продолжение следует)

Summary

Andrey E. Gavrilov, Almat Zh. Abaev, Syrymgul Kh. Zaripova. Materials on the dates of migration and number of birds on Chokpak pass (West Tien Shan foothills) in 1982-2016. Part 1 – Non-passerines (Podicipediformes – Piciformes)

The work presents data on the dates of migration and numbers of 133 bird species from orders Podicipediformes – Piciformes.

История превращения Капчагайского заповедно-охотничьего хозяйства в государственный национальный природный парк «Алтын-Эмель»

Ковшарь Анатолий Фёдорович

Институт зоологии КН МОН РК, Алматы

Каменистая пустыня шириной 10-15 км между подножьями гор Чулак – Матай – Алтынэмель и рекой Или (рис. 1, 2) всегда была местом обитания большого количества газелей, или джейранов (Gazella subgutturosa). Столь же богаты дичью были ограничивающие пустыню с севера горы, где в изобилии водились горные козлы, или тау-теке (Capra sibirica) и каменные куропатки, или кеклики (Alectoris chuckar). Поэтому уже в 70-х гг. XX ст. вся эта территория была взята под самую строгую охрану как Капчагайское госохотхозяйство Совета Министров Казахской ССР. Как и всякое правительственное хозяйство, территория стала совершенно недоступной для простых смертных, а с браконьерами здесь обращались особенно жёстко. Идеальный порядок в охотхозяйстве навёл Александр Филиппович Тарасов, бывший директором до своей безвременной кончины зимой 1982/83 г.

Рис. 1. Каменистая пустыня, гамада фото В.А. Ковшарь

Рис. 2. Джейран фото О.В. Белялов

С А.Ф. Тарасовым меня познакомил в мае 1981 г. на заседании в Казглавохоте Владимир Максимович Зверев (директор Алматинского заказника), и Александр Филиппович сразу пригласил к себе, в хозяйство. Я уже не раз слышал об этом хозяйстве, которое принадлежало ХОЗУ Совмина КазССР, да и о самом Тарасове ходили слухи как о человеке, который сумел поставить там охрану понастоящему. Кроме того, именно на территории его хозяйства мы собирались передерживать и

выпускать куланов, отловленных на острове Барсакельмес. А для меня как заведующего созданной в 1980 г. в Институте зоологии АН КазССР лаборатории проблем охраны диких животных это было первоочередной задачей. Поэтому, не откладывая, мы втроём уже 28 мая выехали в хозяйство на служебной «Ниве» Тарасова. Кордон Тайгак произвёл хорошее впечатление своей ухоженностью: цветники у входа, газон, всё полито и обрезано, двор чисто выметен, между домом и банькой летняя печка (также чисто побелённая) и около неё небольшой стол и вкопанные в землю лавки. Во всем чувствовалась твёрдая рука хозяина и дисциплина подчинённых. На следующем кордоне Чулак царил такой же порядок, и Тарасов всё время переспрашивал меня: «Ну, где ты видел такое кордоны в заповедниках?». Пришлось признаться, что нигде – там везде попахивало бедностью и запустением. Конечно, немалое значение имела и прямая подчинённость хозяйственному управлению Совета Министров, где Тарасов проработал не один год и знал почти всех. Однако главная причина заключалась в личности Тарасова, его характере и способностях. Я немало удивился, когда узнал, что он



Рис. 3. А.Ф. Тарасов и А.Г. Банников. Капчагайское ГОЗХ, 15 июля 1982 г. Фото А.Ф. Ковшаря

закончил мореходное училище и никакого высшего (тем более биологического) образования не имеет. Любовь к природе и убеждённость в том, что её надо беречь для потомков, в сочетании с волевым характером давали свои, прямо скажем, прекрасные результаты. Приведу только два примера.

Однажды при подготовке к очередным учениям войск Туркестанского военного округа была запланирована масштабная танковая атака на большом пространстве правобережья реки Или в её среднем течении. Танки должны были пройти широким фронтом от гор Большие и Малые Калканы на запад около 100 км — почти до населённого пункта Чингильды, т.е. через всю равнинную часть Капчагайского охотхозяйства, где концентрировалось всё поголовье джейрана (Gazella subgutturosa). Но им удалось пройти только первые 10 км, так как А.Ф. Тарасов добился приёма у командующего военным округом и убедил его изменить маршрут атаки, чтобы сохранить эти необжитые и с виду никому не нужные пространства гамады. Следы этой «захлебнувшейся» в самом начале атаки он впоследствии показывал мне в районе Мынбулака, у восточных границ хозяйства. Это были оставленные танковыми гусеницами глубокие параллельно идущие рвы среди редкого покрова тасбиюргуна и саксаульчика (Nanophyton erinaceum, Arthrophytum sp.); каждый такой ров служил источником эрозии почвенного покрова, и без того скудного в этой каменистой пустыне...

Не менее поучительна также история с вертолётами. Никем не контролируемые военные вертолёты летали как над равнинной, так и над горной частью хозяйства. И вот до Тарасова дошли слухи, что в горах летчики охотятся на архаров и горных козлов. Однако поймать их за этим занятием егерь на лошади не в состоянии. Тарасов дал своим егерям строжайшее задание: записать номер вертолёта, место его приземления и точное время его пребывания на посадке. Получив эти данные, он по свежим следам отправился на приём к командующему военным округом генералу Лященко, который славился своим крутым нравом. Как говорил мне сам Филиппыч, вызванные к генералу лётчики зашли к нему капитанами, а вышли рядовыми! И с тех пор вертолёты облетали эти горы стороной.

Рис. 4 и **5.** Гостевой домик в Кызылаусе, перевезенный А.Ф. Тарасовым из Алматы. Слева – в мае 1981 г. фото А.Ф. Ковшаря. Справа – в августе 2016 г. Фото В.А. Ковшарь

Третий кордон, который мы посетили в этот день, был знаменитый Кызылаус («красный рот»). Находился он, в отличие от предыдущих, не открыто в предгорьях, а в глубине узкого живописного ущелья, при въезде бросались в глаза выложенные на склоне побелёнными камнями слова: «Браконьер – вор!». Просто и доступно каждому. По бокам дороги, уже в ущелье, то и дело попадались небольшие навесы над зимними кормушками для кекликов. Как раз в этом ущелье проводили основные исследования по биологии кекликов М.А. Кузьмина и Ю.Н. Грачёв, в один голос утверждавшие, что зима здесь бывает многоснежной и является «узким местом» в биологии этой птицы. Небольшой домик егеря стоял прямо на берегу горной речки, над которой, в тени старой развесистой ивы был сооружён дощатый помост как место трапезы для гостей. А чуть выше, метрах в тридцати, стоял, как сказочный терем, бревенчатый дом с высоким крыльцом и обширной верандой. Внутреннее его убранство поражало не меньше: камин с изразцами, на стенах гостиной - рога и головы охотничьих животных, посередине стол и старинная мягкая мебель. Довольный произведенным впечатлением, Тарасов сказал мне: «А знаешь, я ведь этот дом из города привёз!». Оказывается, как-то почти чудом он высмотрел на одной из улиц города этот дом, уже предназначенный под снос. Пользуясь связями в Управделами Совмина, он добился, чтобы его переписали на баланс хозяйства, нашёл умельцев, которые разобрали его по брёвнышку, перевезли в ущелье и собрали так же точно на месте, которое он приготовил под этот дом. Получился вполне приличный гостевой домик в правительственном охотхозяйстве, в котором он уже не раз принимал не только высоких правительственных чиновников, но и иностранцев. От последних он

заразился идеей создать при этом домике таксидермический цех по производству сувенирной продукции – прежде всего чучел и охотничьих трофеев, о чём с жаром тут же мне и поведал. А я слушал и удивлялся: сколько же идей и энергии у этого человека!.. Ночевали мы в этом гостевом доме – в маленьких комнатах с железными кроватями.

На следующий день мы посетили четвертый, так называемый береговой кордон, на котором строился загон для куланов (Equus hemionus onager), которых предполагалось следующей весной завезти сюда с острова Барсакельмес, где их расплодилось больше, чем могло прокормиться, к тому же солёность воды в обмелевшем Аральском море уже приближалась к предельно допустимой для животных. Загон мне понравился, сделан он был достаточно грамотно, вплоть до создания защитной дощатой стенки за которой самки с детёнышами могли бы спрятаться от преобладающих холодных ветров. Впоследствии так оно и было, о чём рассказал в своей книге «Кулан» участник отлова и перевозки куланов Виталий Леонтьевич Сотников, работавший тогда начальником отдела заповедников Казглавохоты (Сотников, 1986). Вместе с ним в отлове куланов на Барсакельмесе участвовали московский специалист по обездвиживанию крупных животных Михаил Михайлович Чижов и сотрудники нашей лаборатории Кирилл Павлович Ушаков и Владимир Николаевич Мурзов (обоих уже давно нет в живых).

Джейранов в те два дня – 28 и 29 мая 1981 г. – мы встретили по крайней мере несколько сотен голов. Причём в двух местах удалось найти и так называемых «чебышат» – новорожденных, которые затаиваются в малейшей каменистой ложбинке, края которой поросли редким тасбиюргуном. Увидеть такого малыша практически невозможно, пока он не выскочит прямо из-под ног – как заяц. И только потом замечаешь мать, которая всё это время маячила в 200-300 м, а то и дальше от этого места...

Во время этой поездки А.Ф. Тарасов много говорил о том, что он добивается преобразования своего охотхозяйства в заповедно-охотничье, я же пытался возражать ему словами известного нашего охотоведа В.Н. Скалона, любившего повторять, что этот странный термин напоминает ему выражение «деревянное железо», так как в нём объединены несовместимые понятия. Тем не менее, в доводах Тарасова была своя логика: в данном случае эти, казалось бы, несовместимые понятия были разобщены территориально — заповедная равнина с населявшими её краснокнижными джейранами и богатые охотничьими объектами горы; при этом полученные от охоты в горах средства могли быть потрачены на охрану редких видов в заповедной зоне на равнине.

Как бы то ни было, уже в следующем году Капчагайское ГОХ было преобразовано в ГОЗХ и ему передан участок «Поющий бархан», который до этого был филиалом Алматинского заповедника.

Рис. 6. Коллектив лаборатории охраны диких животных, 1982 г. *Слева направо*: Е.Э. Анохина, Б.М. Губин, Р.А. Кубыкин, Д.А. Бланк, Е.И. Страутман, З.К. Брушко, В.Н. Мурзов, Р.Б. Бекбосынова, А.Ф. Ковшарь, В.Н. Мазин, С.Л. Скляренко. *Впереди сидят* — В.В. Лопатин и О.В. Белялов. *Фото А.С. Левина*

Рис. 7. Поющий бархан, октябрь 1981 г. Фото Р.А. Кубыкина


Вот выдержка из краткой энциклопедии «Казахская ССР» (том 2, 1988): «Капчагайское государственное заповедно-охотничье хозяйство создано в 1982 г. для сохранения и восстановления численности архара, джейрана, кулана, чернобрюхого рябка и др., для охраны эфедры хвощевой, ферулы илийской, каркаса кавказского. Расположено на сев. берегу Капчагайского вдхр. на терр. Талгарского р-на Алма-Атинской, Кербулакского и Гвардейского р-нов Талды-Курганской обл., охватывает южные отроги Джунгарского Алатау (горы Дегерес, Матай, Чулак, Калканы, включая памятник природы «Поющая гора»). Площадь 521.6 тыс. га... На терр. х-ва св. 40 видов зверей и 80 птиц, в т.ч. джейран (св. 600 голов), горный сибирский козёл (тау-теке, 2,5 тыс),

перевязка, фазан, кеклик, различ. водоплавающие птицы. В 1982 г. в х-во с о-ва Барсакельмес завезен кулан, давший уже первое потомство, численность вместе с потомством 37 голов» (Сотников, 1988, с. 235).

С 13 по 19 октября 1981 г. мы с герпетологами лаборатории З.К. Брушко и Р.А. Кубыкиным, а также териологами Е.И. Страутманом и Д.А. Бланком предприняли поездку в Капчагайское ГОЗХ по маршруту: Чингильды — Кызылаус — кордон Береговой — Талдысай — Бесшатыр — Мынбулак — биостанция КазГУ — Поющий бархан — Майка — Волковская партия — пески Жапалаккум — горы Катутау и Актау. Поездка захватила восточную часть охотхозяйства, заповедный участок Поющий бархан (филиал Алматинского заповедника, который А.Ф. Тарасов сумел присоединить к своему хозяйству, превратив его в «заповедно-охотничье»), а также расположенные восточнее зарастающие пески Жапалаккум и подножья ксерофитных горок Актау и Катутау, поражающие воображение красивыми пестроцветными глинами. Сейчас все эти места входят в состав Алтын-Эмельского национального парка, созданного на месте Капчагайского ГОЗХ и земель Басчинского конесовхоза (Актау и Катутау присоединили к национальному парку немного позднее). К сожалению, джейрана на этих «восточных» землях (за пределами ГОЗХ) мы так и не увидели, как и дрофу-красотку, которую специально высматривали.

Завершился 1981 год проведением 8 декабря аэровизуального учёта джейрана на территории Капчагайского ГОЗХ (участники Д.А. Бланк, А.Ф. Ковшарь и А.Ф. Тарасов). Всего видели несколько сотен голов, что вполне соответствовало данным наземного учёта, проведенным Ю.А. Грачёвым, который 15 марта 1977 г. на автомобильном маршруте 30 км насчитал 189 джейранов. Судя по этим данным, в хозяйстве обитало 2-3 тысячи джейранов. Поэтому приводимая В.Л. Сотниковым (1988) цифра занижена в 3-4 раза.

Отдельного повествования заслуживает эпопея спасения кулана, оказавшегося на острове Барсакельмес в критическом положении. Отлов куланов на острове и перевозка их в машинах за тысячу километров от Аральска до Капчагая достаточно подробно описаны ответственным участником этих работ В.Л. Сотниковым (1986), который в своей популярной книжке объективно описывает весь процесс репатриации, начиная с планов, которые в ходе выполнения проекта менялись. Так, первоначально планировались 4 места выпуска куланов: первое – в восточной части Сюгатинской долины, примыкающей к Чарынскому каньону (40 куланов и 50 джейранов), второе – в Капчагайском ГОЗХ (урочище Мынбулак), третье – на базе зонального Зоокомбината и четвёртое – на базе Алматинского зоопарка. В итоге, после тщательного анализа, остановились на территории Капчагайского ГОЗХ, которое лучше всех соответствовало всем требованиям для репатриации кулана. Вот как описывает это В.Л. Сотников: «Именно здесь были наиболее подходящие условия для выпуска животных на волю: территория мало освоена, участок каменистой пустыни шириной 15-20 км протянулся с востока на запад на 100-120 км. С южной стороны он ограничивался водами Капчагайского вдхр. и р. Или. С севера вплотную подступают горы Матай, Дегерес и Чулак – отроги Джунгарского Алатау. С запада и востока подступают населенные пункты – Чингильды, Басчи и другие. Хозяйство имело хорошую производственную базу, здесь работали преданные своему делу люди» (Сотников, 1986, с. 51).

Рис. 8. Куланы в загоне, 1982 г.

Рис. 9. А.Г. Банников и В.Е. Флинт. Кызылаус, 15 июля 1982 г. *Фото А. Ковшаря*

Поначалу местом выпуска определили урочище Мынбулак (тысяча ключей), где под так называемый «куланарий» было отведено 4500 га. Строительство этого куланария, который должен быть огорожен (!) обсуждалось многократно на всех уровнях, в том числе и в Центральном Совете Казахского

общества охраны природы, где я в то время был председателем секции охраны животного мира. Всё упиралось не только в средства, но и в сроки, поскольку строительство могло затянуться не на один год, а условия обитания на Барсакельмесе вследствие быстрого обмеления Аральского моря ухудшались с каждым днём (всё это подробно описано в книге «Кулан» В.Л. Сотникова). Помог опыт соседей – зоологов Туркменистана, которым удалось выпустить куланов после кратковременной передержки в относительно небольшом загоне. Решено было отказаться от строительства дорогостоящего куланария и выпустить куланов после 2-3-месячной передержки их в небольших огороженных загонах около кордона. Так был выбран береговой кордон (ныне его называют Жантугай), где в то время егерем был Николай Дёгтев — это у него в мае 1981 г. мы с А.Ф. Тарасовым осматривали строящиеся загоны.

В январе 1982 г. прибыла первая партия куланов. На кордоне Жантугай (Береговом) с января 1982 г. в трёх вольерах площадью по полтора гектара каждый содержалось 23 кулана (7 самцов и 16 самок). Преобладали беременные самки, что вселяло надежду, что после выпуска с маленькими детёнышами они не уйдут далеко. Первый куланёнок родился 13 мая, а к 20 мая их было уже пятеро. В этот день, 20 мая, их выпустили из вольер. Сам процесс выпуска также подробно описан в книге В.Л. Сотникова (1986). После выпуска сотрудник нашей лаборатории Давид Бланк, которому в разные годы помогали Алтын Джаныспаев и Максим Зверев (внук знаменитого писателя), вёл за ними наблюдения, результаты их опубликованы в интересной статье (Бланк, Тарасов, 1986). Параллельно и много сезонов после этого Д.А. Бланк изучал на территории Капчагайского ГОЗХ (в основном в предгорьях Больших Калканов) биологию и поведение джейранов, по которым опубликовал серию статей, а после эмиграции в 1992 г в Израиль защитил по этим материалам кандидатскую диссертацию на английском языке.

Уже через неполные два месяца после выпуска куланов в Алма-Ату приехали вице-президент МСОП (Международный союз охраны природы) профессор А.Г. Банников и сопровождавший его профессор В.Е. Флинт – заведующий лабораторией Всесоюзного института охраны природы. Директор хозяйства А.Ф. Тарасов повёз нас на своей «Ниве» по территории хозяйства в поисках куланов. За 2 дня, 15 и 16 июля, мы объехали большую часть хозяйства и в двух местах встретили две группы с уже сформированной иерархией стада и несколько одиночных самцов. Так было на самом высоком уровне подтверждено успешное окончание эксперимента по репатриации кулана в Казахстане. За эту двухдневную поездку в самые жаркие дни лета мы встретили несколько сотен джейранов, и объездившие весь мир (особенно – африканские саванны) профессора Флинт и Банников дали высокую оценку богатству фауны копытных нашего заповедно-охотничьего хозяйства, назвав его истинным Эльдорадо животного мира. И в сентябре того же года в Ашхабаде, на Всесоюзном совещании «Разведение и создание новых популяций редких и ценных видов животных» мы с заместителем начальника «Казглавохоты» А.Д. Каргополовым (1982) отчитывались о первых результатах успешной репатриации кулана в Капчагайском ГОЗХ.

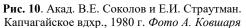
К сожалению, после безвременной кончины А.Ф. Тарасова, последовавшей вскоре — зимой 1982/83 г., люди, сменившие его на посту директора, очень быстро стали разваливать выпестованное им хозяйство, что отрицательно сказалось на состоянии охраны и на численности популяций копытных.

Поэтому не удивительно, что работавший с 1986 г. директором Басчинского конесовхоза Галым Турганбаев (до этого 10 лет работал секретарём райкома), будучи свидетелем разгула браконьерства на территории фактически *переставшего быть заповедным* хозяйства, к концу 80-х гг. выступил с идеей о создании национального парка путём объединения земель вверенного ему совхоза и Капчагайского ГОЗХ. Ему удалось убедить рабочих своего совхоза на передачу около 200 тыс. га для создания будущего парка; ещё 260 тыс. га земель согласились передать хозяйства двух других районов.

С предложением о создании национального парка Г.Т. Турганбаев обратился к главе правительства Узакбаю Караманову. Однако и Академия наук Казахстана, и Министерство экологии поначалу отнеслись к этому предложению настороженно. И не только потому (как считает Г.Т. Турганбаев), что ещё не было прецедентов, чтобы природоохранное учреждение создавал совхоз. Было ещё одно обстоятельство.

В это время создавалась новая Генеральная схема охраняемых природных территорий и среди прочих предложений было наше с Д.А. Бланком, составленное от имени лаборатории охраны диких животных, обоснование по созданию крупного национального парка под названием «Илийская долина», в который входило бы не только всё правобережье реки Или от гор Чулак до Актау (включая полностью территорию Капчагайского ГОЗХ), но и часть левобережья между Чиликом и Чарыном (включая весь Чарынский каньон), а также часть восточной акватории самого Капчагайского вдхр. и урочище «Карачингиль» в устье р. Тургень. В таких границах национальный парк «Илийская долина» включал бы

всё многообразие ландшафтов юго-востока Казахстана и не имел бы реальных конкурентов во всём среднеазиатском регионе, претендуя на международную известность.


Вот как описана территория предложенного нами нацпарка в книге «Перспективы формирования природно-заповедного фонда Казахстана» (1989): «Природный национальный парк Илийская долина (500 тыс. га) будет расположен в Кербулакском и Панфиловском районах Талды-Курганской области, а также в Чиликском и Уйгурском районах Алма-Атинской области, в среднем течении р. Или. ... В настоящее время на территории будущего национального парка охраняется ряд объектов: памятник природы — реликтовая ясеневая роща, Капчагайское государственное заповедно-охотничье хозяйство, Чиликское и Карачингильское охотхозяйства ХОЗУ Совета Министров Казахской ССР. Планируется организация Капчагайского заповедника. В результате создания национального парка все эти разрозненные участки объединятся в единую систему охраняемых объектов природно-заповедного фонда. При проведении функционального зонирования будут предусмотрены рекреационные зоны, а также зоны ограниченного хозяйственного использования, что позволит значительно повысить численность редких видов растений и животных, создаст благоприятные условия для туризма и отдыха трудящихся близлежащих населенных пунктов двух областей. В будущем парке предлагается выделить следующие зоны:

- заповедные территории: Капчагайский заповедник, ясеневая роща, каньоны Чарына, острова р. Или и её новой дельты, пески Улькункум;
 - заказные территории: горы Богуты, Катутау и Актау;
- объекты для осмотра с использованием водных и сухопутных маршрутов: охотхозяйство Карачингиль, ур. Жантугай, ущелья Талдысай и Кызылаус, Поющая гора, пески Улькункум, дельта реки Чарын, каньоны, ясеневая роща, пески Джапалаккум, горы Актау и Катутау;
 - места отдыха в ряде населенных пунктов: Нурлы, Майка, Айдарлы, Чарын и т.д.

При реализации проекта парка необходимо провести ряд мероприятий по восстановлению растительного покрова, акклиматизации редких и исчезающих видов животных (кулан, бухарский олень, лошадь Пржевальского, выдра, архар), а также по ограничению и упорядочению антропогенных нагрузок. Предложение по организации национального парка выдвинуто Институтом зоологии АН КазССР» (Перспективы формирования..., 1989, с. 9). Альтернативой этому предложению Академии стало предложение Г.Т. Турганбаева.

При обсуждении последнего на одном из заседаний в Верховном Совете КазССР, куда в 1991 г. был избран депутатом Г.Т. Турганбаев, в результате обмена мнениями была достигнута такая договорённость: предложение Академии слишком масштабно и поэтому не выполнимо в ближайшее время, а предложение о создании нацпарка «Алтын-Эмель» можно рассматривать, как *первую ступень* в выполнении академического. Фактически на этом и порешили.

Рис. 11. В.Е. Флинт и А.Ф. Ковшарь. Алма-Ата, 1987. *Фото Р. Кубыкина*

И последующие шаги национального парка «Алтын-Эмель» по расширению территории за счёт гор Актау и Катутау были в русле этой договорённости. Правда, больше никаких шагов в этом направлении никто не предпринимал, а после того, как был создан Чарынский национальный парк, предложение о создании национального парка «Илийская долина» было забыто.

В апреле 1991 г. распоряжением Совета Министров за № 59-р была создана временная дирекция создаваемого национального парка «Алтын-Эмель», а генеральным директором его был назначен Г.Т. Турганбаев. С 1991 по 1996 г. им проведена большая организационно-хозяйственная работа (в том числе создано 9 новых кордонов) и вот 10 апреля 1996 г. принято постановление об учреждении

национального парка «Алтын-Эмель». За прошедшие 20 лет эта территория превратилась в настоящий рай для крупных животных. По последним данным, здесь обитает 4.5 тысяч джейранов и 3.2 тысяч куланов (Труды ГНПП «Алтын-Эмель», вып. 2, 2016). Это замечательные достижения, и национальный парк вполне заслуживает тех восторженных эпитетов, которыми его награждают посетители. Приведенные две цифры по численности джейрана и кулана вынуждают уже сейчас думать о предельной ёмкости угодий, определении её математическими методами и разработке методов и путей расселения этих копытных на другие территории. В этом плане очень интересный доклад о возможных экологических коридорах для расселения джейранов на северо-запад, в Прибалхашье, сделал на юбилейной конференции в 2016 г. С.Л. Скляренко.

Ещё один важный момент — выпуск на этой территории в 2003 г. лошади Пржевальского. Этот вопрос возник за десятилетие до организации национального парка «Алтын-Эмель», и решался он далеко не однозначно. Инициатором стал Всесоюзный институт охраны природы в лице уже упомянутого профессора В.Е. Флинта, который к тому времени завёз лошадь Пржевальского в Узбекистан. После посещения Капчагайского ГОЗХ в июле 1982 г. В.Е. Флинт задался целью выпуска здесь лошади Пржевальского. Вопрос об этом он поставил на Комиссии по лошади Пржевальского при Президиуме Академии наук СССР, заместителем председателя которой он был (председатель — академик В.Е. Соколов, директор ИЭМЭЖ). В состав этой комиссии, по настоянию В.Е. Флинта, от Казахстана был включён и я как руководитель лаборатории, которая будет выполнять этот проект. Одновременно в Капчагайское ГОЗХ были командированы из Москвы две сотрудницы ВНИИ Природы О.Б. Переладова и М.В. Мирутенко для обследования кормовой базы этой территории на предмет её достаточности для обитания здесь дикой лошади.

Альтернативой этому предложению Академии стало предложение Г.Т. Турганбаева. При обсуждении последнего на одном из заседаний в Верховном Совете КазССР, куда в 1991 г. был избран депутатом Г.Т. Турганбаев, в результате обмена мнениями была достигнута такая договорённость: предложение Академии слишком масштабно и поэтому не выполнимо в ближайшее время, а предложение о создании нацпарка «Алтын-Эмель» можно рассматривать, как *первую ступень* в выполнении академического. Фактически на этом и порешили.

Рис. 12. Полевые работы на территории Капчагайского ГОЗХ в мае 1988 г. Н.В. Паклина и М.К. Позднякова. *Фото А.Ф. Ковшаря*

Рис. 13 Д.А. Бланк. *Фото А.Ф. Ковшаря*

Между тем уже велись переговоры с супругами Боуман о поставке лошадей Пржевальского в Казахстан из Голландии. Одновременно в мае 1988 г. Институт зоологии АН КазССР командировал меня в заповедник Аскания-Нова для переговоров об условиях поставки в Казахстан лошадей Пржевальского из этого заповедника. Переговоры прошли вполне успешно, лошадей нам обещали безвозмездно. Однако, как предложил главный специалист по лошади Пржевальского Василий Васильевич Климов, сам выпуск лошадей желательно провести не в пустыне, а в степном ландшафте.

Для поисков более перспективных для выпуска мест в Алма-Ату прилетели члены комиссии по лошади Пржевальского Наталья Владимировна Паклина и Мария Кирилловна Позднякова. Вместе с ними и зоологом нашей лаборатории Давидом Александровичем Бланком 21-25 мая 1988 г. мы проехали в среднем течении р. Или по маршруту: Капчагай — Чингильды — кордон Кызылаус — Поющий бархан — пески Жапалаккум — р. Борохудзир — с. Чунджа — Чарын — Богуты. Сравнив условия разных пустынь: песчаной (Жапалаккум), щебенистой, или гамады (равнина на северном побережье Капчагая), глинистой (восточнее Поющего бархана), более или менее подходящие степные участки с необходимыми для существования лошадей злаками удалось обнаружить только в одной из седловин между холмистыми вершинами гор Богуты. Здесь поднятая на значительную высоту над щебенистой пустыней перемычка

между Большими и Малыми Богутами представляла собой полынную степь с проективным покрытием около 90% и очень редкими кустиками боялыча. Однако этот изолированный участок так мал по площади, что рассматривать его как место возможного выпуска лошади было бы несерьёзно.

Поэтому сразу же после окончания этого кольцевого маршрута 26 мая мы в том же составе и с той же целью отправились в Зайсанскую котловину и горы Манрак. Здесь вместе с восточно-казахстанскими зоологами Б.В. Щербаковым и С.В. Стариковым в течение недели (до 3 июня) мы совершили 1200-километровый маршрут: Усть-Каменогорск — Кулуджунский заказник (Буконьские пески) — Казнаковская переправа — с. Курчум — гора Киин-Кириш — гора Карабирюк — ур. Чакельмес — р. Чёрный Иртыш — с. Буран — урочище Май-Капчагай — город Зайсан — горы Манрак — Чиликтинская долина (реки Чаганобо — Кандысу) — с. Чиликты — с. Акжар. По дороге через Манрак в Чиликтинскую долину мы достигли межгорной степной долинки, которая, по мнению наших специалистов, оказалась более или менее подходящим местом для выпуска лошади Пржевальского. Эта холмистая ковыльная степь, практически без каменистых обнажений, имела всего два недостатка: относительно небольшая площадь (но гораздо большая, чем в Богутах) и то, что здесь уже выпасают домашних лошадей. Решили рекомендовать это место для выпуска, предварительно добившись объявления его заповедным участком, о чём и доложили в Академии наук Казахстана.

Для рассмотрения этого вопроса во второй половине октября 1988 г. в Алма-Ате состоялось выездное заседание Комиссии по лошади Пржевальского. Н.В. Паклина и М.К. Позднякова привезли с собой, помимо В.В. Климова из Аскании-Нова, также «тяжёлую артиллерию» в лице Леонида Мироновича Баскина — крупного специалиста по поведению диких копытных животных. Уже одно это настораживало. А сам доклад москвичек на заседании Комиссии, проходившем в Президиуме Академии наук Казахстана, совсем не оставил сомнений в том, что в Москве, всё уже было решено: не только территория Капчагайского ГОЗХ, но и остальные места, осмотренные нами в полупустыне долины р. Или, *отклонены* и единственным местом остаётся выбранный нами клочок степи в Восточном Казахстане — седловина между Манраком и Чиликтинской долиной. Об этом москвичи даже поставили в известность владельцев лошадей — супругов Боуманов в Голландии, и те изъявили желание приехать и посмотреть эти места. Поэтому на данном заседании многие выступавшие, особенно «иэмэжевцы» и В.В. Климов, говорили в основном о том, что надо поскорее взять под охрану выбранную территорию. А поскольку заповедать эту территорию так и не удалось, то вопрос о выпуске в Казахстане лошади Пржевальского «заглох» на длительное время...

И только спустя 15 лет, в 2003 г. лошадь Пржевальского была завезена в национальный парк «Алтын-Эмель» из Мюнхенского зоопарка и в 2005 г. здесь на полувольном содержании обитало 13 особей. Такое же количество находится здесь и сейчас (Ахметов, Байтанаев, 2006; Труды ГНПП «Алтын-Эмель», 2016). Этот факт — отсутствие прироста у этого полувольного стада — не может не настораживать. Кроме того, до сих пор перед национальным парком остаются две основные задачи относительно лошади Пржевальского: а) окончательное выяснение кормовой базы и степени её достаточности для значительного стада лошадей; б) взаимоотношение диких и домашних лошадей после выпуска лошади Пржевальского в природу.

Таким образом, несмотря на замечательные успехи по части сохранения и увеличения численности животных, особенно джейрана и кулана, достигнутые Алтын-Эмельским национальным парком за два десятилетия своего существования, впереди у юбиляра много работы как в том же направлении, так и в новом — как правильно, разумно распорядиться этим богатством. Пожелаем же ему в этом новых успехов!

Ахметов Х.А., Байтанаев О.А. Биологическое разнообразие национального парка «Алтын-Эмель». Алматы, 2006. 156 с. Бланк Д.А. К экологии джейрана в Илийской долине//Редкие животные Казахстана (Мат-лы ко второму изданию Красной книги Казахской ССР). Под ред. Е.В. Гвоздева. Алма-Ата: «Наука» Казахской ССР, 1986. С. 14-18. Бланк Д.А., Тарасов А.Ф. Наблюдения над формированием новой популяции кулана в Казахстане// Редкие животные Казахстана (Материалы ко второму изданию Красной книги Казахской ССР). Под ред. Е.В. Гвоздева. Алма-Ата: «Наука» Казахской ССР, 1986. С. 10-13. Ковшарь А.Ф., Каргаполов А.Д. Перспективы разведения в неволе и создания природных популяций кулана в Казахстане//Разведение и создание новых популяций редких и ценных видов животных (Тезисы докладов 3-го совещания). Ашхабал, 1982. С. 147-149. Перспективы формирования природно-заповедного фонда Казахстана. Алма-Ата: «Наука» КазССР, 1989. 86 с. Сотников В.Л. Кулан. Алма-Ата: «Кайнар», 1986. 92 с. Сотников В.Л. Капчагайское заповедно-охотничье хозяйство//Казахская ССР. Краткая энциклопедия, том 2. Алма-Ата, 1988. С. 235. Труды ГНПП «Алтын-Эмель», вып. 2 (ред. В.А. Ковшарь). Алматы, 2016. 256 с.

ЮБИЛЕИ

УДК 92: 597.9+598.1 (092)

Зоя Карповна Брушко

(к 85-летию со дня рождения)

Исполнилось 85 лет ведущему и старейшему герпетологу Казахстана 3ое Карповне Брушко, около 40 лет возглавлявшей и направлявшей исследования земноводных и пресмыкающихся в нашей республике.

Зоя Карповна Брушко (в девичестве – Козлова) родилась 25 марта 1931 г. в городе Старый Оскол Воронежской области. В 1933 г. семья переехала в Узбекистан. Первые четыре класса Зоя Карповна училась в селе Луначарском (сейчас это город), затем родители перебрались в Ташкент. В 1948 г. она поступила в Среднеазиатский государственный университет им. В.И. Ленина (ныне – Национальный университет Узбекистана), а по окончании его с 1953 по 1963 г. работала в должности старшего лаборанта на кафедре зоологии позвоночных этого же университета. В 1957 г. параллельно с работой Зоя Карповна окончила вечерний университет марксизма-ленинизма при Ташкентском городском комитете Компартии Узбекистана. В 1962-1963 гг. она читала лекции почасовик кафедре зоологии Сельскохозяйственном институте и в течение нескольких лет вела занятия c преподавателями биологии Институте усовершенствования учителей. Одновременно преподавала биологию и физиологию в средней вечерней школе.

В 1963 г. Зоя Карповна перешла работать в Институт зоологии и паразитологии АН Узбекской ССР в лабораторию

изучения змеиных ядов и использования их в медицине. После расформирования лаборатории была переведена в лабораторию экологии ядовитых змей. Здесь в течении 5 лет работала над кандидатской диссертацией «Строение и функционирование половых желез ядовитых змей семейства гадюк в природе и при содержании в питомнике», которую успешно защитила в 1970 г. Научным руководителем Зои Карповны был один из крупнейших герпетологов Советского Союза Олег Павлович Богданов. После защиты диссертации Зоя Карповна прошла по конкурсу на должность старшего научного сотрудника и некоторое время исполняла обязанности заведующей лабораторией.

После перевода мужа, офицера Советской Армии, в Алма-Ату в 1972 г. Зоя Карповна переехала в этот город. Уже сложившемуся специалисту-герпетологу с кандидатской степенью и почти 20-летним стажем научной работы ей сразу не удалось устроиться по специальности. Первое время пришлось работать старшим лаборантом в лаборатории гельминтологии КазНИВИ, затем — на той же должности в лаборатории водных животных Института зоологии АН КазССР заниматься изучением экологии узкопалого рака. И только в 1975 г. она перешла в лабораторию орнитологии, где сразу стала во главе герпетологического направления, утраченного институтом со смертью К.П. Параскива за полтора десятилетия до этого.

С первых дней создания в Институте зоологии лаборатории охраны диких животных (1980 г.) Зоя Карповна определила основные направления исследований по группе амфибий и рептилий, которые полностью соответствовали тематике лаборатории. Такими направлениями стали изучение фауны земноводных и пресмыкающихся Казахстана и особенностей их экологии, с особым вниманием к редким видам. Первым видом, которому Зоя Карповна посвятила свои работы, стала среднеазиатская черепаха. С годами круг объектов, а также районы исследований существенно расширились, но самыми любимыми среди них стали ящерицы пустынь.

Результаты исследований Зои Карповны вошли в очерки о редких и исчезающих земноводных и пресмыкающихся во всех четырёх изданиях Красной книги Казахстана (1978, 1991, 1996, 2010). Она являлась автором герпетологического раздела Книги генетического фонда Казахстана (1989), важных разделов в коллективных монографиях «Позвоночные животные Алма-Аты» (1988) и «Редкие животные пустынь» (1990). В 1995 г. Зоя Карповна опубликовала монографию «Ящерицы пустынь Казахстана», которая стала итогом многолетних исследований этой группы рептилий. Эта книга включила подробные очерки по распространению и экологии 22 видов ящериц пустынь Казахстана, иллюстрированные детальными картами-кадастрами, и объёмный список справочной литературы. Монография получила самую высокую оценку герпетологов не только постсоветского пространства, но и самых крупных зарубежных специалистов – признанных лидеров мировой герпетологической науки. Так, Крэг Адлер – профессор Корнельского университета, одного из крупнейших в США, в своем недавнем поздравлении Зои Карповны с юбилеем написал: «Я всегда был поражён Вашей удивительной исследовательской активностью. Ваши работы по изучению распространения амфибий и рептилий Казахстана и их экологии, без преувеличения сказать, впечатляющи, а Ваша замечательная монография по ящерицам пустынь Казахстана, которую Вы мне подарили в 1995 г., стала для меня особенно дорогим подарком». Сейчас, спустя более 20 лет, монография 3.К. Брушко «Ящерицы пустынь Казахстана» не только не потеряла своей актуальности, но остаётся настольной книгой для всех герпетологов, изучающих Центральную Азию.

Несмотря на серьёзную занятость лабораторными и полевыми научными исследованиями и интенсивную подготовку публикаций Зоя Карповна постоянно вела общественную работу. В Институте зоологии она была секретарём Зооресурсной комиссии, секретарём методического семинара «Вопросы взаимодействия природы и общества», заместителем председателя Товарищеского суда, являлась членом Научного совета Алма-Атинского зоопарка. Столь высокая степень занятости никогда не отражалась на характере Зои Карповны и её отношении к окружающим коллегам и близким людям. Она и сейчас остаётся уравновешенной, доброжелательной, внимательной к людям, справедливой в суждениях и поступках, наделённой неисчерпаемым запасом оптимизма и чувством юмора.

Наряду с научной работой З.К. всегда уделяла много внимания популяризации науки и воспитанию молодёжи в духе любви к природе и особенно животному миру: постоянно руководила полевой практикой, курсовыми и дипломными работами студентов-биологов Казахского и Карагандинского университетов; много занималась с юннатами республиканского и городского дворцов пионеров; очень ответственно относилась к работе с подшефными школами, находя их не только в Алма-Ате, но даже в далёкой Кустанайской области. С большим интересом и ответственностью всегда относилась к научно-популярным публикациям — например, в книжках «Живые сокровища Казахстана», «Тропинки в загадочный мир», получивших дипломы Всесоюзного общества «Знание». Ёмко, информативно и очень доступно ею написаны разделы в школьной энциклопедии «Рыбы. Земноводные. Пресмыкающиеся» (2011).

Зоя Карповна воспитала нас — целую плеяду молодых герпетологов, и мы увлеченно продолжаем её любимое дело. Уйдя на пенсию, Зоя Карповна не снизила творческой активности и не бросила свою наставническую работу. Контакт с ней все эти годы самый живой: она продолжает обрабатывать богатые материалы своих дневников и публиковаться. Она в постоянном общении со своими учениками, которые каждую подготовленную рукопись несут, прежде всего, к ней на суд. Зоя Карповна в курсе всех основных событий герпетологического сообщества — публикаций, конференций, экспедиций, диссертационных защит.

Мы – ученицы Зои Карповны двух поколений – от всего сердца поздравляем нашего Учителя и Наставника с юбилеем, желаем ей здоровья, бодрости духа и ещё многих лет на благо нашей любимой герпетологии.

Татьяна Дуйсебаева Марина Чирикова Юлия Зима

От редактора. К этим поздравлениям и пожеланиям учениц охотно присоединятся и зоологи старшего поколения, много лет работавшие с Зоей Карповной как в Казахстане, так и в Узбекистане. Многие годы Зоя Карповна является членом редколлегии нашего журнала/ежегодника. И мне, проработавшему с ней более 40 лет, хочется пожелать ей крепкого здоровья и хорошего творческого долголетия. Оставайтесь всегда такой же, как Вы есть — доброй, чуткой, внимательной к людям. А мы Вас всегда любим и уважаем. А.Ф. Ковшарь.

УДК 92:593+595.2/9 (092)

Валентина Андреевна Смирнова

(к 80-летию со дня рождения)

8 ноября 2016 г. исполнилось 80 лет известному казахстанскому зоологу и преподавателю, кандидату биологических наук, доценту Валентине Андреевне Смирновой. Более 35 лет Валентина Андреевна проработала в Казахском национальном университете имени Аль-Фараби (ранее называвшимся Казахским государственным университетом им. С.М. Кирова). На кафедре зоологии Валентина Андреевна начала работать старшим лаборантом в 1962 г., сразу после окончания университета; затем работала ассистентом, старшим преподавателем, доцентом.

Научная деятельность Валентины Андреевны связана с изучением водных беспозвоночных Казахстана. Под руководством Сахиб Ибрашевны Ибрашевой в 1968 г. она защитила кандидатскую

диссертацию по теме «Пресноводные моллюски Западного Казахстана как промежуточные хозяева трематод». Занимаясь изучением пресноводных моллюсков и других водных беспозвоночных, Валентина Андреевна участвовала в экспедициях в разные регионы Казахстана. Как и её научный руководитель, Валентина Андреевна очень тщательно подходила к подготовке своих научных публикаций. Она является автором и соавтором более 30 научных работ, в том числе совместно с С.И. Ибрашевой монографии «Кладоцеры Казахстана» (1983).

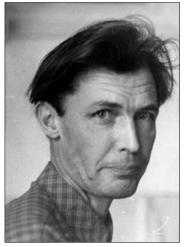
Будучи добрым, отзывчивым и в то же время широко эрудированным и требовательным к себе и другим специалистам, Валентина Андреевна стала прекрасным педагогом и внесла большой вклад в становление нескольких поколений биологов самого разного профиля. Своими знаниями и опытом полевых работ она щедро делилась со студентами, читая лекции лабораторные занятия проводя ПО дисциплинам «Зоология беспозвоночных», как «Паразитология», «Медицинская зоология», «Протозоология» «Гидробиология», «Сравнительная анатомия беспозвоночных» и другим. На основе

накопленного опыта ею опубликовано 6 методических пособий.

Валентина Андреевна представляет собой редкое сочетание скромности, обаяния и больших организаторских способностей. Многие годы она являлась начальником выездной учебно-полевой практики по зоологии беспозвоночных, в 1972-1975 гг. была учёным секретарём Диссертационного совета биологического факультета, в 1987-1992 гг. – деканом вечерне-заочного биолого-географического факультета. Находясь на этих постах, Валентина Андреевна с высокой ответственностью относилась к своим обязанностям, снискав уважение и любовь коллег и студентов родного факультета.

Уважаемая Валентина Андреевна, коллектив кафедры биоразнообразия и биоресурсов КазНУ от всей души поздравляет Вас с 80-летним юбилеем! Желаем Вам крепкого здоровья, благополучия, достатка, семейного счастья, любви и добра!

Ни шагу к старости, Ни часу в горести! А только в радости, И только в бодрости!


> Коллектив кафедры биоразнообразия и биоресурсов Казахского национального университета имени аль-Фараби

УДК 92: 598.2/9 (092)

Юрий Николаевич Грачёв

(к 80-летию со дня рождения)

Исполнилось 80 лет известному казахстанскому орнитологу, одному из лучших знатоков куриных птиц нашей страны Юрию Николаевичу Грачёву. Юрий Николаевич родился 20 мая 1936 г. в городе Пушкин (бывшее Царское Село) в семье орнитологов, которые тогда уже жили и работали в Казахстане. Мама Мария Алексеевна Кузьмина — ученица самого Л.М. Шульпина и однокурсница крупного зоолога-эколога Георгия Александровича Новикова (впоследствии — автор университетского учебника по

методике полевых исследований экологии наземных позвоночных) — после окончания Ленинградского университета работала в Алма-Ате научным сотрудником Казахстанской базы Академии наук СССР (впоследствии КазФАН, а с 1946 г. — Академии наук Казахской ССР). Отец Николай Ильич Грачёв работал там же и был неизменным спутником во всех поездках Игоря Александровича Долгушина. Эти экспедиции заложили основы планомерного орнитологического обследования территории республики; особенно продолжительной была их поездка по Павлодарскому Прииртышью, к тому времени (1939 г.) орнитологически совсем не исследованному.

Родившись в такой семье и с детства общаясь с И.А. Долгушиным (они жили рядом), Юра с детства пристрастился к охоте, которой увлекались тогда все орнитологи, а отец и Долгушин – особенно. Поэтому и поступил не в местный университет, а на отделение охотоведения Иркутского сельскохозяйственного института, где получил диплом охотоведа. Потом без малого 40 лет (с 1962 по

2000 г.) проработал в Институте зоологии. Сначала работал в лаборатории токсоплазмоза, которой руководил директор Института академик И.Г. Галузо. В эти годы особенно близко общался с такими зоологами как А.В. Афанасьев и П.М. Бутовский. Только в 1966 г. удалось перейти в лабораторию орнитологии, в которой и проработал до выхода на пенсию в 2000 г. За эти годы принимал участие во многих экспедициях по всей территории Казахстана. Вместе с М.Н. Бикбулатовым в 60-х гг. проводил учёты водоплавающих на Иртыше и в Северном Казахстане, затем были экспедиции на Южный Алтай, в Тянь-Шань и во многие другие места необъятного Казахстана.

Но главное призвание — куриные птицы. Продолжив цикл работ по этой группе, проводившихся М.А. Кузьминой более 30 лет, Юрий Николаевич много работал по двум видам — кеклику и фазану. Ему удалось проследить процесс инкубации яиц у джунгарского кеклика и доказать интересный феномен — насиживание у этого вида двух кладок одновременно (одну насиживает самец, другую — самка). Об этом есть упоминание ещё в работах Аристотеля, повторённое в ряде работ европейских орнитологов, однако критически настроенные орнитологи сочли их просто вымыслом, яркое свидетельство чему — обширное и категорическое примечание И.А. Долгушина к очерку о кеклике в сводке «Птицы Казахстана» (том 2, с. 460). Однако Юрию Николаевичу удалось проследить весь процесс и поставить точку в этом многолетнем споре, что очень важно для понимания механизма восстановления численности кекликов после губительных для них морозных и многоснежных зим.

Ряд лет *Ю.Н.* проводил учёты кеклика в различных хребтах Северного и Западного Тянь-Шаня, затем занимался изучением инкубации у семиреченского фазана, отрабатывая методику его искусственного разведения для выпуска в угодья вместо широко практикующихся выпусков так называемого охотничьего фазана, засоряющего аборигенную фауну. В последнее десятилетие XX ст. Юрий Николаевич работал на Чокпакском орнитологическом стационаре, занимаясь отловом и кольцеванием птиц.

Среди нескольких десятков опубликованных им работ особое значение занимает книга «Кеклик» (биология, использование, охрана), выпущенная издательством «Наука» [Алма-Ата, 1983. 148 с.] Большим достижением является очерк о каменных куропатках в многотомной монографии «Птицы СССР» (Москва, 1987).

Орнитологи Казахстана знают Юрия Николаевича не только как хорошего специалиста, но и как скромного человека, никогда не гнавшегося за чинами и регалиями, прекрасного полевика и охотника, хорошего, надёжного товарища, одного из хранителей наших старых орнитологических традиций. Доброго здоровья тебе и многих лет жизни, наш дорогой друг и коллега!

А.Ф. Ковшарь

УДК 92: 581.522 (092)

Анна Андреевна Иващенко

(к 75-летию со дня рождения)

В декабре 2016 г. исполнилось 75 лет ведущему флористу и ветерану заповедного дела Казахстана, кандидату биологических наук, профессору Российской академии естествознания Анне Андреевне Иващенко, известной зоологам нашей страны также своими трудами в области орнитологии.

Родилась Анна Андреевна 14 декабря 1941 г. в селе Вербыно Хорольского района, Полтавской области, на Украине, в многодетной крестьянской семье (пятой по счёту из 10 детей). В 1958 г.

поступила на биологический факультет старейшего Харьковского университета им. А.М. Горького, где специализировалась на кафедре высших растений у известного ботаника профессора Ю.Н. Прокудина, зарекомендовав себя как одна из лучших его учениц. По окончанию университета в июле 1963 г. по собственному желанию приехала на работу в старейший заповедник Казахстана – Аксу-Джабаглы, в котором проработала 22 года — до переезда в 1985 г. в город Алматы, где работала сначала в Институте ботаники, а затем в Главном ботаническом саду Академии наук Казахстана. С 2007 г. по настоящее время работает в Иле-Алатауском государственном национальном природном парке Комитета лесного хозяйства при МСХ РК.

За долгие годы работы в заповеднике Анна Андреевна выросла в крупного специалиста, лучшего знатока флоры Западного Тянь-Шаня. А поскольку первые годы мы работали вместе, во всём помогая друг другу, она всерьёз увлеклась птицами и при этом проявила удивительную способность в нахождении птичьих гнёзд. Их она находила практически

ежедневно, и не только у таких лёгких для поиска видов, как сорокопуты или славки. Достаточно сказать, что она была вторым человеком, нашедшим в СССР гнёзда краснокрылого чечевичника ($Rhodopechys\ sanguinea$), о чём имеется публикация. Хорошая университетская выучка и личные качества A.A. привели к тому, что все эти попутные наблюдения неизменно записывались и рано или поздно становились достоянием орнитологов — не только как устные сообщения (заслуживающие абсолютного доверия!), но и как публикации — сначала в соавторстве, а потом и самостоятельно. Таких орнитологических публикаций у Анны Андреевны не один десяток — не случайно она член Мензбировского орнитологического общества и Союза охраны птиц Казахстана. Особая изюминка в публикациях A.A. — использование в орнитологических работах своих обширных и глубоких ботанических знаний. Лучший пример тому — статьи о строительном материале гнёзд птиц.

За 52 года работы в Казахстане А.А. внесла большой вклад в изучение и сохранение уникальной природы нашей страны. Она опубликовала более 250 научных и около 200 научно-популярных статей в казахстанских и зарубежных изданиях. А.А. является автором более 20 научных и научно-популярных книг, атласов, определителей и методических пособий. Наиболее известные из них — «Растительный мир Казахстана», «Сокровища растительного мира Казахстана», «Цветковые растения юго-востока Казахстана, «Тюльпаны и другие луковичные растения Казахстана», а также коллективные книги «Заповедники и национальные парки Казахстана», «Цветы Казахстана», «Казахстан моя родина». Почти все книги переведены на казахский язык, а пять последних — ещё и на английский. Особо следует подчеркнуть, что большинство перечисленных книг (часть из которых иллюстрированы прекрасными фотографиями Олега Белялова), написаны и опубликованы уже в XXI веке. Это ещё одна из замечательных черт Анны Андреевны — с возрастом её научная активность только возрастает. Она попрежнему часто выезжает в поле, собирает материал, ведёт мониторинг особо редких и малоизученных растений — а попутно наблюдает и за птицами, тем более, что постоянный спутник в этих поездках — орнитолог О.В. Белялов.

Природу Казахстана Анна Андреевна пропагандирует и на международном уровне. Помимо участия в красочных фотоальбомах о природе Казахстана, она выезжала в научные командировки в страны ближнего и дальнего зарубежья. В Казахстане работала в составе совместных экспедиций с ботаниками и экологами из Швеции, Японии, Испании, Германии, США и других стран. А.А. ведёт большую общественную работу по сохранению природы. Ещё в 80-х гг. ХХ ст. она активно участвовала в работе секции охраняемых территорий Казахского общества охраны природы и Комиссии по заповедникам Президиума АН КазССР. Сейчас она избрана членом совета АСБК и членом Казахстанской комиссии МАБ «Человек и Биосфера.

Хочется пожелать Анне Андреевне здоровья на долгие годы, чтобы удалось воплотить в жизнь все задумки и планы (а их у неё много!) и вырастить своих семерых внуков и четырёх правнуков.

УДК 92: 598.2/9 (092)

Валерий Васильевич Хроков

(к 70-летию со дня рождения)

Исполнилось 70 лет со дня рождения Валерия Васильевича Хрокова — известного казахстанского орнитолога, кандидата биологических наук, ведущего специалиста по куликам Казахстана.

Родился Валерий Васильевич 26 марта 1946 г. в Усть-Каменогорске. Его отец — Василий Антонович Хроков — был инженером-строителем, мама — Софья Петровна Абакумовская — учительницей русского языка и литературы в средней школе. У Валерия, с детства мечтавшего стать натуралистом, уже

в начальных классах проявился живой интерес к птицам. На первых порах он ловил и содержал дома щеглов, снегирей и чечёток, а с 1960 г. начал уделять больше времени наблюдениям за ними в природе, вести орнитологический дневник и собирать коллекцию тушек птиц. В 1963 г. после окончания десятого класса, сдав экстерном экзамен за 11-й класс средней школы, он поступил на очное отделение естественно-географического факультета Усть-Каменогорского педагогического института.

Во время учёбы большую роль в его становлении как орнитолога сыграл научный наставник — доцент кафедры зоологии Иван Фёдорович Самусев, под влиянием которого сформировалось и основное направление профессиональных интересов — кулики, хотя увлечение авифаунистикой осталось на всю жизнь. В период учебнополевых практик, на летних и зимних каникулах им совершены многочисленные орнитологические экскурсии и поездки в горнотаёжную часть Западного Алтая, Калбинское нагорье, на озеро Зайсан, в поймы Чёрного Иртыша и Кулуджуна. Из всех этих мест в институт им были доставлены большие сборы птиц, составившие основу орнитологической коллекции Музей природы.

В годы учёбы Валерий Васильевич принимал участие в студенческих научных конференциях в Семипалатинске, Самарканде и Томске, а осенью 1965 г. был участником IV Всесоюзной орнитологической конференции в г. Алма-Ате, где ему посчастливилось слушать выступления корифеев советской орнитологии Г.П. Дементьева, Л.А. Портенко Н.А. Гладкова и И.А. Долгушина. В сборнике тезисов этой конференции появилась его первая научная публикация. В 1968 г. на кафедре зоологии, возглавляемой тогда профессором В.С. Бажановым, В.В. успешно защитил дипломную работу «Авифауна населённых пунктов района г. Усть-Каменогорска и влияние на неё антропогенных факторов», получившую высокую оценку. Эта работа объёмом 119 страниц была серьёзным фаунистическим исследованием и включала очерки о 183 видах, отмеченных автором, и о 27 видах, указанных для этих мест по литературным данным. Многие данные из неё впоследствии были использованы в последних томах сводки «Птицы Казахстана» (1970, 1972, 1974) и до сих пор цитируются в научных публикациях.

После окончания института в сентябре 1968 г. Валерий Васильевич был принят на работу старшим научным сотрудником Кургальджинского заповедника, где приступил к изучению куликов Тенгиз-Кургальджинских озёр. В 1972 г. он переехал с семьей в Алма-Ату, где начал работать в должности младшего научного сотрудника в лаборатории орнитологии Института зоологии АН КазССР. С этого времени начались его экспедиционные работы, связанные с изучением миграций птиц в различных регионах Казахстана — от Алаколя до Каспия. В апреле 1976 г. он поступил в очную аспирантуру Института зоологии, а в апреле 1979 г. в спецсовете Московского областного педагогического института им. Н.К.Крупской успешно защитил кандидатскую диссертацию по теме «Биология гнездящихся куликов Тенгиз-Кургальджинской впадины (Центральный Казахстан)». Последующее десятилетие работал старшим научным сотрудником в лаборатории орнитологии, принимая активное участие в полевых исследованиях.

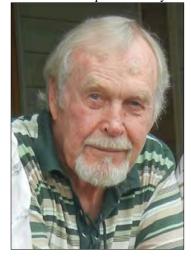
В числе его важнейших открытий можно назвать первые находки для территории Казахстана гнёзд турухтана и свиязи, новых видов — острохвостого песочника (Calidris acuminata) и песочника-красношейки (Calidris ruficollis), первое описание пухового птенца белохвостой пигалицы, а также целый ряд интересных фаунистических встреч, дополняющих литературные данные. Вместе с И.А. Кривицким, В.А. Жулием и Е.Н. Волковым написана фаунистическая сводка «Птицы Кургальджинского заповедника» (1985).

В 1988 г. В.В. Хроков был приглашён в Министерство экологии на должность начальника отдела особо охраняемых территорий, но в 1990 г. вновь вернулся в Институт зоологии, где в должности ведущего научного сотрудника лаборатории охраны диких животных проработал до августа 1995 г. В 1995-2000 гг. был инженером-зоологом и начальником сейсмического биостационара СОМЭ Института сейсмологии, где проводил стационарные наблюдения за животными — возможными предвестниками землетрясений. В 1997 г. Валерий Васильевич возглавил созданное им «Общество любителей птиц «Ремез»», а в 2002 г. в качестве одного из учредителей принимал участие в создании «Ассоциации сохранения биоразнообразия Казахстана» (АСБК), председателем которой избирался с 2004 по 2007 гг., а затем в 2010 и 2011 гг. АСБК вскоре стала одной из самых деятельных общественных организаций, выполнившей за счёт зарубежных грантов ряд природоохранных проектов, включая инвентаризацию ключевых орнитологических территорий республики, изучение и разработку планов управления по сохранению ряда глобально угрожаемых видов птиц.

В.В. Хроков – участник многих международных, всесоюзных и республиканских конгрессов, съездов, конференций и совещаний по орнитологии в Нидерландах, Кувейте, Англии, России, Украине, Татарстане, Туркменистане, Узбекистане и Казахстане (1965-2007 гг.), где он достойно представлял казахстанскую науку. Он опубликовал 280 научных работ и свыше 150 научно-популярных статей, очерков и заметок в газетах, журналах и сборниках. Написал популярные книги «Заповедник Кургальджино» (1981), «Совы» (1985), вместе с А.И. Кошелевым – «Птицы озёр и болот» (1989), а совместно с С.Л. Скляренко – «Краткий справочник по птицам Казахстана» (2009). Он один из постоянных авторов по редким видам куликов во всех изданиях Красной книги Казахстана.

Валерия Васильевича отличает активная жизненная позиция. Он не знает, что такое пенсионный покой и продолжает работать в проектах, участвовать в деятельности АСБК и Казахстанского отделения Мензбировского орнитологического общества. Под его редакцией с 2005 г. издаётся электронная газета «Ремез», в которой регулярно публикуется информация о деятельности Общества любителей птиц и важнейших орнитологических событиях.

От имени коллег-орнитологов, друзей и земляков от всей души поздравляю Валерия Васильевича со знаменательным юбилеем и желаю здоровья, благополучия, новых путешествий и открытий, долгих лет творческой активности.


Н.Н. Березовиков, Алматы УДК 92: 598.2/9 (092)

Владимир Григорьевич Березовский

(к 70-летию со дня рождения)

Исполнилось 70 лет казахстанскому орнитологу Владимиру Григорьевичу Березовскому.

Владимир Григорьевич родился в г. Алма-Ате 19 августа 1946 г. Детство его пришлось на трудные послевоенные годы. Редко кто в эти годы жил спокойной обеспеченной жизнью. Родители работали, а дети были предоставлены сами себе. В этом были свои плюсы и свои минусы. Страдала чаще всего от такой бесконтрольности учёба, зато у ребят с раннего детства формировалось ответственное, почти

взрослое отношение к жизни. Рослый и сильный Володя был лидером в своей дружной ватаге мальчишек. Было, наверное, много возможностей пойти по кривой дороге, связаться с дурной компанией, но было у него понимание многих вещей, которые не дают человеку сбиться с правильного пути. И одно из таких правил — «Умей защитить себя и тех, кто рядом» — привело его в секцию бокса. Успехи в спорте дали уверенность в себе, новых друзей и принесли в его жизнь много интересного. Спортивная карьера удалась на славу. Многочисленные победы в боях подтверждает множество различных призов, кубков и медалей.

Трудовую деятельность Володя начал с 16 лет — подсобным рабочим на киностудии «Казахфильм». После этого была служба в армии (1965-1968), во время которой он подружился с Эрнаром Ауэзовым, к тому времени уже закончившим университет. От него В.Г. узнал о работе орнитолога и возможности получить соответствующее образование. В 1967 г. он стал призёром первенства вооруженных сил СССР, получив бронзовую медаль в тяжёлом весе и звание мастера

спорта по боксу. Осенью того же года вместе с Эрнаром он заехал на Чокпак и своими глазами впервые увидел, чем занимаются в поле орнитологи.

В итоге в 1970 г. он поступил на биофак КазГУ. Студенческая жизнь захватила целиком и полностью. Здесь же нашёл и спутницу жизни — однокурсницу Людмилу. Брак и рождение первенца привели к тому, что с дневным обучением пришлось расстаться: уже летом 1973 г. В.Г. переводится на вечернее отделение университета и поступает на работу в лабораторию орнитологии Института зоологии АН КазССР. Его карьера орнитолога начинается с должности старшего лаборанта. Под руководством Э.И. Гаврилова он работает в Чокпакском и Иргизском орнитологических отрядах. Кольцевание птиц, освоение методик полевых работ и камеральной обработки материала — обычный повседневный труд.

После окончания в 1975 г. университета уже в мае 1976 г. В.Г. проходит по конкурсу на должность младшего научного сотрудника и продолжает заниматься изучением миграций птиц. В 1984 г. защищает диссертацию на тему «Сравнительная характеристика миграций водоплавающих и околоводных птиц на восточном побережье Аральского моря и в низовьях р. Тургай». В 1987 г. В.Г. переходит на работу в СОПС АН КазССР на должность Учёного секретаря Казахстанского комитета МАБ. Принимает активное участие в организации и проведении Х пленума по программе ЮНЕСКО, проходившего в Алма-Ате летом 1988 г. В этой должности он проработал в системе АН КазССР до января 1992 г., когда был назначен Генеральным директором представительства СП «Энер» в Казахстане, а в июне 1994 г. переведён на должность начальника Управления охотничьего хозяйства, где проработал до декабря 1995 г. Следующие годы работы были связаны с деятельностью различных ТОО, из которых в трудовой книжке отмечена лишь работа в ТОО Охотоустроительная проектно-изыскательская экспедиция «Охотпроект» в должности начальника охотустроительной партии. С 2011 г. В.Г. Березовский является ведущим научным сотрудником ТОО «Казэкопроект», занимаясь исследованиями, направленными на сохранение каспийского тюленя.

За плечами большая жизнь, прожитая в трудах, множество научных работ, опыт бывалого полевика, знание природных ресурсов Казахстана. Рядом любимая жена, взрослые сын и дочь, 8 внуков. Есть чему и кому радоваться. Хочется пожелать дорогому Владимиру Григорьевичу и в дальнейшем сохранять свой боевой дух, свойственный ему оптимизм, крепить здоровье и радовать всех близких и родных своим вниманием, заботой и любовью.

А.И. Левина, А.С. Левин Алматы УДК 92: 598.2/9 (092)

Николай Николаевич Березовиков

(к 60-летию со дня рождения)

В сентябре 2016 г. исполнилось 60 лет со дня рождения Николая Николаевича Березовикова — известного казахстанского орнитолога, кандидата биологических наук, старшего научного сотрудника отдела орнитологии и герпетологии Института зоологии МОН РК. Многим он также известен как автор увлекательных рассказов, очерков и зарисовок о природе, животном мире, в особенности — о птицах. Жизненный путь Николая Николаевича, его становление как ученого-натуралиста, являет собой этапы,

которые можно назвать классическими, закономерными, через которые прошли многие учёные-орнитологи: первые детские наблюдения за окружающей природой, в особенности за птицами, их ловля и содержание дома, юннатская работа и первые экспедиции в школьные годы, получение теоретических и практических биологических знаний в период обучения в ВУЗе и последующая самостоятельная научная работа.

Родился Николай Николаевич 15 сентября 1956 г. в с. Усть-Белое, в Алтайском крае, в семье сельских тружеников Николая Ивановича и Антонины Ефимовны Березовиковых. В 1967 г. Н.Н. с родителями переезжает на жительство в с. Берёзовка, Восточно-Казахстанской области. Уже тогда он твёрдо решил стать исследователем птиц, и это его решение ещё более укрепилось после знакомства в 1972 г. с казахстанским орнитологом Б.В. Щербаковым, с которым его связала дальнейшая многолетняя дружба и

сотрудничество. Окончив в 1974 г. среднюю школу, Николай Николаевич поступил на отделение географии и биологии факультета естествознания Усть-Каменогорского педагогического института. За годы обучения, наряду с получением знаний по биологическим и педагогическим дисциплинам, он активно участвовал в работе вузовского Малого Географического Общества, объединявшего увлечённых наукой студентов.

Под руководством преподавателей *Н.Н.* с сокурсниками регулярно выезжал в экспедиции, готовил отчеты и доклады, с которыми выступал на заседаниях Общества. Это позволило ему близко познакомиться с фауной птиц степных, пустынных и горных ландшафтов Алтая, овладеть различными методами их изучения, получить опыт опубликования результатов своих наблюдений. И ещё до получения вузовского диплома, по окончании 4-го курса в 1978 г., по приглашению Главного управления заповедников и охотничьего хозяйства, он начал работать в должности младшего научного сотрудника в недавно созданном Маркакольском заповеднике. По этой причине, подготовку своей дипломной работы и сдачу выпускных экзаменов в следующем, 1979 г. он выполнял что называется без отрыва от производства.

Изучение птиц в заповеднике и в Маркакольской впадине в целом Н.Н. Березовиков продолжал до 1986 г., затем он переехал в Алма-Ату и поступил на работу в Институт зоологии, где трудится вот уже 30 лет, сначала младшим, затем научным, а после защиты в 1992 г. кандидатской диссертации – старшим научным сотрудником. Сейчас уже трудно назвать регион Казахстана, в котором за эти годы Николай Николаевич не проводил бы орнитологические исследования, особенно продолжительные и многократные – на востоке и юго-востоке, а также на севере в центре и на западе республики. При этом, по собственному признанию, особой его любовью пользуются озёра и населяющие их птицы, изучению которых он всегда уделяет наибольшее внимание. Основные его интересы в области орнитологии – фаунистика и экология птиц. С не меньшим интересом Николай Николаевич занимается вопросами сохранения редких и находящихся под угрозой исчезновения видов, принимает участие в выполнении ряда национальных и международных проектов и программ по этой проблеме. В целом же его научный кругозор очень широк.

Список опубликованных им работ уже сейчас превышает 800 наименований. Прежде всего, это, конечно же, орнитологические работы. Среди них монографии: «Птицы Маркакольской котловины» (1989) и «Птицы пустыни Тау-Кумы» (1999, в соавторстве), ряд обзорных орнито-фаунистических статей, в основном по восточным регионам Казахстана, много работ и по другим орнитологическим аспектам. Имеются также десятки публикаций по пресмыкающимся, земноводным и млекопитающим. Перу Николая Николаевича принадлежат также и научно-популярные книги, такие как «Скопа» (1984), «Беркут» (1986) и «Аисты» (1987). Много времени и сил, особенно в последние годы, Н.Н. Березовиков отдает составлению библиографии публикаций по птицам Казахстана. В его планах на ближайшие годы

– подготовить и опубликовать полный библиографический справочник таких работ. Активно он занимается также историей орнитологии и изучением биографий исследователей казахстанской природы, опубликовал серию очерков о жизни и деятельности учёных-натуралистов первой половины XX века и наших современников.

Многое им сделано также для возрождения и сохранения научного наследия ушедших из жизни орнитологов-казахстанцев. Только за последние годы были опубликованы материалы И.А. Долгушина, М.Н. Корелова, М.А. Кузьминой, В.А. Хахлова, И.Ф. Самусева, В.А. Грачёва и других учёных, подготовленные Н.Н. Березовиковым по их дневниковым записям и архивным данным. Знакомясь с дневниками наших предшественников, Николай Николаевич не раз обнаруживал, что очень многие орнитологические материалы, собранные ими при жизни, по самым разным обстоятельствам оказались не обработанными и не опубликованными. Огромные пласты ценнейшей фаунистической информации до сих пор хранятся в архивах, постепенно безвозвратно теряясь. Николай Николаевич по мере сил и возможностей старается сделать их общедоступными.

Одновременно с научными исследованиями, с не меньшим интересом и энтузиазмом, он уже многие годы участвует в решении практических задач сохранения природы. Прежде всего, это развитие сети особо охраняемых территорий в Казахстане. Один из примеров этому — более чем 10-летния его работа по совместительству, в качестве заместителя директора по науке, в организованном в 1999 г. Алакольском заповеднике, результатом которой стало значительное увеличение площади заповедника, разработка и внедрение программы мониторинга компонентов живой среды, регулярное проведение количественных учетов животных работниками охранной службы. Также, Н.Н. участвовал в подготовке естественно-научных обоснований по расширению территорий Маркакольского и Барсакельмесского заповедников, по созданию Тарбагатайского национального парка, Акжайыкского и Балхашского природных резерватов.

Ещё об одной из сторон своего творчества Николай Николаевич обычно делится лишь с близкими по духу людьми. Посвящая большую часть времени науке, он, тем не менее, находит свободные часы для написания литературных заметок, очерков и рассказов о природе и её обитателях. Многие из них пишутся на привалах во время экспедиций и поездок. Как говорит сам юбиляр, пишет он больше для души, чтобы окончательно не зачерстветь в жизненной суете. Остаётся надеяться, что недалёк тот день, когда с его литературным творчеством познакомится и широкий круг читателей.

Березовиков Николай Николаевич принимает активное участие в жизни ставшего ему родным Института зоологии, входит в состав Учёного совета и ряда научных обществ. В 2012-2013 гг. он был заведующим лабораторией орнитологии и герпетологии. На протяжении многих лет является научным руководителем и консультантом ряда орнитологических тем в заповедниках и национальных парках, активно поддерживает связи с профессиональными орнитологами и любителями птиц во многих регионах Казахстана. За многолетнюю плодотворную работу имеет поощрения и награды от руководства Института и Министерства образования и науки, награждён медалью «10 лет независимости Республики Казахстан» (2001). Свой 60-летний юбилей Николай Николаевич встречает в расцвете творческих сил, он, как и всегда, полон планов, больших и малых идей. От души поздравляем его, желаем доброго здоровья, осуществления всех замыслов, ещё много интересных экспедиций, находок и открытий!

С.Н. Ерохов Санкт-Петербург

От редакции. Присоединяясь к поздравлениям всех перечисленных юбиляров, мы от всей души поздравляем ещё двух наших коллег, которым в 2016 г. исполнилось 80 лет:

Геннадия Михайловича Д**укравца** – ведущего ихтиолога Казахстана (см. Selevinia-2011);

Икара Фёдоровича **Бородихина** (см. Selevinia-2006, а также очерк об истории Чокпакского стационара в разделе «История зоологии» настоящего выпуска),

Желаем им крепкого здоровья и многих лет наполненной творчеством жизни.

ПОТЕРИ НАУКИ

УДК 92: 595.753 (092)

Иван Дмитриевич Митяев

(25.XI.1928 – 5.I.2016)

После краткосрочной тяжёлой болезни 5 января 2016 г. в Алматы скончался Иван Дмитриевич Митяев — великий труженик, основатель фундаментальной энтомологической школы в Казахстане, человек разносторонних дарований, необъятной эрудиции и неиссякаемого оптимизма! Это был очень светлый человек, проживший 87 лет интереснейшей и необычной жизни и оставивший огромный след не

только в зоологической науке, но и в сердцах многих людей, которым посчастливилось знать его лично. Несмотря на преклонный возраст и сложившуюся в последние годы неблагоприятную обстановку в Институте зоологии, в котором Иван Дмитриевич проработал более 60 лет, он до последних дней своей жизни активно занимался научной деятельностью, работая над рукописями статей с описаниями новых для науки видов и подготавливая обобщающую сводку по цикадовым Казахстана.

Иван Дмитриевич Митяев родился 25 ноября 1928 г. на Алтае в селе Ленинка Уланского района Восточно-Казахстанской области. После окончания в 1952 г. Казахского государственного университета имени С.М. Кирова (ныне КазНУ имени аль-Фараби) И.Д. поступил в аспирантуру при Институте зоологии АН КазССР, его научным руководителем стал профессор И.П. Мариковский, который поручил ему разработку энтомологической темы по фауне насекомых-вредителей тамарисков в юго-восточном Казахстане. В техническом отношении научная тема оказалась

достаточно сложной так как требовала практически постоянных наблюдений в природе на огромной территории в течение всех трёх полевых сезонов, отпущенных для подготовки диссертационной работы. Здесь с самого начала научной деятельности и проявились в полной мере человеческие и рабочие качества Ивана Дмитриевича — его оптимизм, гигантская работоспособность, огромное трудолюбие, высокая креативность и исследовательские способности. Во время работы он в одиночку сплавлялся на лодке по рекам Или и Каратал, собирая материал для своих исследований. Уложившись в отведенный трёхлетний срок аспирантуры, Иван Дмитриевич в 1955 г. успешно защитил кандидатскую диссертацию на тему "Насекомые-вредители тамарисков Балхаш-Алакольской впадины" и был принят на должность младшего научного сотрудника в лабораторию энтомологии, в которой он в дальнейшем проработал всю свою жизнь. Основные его научные исследования 1955-1961 гг. связаны с выявлением видового состава, исследованием биологии вредителей плодово-ягодных культур и лесных пород. В это время в соавторстве с Г.Я. Матесовой и Л.А. Юхневич им были опубликованы ряд крупных статей и монография "Насекомые и клещи — вредители плодово-ягодных культур Казахстана" (1962).

В феврале 1959 г. Иван Дмитриевич прошел по конкурсу на должность старшего научного сотрудника, а с 1961 г. основное его внимание было связано с изучением фауны, систематики, биологии, экологии, зоогеографии, генезиса и практического значения подотряда цикадовых Казахстана многочисленных растительноядных насекомых, населяющих разнообразные биоценозы от пустынь до высокогорий. В 1970 г. И.Д. Митяев блестяще защитил диссертацию на соискание степени доктора биологических наук по теме "Цикадовые южной части Казахстана". С 1972 по 1994 г. Иван Дмитриевич успешно руководил лабораторией энтомологии Института зоологии АН Казахстана, проработав более 22 лет в должности заведующего лабораторией. В это время лаборатория под его руководством стала активно разрабатывать фундаментальные направления в энтомологии – такие как фаунистика, систематика, зоогеография, эволюция и др., а также изучать особенности образа жизни различных систематических групп насекомых. Вместе с тем лаборатория из числа выпускников биологических специальностей ВУЗов стала подготавливать и своих молодых квалифицированных специалистовэнтомологов высшей научной квалификации, которые были остро необходимы для расширения тематики исследований насекомых Казахстана. В рамках выполнения пятилетних научных фундаментальных тем складывались тесные профессиональные и дружеские контакты с коллегами из других зоологических институтов, университетов и других научных учреждений как бывшего Советского Союза, так и зарубежных стран. Особенно близкие рабочие отношения сложились с лабораторией систематики насекомых Зоологического института АН СССР (ныне РАН, Санкт-Петербург), энтомологическими лабораториями Института зоологии и паразитологии Таджикистана (Душанбе), Института зоологии АН Украины (Киев) и Института зоологии Туркменистана (Ашхабад), в которые казахстанские энтомологи часто выезжали в командировки и из которых часто принимали гостей у себя в лаборатории. Инициатором и «душой» всех этих профессиональных и дружеских отношений был глава казахстанской энтомологии и заведующий лабораторией энтомологии Института зоологии АН КазССР Иван Дмитриевич Митяев, который сумел создать внутри и вокруг лаборатории особую дружескую, творческую и высокопрофессиональную среду. Иван Дмитриевич проявил себя отличным организатором и как председатель Казахстанского отделения Всесоюзного энтомологического общества, заседания которого традиционно проходили в библиотеке Института зоологии АН КазССР не менее одного раза в месяц. Это научное общество объединяло в своих рядах специалистов энтомологов из различных научных учреждений Казахстана – университетов, Среднеазиатского противочумного института, Института защиты растений и др. За время руководства лабораторией И.Д. Митяевым были подготовлены и выпущены 7 монографий, 10 энтомологических сборников и несколько научнопрактических рекомендаций по прикладной энтомологической тематике. Под его руководством лаборатория подготовила 3 докторов и 11 кандидатов биологических наук, а под его непосредственным научным руководством были подготовлены и успешно защищены 5 кандидатских диссертаций. В течение более 30 лет И.Д. Митяев организовывал и возглавлял лабораторные экспедиционные энтомологические исследования на всей территории Казахстана.

В дальнейшем с января 1995 г. Иван Дмитриевич становится ведущим научным сотрудником, позднее он продолжил плодотворно заниматься научной деятельностью уже в качестве главного научного сотрудника Института зоологии Казахстана и в этой должности проработал до января 2015 г., до своего вынужденного увольнения из института.

За время фаунистических и таксономических исследований цикадовых Казахстана И.Д. Митяев описал в качестве новых таксонов более 150 видов, 2 подрода и 2 рода цикадовых; благодаря его исследованиям фаунистический список цикадовых Казахстана вырос от 35 до 1100 видов. Им опубликовано более 110 работ по насекомым Казахстана, в том числе 8 монографий. Опубликованная в 2002 г. монография "Фауна, экология и зоогеография цикадовых (Homoptera, Cicadinea) Казахстана" (Тетис, Алматы) посвящена эколого-фаунистическому обзору всей известной к настоящему времени фауны цикадовых республики и является итогом полувековых исследований этой группы в нашем регионе. С 1994 г. И.Д. Митяев вместе с Р.В. Ященко и совместно со специалистами из Департамента сельского хозяйства США проводят исследования по биологическому контролю одного из видов тамариска (*Тамагіх гамозізѕіма*). Результаты этой работы опубликованы в отдельной монографии "Насекомые вредители тамариска в Юго-Восточном Казахстане" (2007). Эти работы были высоко оценены правительством США, которое отметило И.Д. Митяева специальным дипломом за полученные блестящие результаты исследований. Являясь главным редактором тома по беспозвоночным Красной книги Казахстана, Иван Дмитриевич вместе с коллегами подготовил 2 выпуска этого государственного издания в 1991 и в 2003 гг.

И.Д. Митяев отличался своим оптимизмом, демократичностью, доброжелательностью и простотой. Он был активным участником общественной жизни института, избирался секретарем комсомольской организации и дважды — председателем месткома, длительное время являлся председателем президиума Казахского отделения Всесоюзного энтомологического общества, многие годы был председателем редакционно-издательского совета при институте и председателем библиотечного совета. За успешные исследования, научно-организационную и общественную деятельность И.Д. Митяев награжден 5 медалями и 3 грамотами Президиума Национальной академии наук Казахстана.

Иван Дмитриевич Митяев оставил глубокий след в сердцах очень многих коллег, друзей и широкого круга других людей, которым повезло лично общаться с таким необычайно добрым и отзывчивым человеком. Он умел находить общий язык и выстраивать прекрасные отношения с самыми разными людьми, невзирая на разницу в возрасте, образовании и уровне общего развития. Огромные профессиональные знания и общая культурная эрудиция, а также неприхотливость в быту, простота, сердечная доброжелательность, справедливость и искренность в личностных отношениях притягивала к нему очень многих людей, которые наполнялись рядом с ним положительными эмоциями.

Мы будем всегда помнить нашего корифея, учителя и наставника – яркого представителя «золотого» поколения советских ученых.

Вверху – зал в Доме Культуры села Т. Рыскулов; вручение сертификата ЮНЕСКО; награждение ветеранов заповедника. Участники конференции слушают доклад о работе МАБ Казахстана в конференц-зале заповедника Аксу-Джабаглы.

Общее фото участников конференции на товарищеском ужине в с. Турар Рыскулов. Вечер. 20 мая 2016 г.

Экскурсия 21 мая к каньону реки Аксу. Слева вверху – Бугулутур и верховья Кши-Аксу. Справа вверху и средний кадр – вид на Сайрамский пик от каньона Аксу. Внизу – река Аксу и участники конференции.

Фото А.Ф. Ковшаря

УДК 92: 597.5 (092)

Антонина Ивановна Горюнова

(26.VI.2011 - 21.XII.2016)

В самом конце 2016 г. зоологическая наука понесла тяжёлую утрату: на 96 году ушла из жизни выдающийся ихтиолог, эволюционист и рыбовод Антонина Ивановна Горюнова, посвятившая 75 лет изучению рыбных ресурсов Казахстана и их использованию.

Антонина Ивановна родилась 12 (26) июня 1921 г. в семье фельдшера в поселке Всеволодо-Вильва Соликамского уезда Пермской губернии (Россия). В 1938 г. поступила на биологический факультет Пермского университета, где на кафедре ихтиологии и гидробиологии обучалась под руководством

выдающегося советского ихтиолога проф. М.И. Меньшикова. 11 сентября 1942 г. Антонина Ивановна начала работу в должности зоолога на Алматинской противочумной станции, занимаясь борьбой с грызунами-переносчиками опасных инфекций и оценкой эпидемиологической ситуации вдоль Китайской границы. Невзирая на тяжелейшие физические условия, зимой 1944 г. она одна (!) провела гидробиологическое и ихтиологическое обследование озера Зайсан. За самоотверженный труд в эти годы А.И. была награждена первой и самой дорогой для неё медалью «За доблестный труд в Великой Отечественной войне 1941-1945 гг.».

Не обращая внимания на большую ежедневную рутинную работу и сложные материально-бытовые условия, Антонина Ивановна настойчиво стремилась заниматься научными исследованиями и в 1944 г. поступила в аспирантуру при Казахском филиале Академии наук СССР. Тему исследований «Маринки реки Или» ей определил членкорреспондент АН СССР В.А. Догель. После защиты диссертации, с 1948 г. по 1959 г. А.И. работала в секторе водных животных Института

зоологии Академии наук Казахской ССР. В это же время вела работу по подготовке первых ихтиологов и гидробиологов на кафедре зоологии позвоночных КазГУ им. С.М. Кирова (ныне КазНУ им. Аль-Фараби). В этот период с небольшими экспедиционными отрядами, состоявшими всего из 2-5 человек, Антонина Ивановна обследовала дельту р. Или, озёра Алакольской системы, множество озёр Южного и Центрального Казахстана. Результаты её исследований вызвали большой интерес и получили высокую оценку ведущих мировых специалистов в области ихтиологии, генетики и рыбоводства — Г.В. Никольского, Н.Л. Гербильского, А.В. Шнитникова, А.С. Гинзсбург, К.А. Головинской, Б.И. Черфас.

В 1962 г. в Казахском научно-исследовательском институте рыбного хозяйства (КазНИИРХ) под руководством А.И. была организована рыбоводная группа, которая в 1969 г. выросла до лаборатории прудового рыбоводства. Заниматься приходилось всем: рыбохозяйственной оценкой естественных водоёмов, разведением дальневосточных растительноядных рыб, эмбриологией и гистологией рыб. Под руководством Антонины Ивановны сформировалась своя научная школа, и было защищено несколько кандидатских диссертаций (Л.В. Даришева, Н.С. Бабабев, М.В. Богданович).

Большая доброта и вера в людей у Антонины Ивановны сочетались с научной и человеческой принципиальностью. За умение быть на переднем крае научных исследований, за борьбу с ложными представлениями Антонина Ивановна нередко подвергалась критике со стороны закостенелого руководства и охочих до дешёвых разоблачений писак-журналистов, но не прекращала упорные поиски истины. Время доказало правоту идей и рекомендаций, полученных научной группой Антонины Ивановны: устойчивое ведение рыбного хозяйства на внутренних водоемах оказалось невозможным без постоянных высококвалифицированных исследований и соответствующих научных кадров. Вопросами искусственного разведения аборигенных видов рыб (щуки, жереха, маринки и других) сейчас активно занимаются далеко за пределами Казахстана.

Изучение тайн природы являлось сущностью Антонины Ивановны. Выйдя на пенсию в 1981 г., она отправилась на Камышлыбашский рыбопитомник, затем на озера Кустанайской области, Бухтарминское вдхр., Алакольские озера. Оценка экологического состояния водоёмов по нарушениям эмбрионального развития рыб, гематология рыб, сиговые рыбы в водоемах Казахстана, рыбоводство на геотермальных водах, аквакультура и, конечно же, серебряный и золотой караси – вот неполный список вопросов, изучением которых Антонина Ивановна занималась до последних дней своей жизни.

Прожита замечательная жизнь, наполненная глубоким смыслом и согревшая многих людей разных поколений. Нам остались опубликованные работы, открытия, наблюдения, идеи и светлая память о крупном учёном и удивительном человеке — Антонине Ивановне Горюновой.

Н.Ш. Мамилов, Алматы УДК 92: 598.2/9 (092)

Владимир Александрович Грачёв

(7.X.1926 - 4.III.2016)

4 марта 2016 г. на 90-м году скончался Владимир Александрович Грачев, известный казахстанский орнитолог и охотовед, кандидат биологических наук, посвятивший свою жизнь изучению животных.

Владимир Александрович родился 7 октября 1926 г. в с. Владимировка Горьковской (ныне Нижегородской) области в крестьянской семье. Отец, Александр Поликарпович, работал в колхозе

кузнецом, получил лишь начальное образование, но был интересующимся, читающим человеком, имел хорошую библиотеку, где была представлена художественная, географическая (сочинения А. Гумбольдта) и даже философская (А. Шопенгауэр) литература. Ещё он увлекался охотой (на уток, куликов, зайцев) и Володя с детских лет сопровождал отца в этих походах. Возникшая у него любовь к природе проявилась и во время учёбы в школе, где он был активным участником кружка юннатов.

Со школой пришлось расстаться после окончания 9-го класса в 1943 г. в связи с призывом на фронт. Владимир Александрович участвовал в боях 3-го Прибалтийского фронта под Ленинградом, был тяжело ранен и до конца войны находился на лечении в госпитале. Затем была учёба в офицерском парашютно-десантном училище и последующая служба в различных воинских частях в Калининской и Ярославской областях (1945-1949), в городах Алма-Ате (1949-1951) и Аральске (1951-1954). Страсть к охоте и общению с природой не исчезла и

при возможности *В.А.* ведёт наблюдения за птицами. Знакомство с ведущими казахстанскими зоологами И.А. Долгушиным, А.А. Слудским, М.Н. Кореловым, С.Н. Варшавским и другими помогает ему окончательно определиться с выбором профессии и в 1951 г., ещё во время службы в армии, *В.А.* поступает на заочное отделение естественного факультета Алма-Атинского педагогического института им. Абая (ныне КазНПУ им. Абая). В 1953-1954 гг. появляются его первые научные заметки о распространении серой куропатки и нахождении горного гуся в Алма-Атинской области, о первой в Казахстане находке короткоклювого зуйка на Аральском море, опубликованные в «Трудах Института зоологии АН КазССР», «Известиях АН КазССР» и журнале «Природа».

В 1954 г., из-за проблем с поездками на экзаменационные сессии, В.А. с трудом увольняется из армии, переезжает из Аральска в Алма-Атинскую область и устраивается на работу заведующим Балхашским опорным пунктом Всесоюзного научно-исследовательского института охотничьего промысла (ВНИИО, позднее ВНИИЖП, ВНИИОЗ). Биопункт располагался в низовьях р. Или, примерно в 80 км от районного центра с. Баканас. В те годы это был дикий, редко кем посещаемый край, с непролазными тростниковыми, тугайными зарослями и обилием птиц и зверей. В тематику плановых исследований входило изучение экологии ондатры, а также проведение учётов и прогнозирование численности пушных зверей. Однако, основным увлечением В.А. оставались птицы, изучением которых, наряду с выполнением основной темы по млекопитающим, он занимался здесь на протяжении 10 лет. Определение видовой принадлежности некоторых мелких птиц в полевых условиях, особенно на первых порах, было затруднительным, поэтому он занимался их коллекционированием. В сборе кладок яиц для коллекции активно участвовали сельские мальчишки во главе со старшим сыном Сашей. Кладки некоторых видов птиц (широкохвостки, тростниковой камышевки) были найдены в дельте р. Или впервые. Некоторыми интересными кладками В.А. обменивался с известными московскими зоологамиколлекционерами - Е.П. Спангенбергом, В.Е. Флинтом. Впоследствии коллекции были переданы в Институт зоологии и другие зоологические организации.

В 1957 г. Владимир Алекскандрович заканчивает институт и в 1959 г. поступает в заочную аспирантуру к И.А. Долгушину, продолжая изучение птиц Прибалхашья. По результатам обширных 10-летних исследований он впоследствии защищает кандидатскую диссертацию на тему: «Орнитофауна дельты реки Или» (1975). Опубликовал ряд работ по данному региону, основные из них следующие: «О линьке семиреченского фазана» (1960), «Зимняя орнитофауна дельты р. Или (1964), «Биология орлана-белохвоста в дельте Или» (1976), «Редкие и исчезающие птицы дельты р. Или» (1977), «Современное распространение и численность пеликанов на озере Балхаш» (1977).

На конференции 6 октября 2016 г., с. Басчи:

1 – открытие визит-центра Алтын-Эмельского национального парка;

2 – в визит-центре слева направо: Талгат Кертешев, заместитель представителя ПРООН в Казахстане Мунхтуя Алтангерел; создатель диорам визит-центра художник Ярослав Антонюк;
 3 – в зале заседаний; 4 - руководители дружественных ООПТ поздравляют юбиляров;
 5 – подарок от КазНУ им. Аль-Фараби;

6 — слева направо: покоритель Эвереста заслуженный мастер спорта Казбек Валиев, инспектор национального парка Кайрат Оспангалиев; фотограф Владислав Якушкин, редактор-составитель юбилейного выпуска трудов национального парка орнитолог Виктория Ковшарь;

Фото А.Ф. и В.А. Ковшарь

После передислоцирования Балхашского опорного пункта в 1964 г. на оз. Алаколь В.А. переезжает в с. Учарал и ведет исследования уже на Алакульском опорном пункте ВНИИОЗ в дельте р. Тентек по той же тематике, что и в дельте р. Или. Результаты проведенных в 1964-1978 гг. наблюдений за птицами и млекопитающими опубликованы в ряде статей и вошли частично в монографии «Птицы Казахстана» и «Млекопитающие Казахстана». В 1978-1987 гг. В.А. работал старшим научным сотрудником в Казахстанском отделении ВНИИОЗ в Алма-Ате, а после выхода в 1987 г. на пенсию трудился в кооперативе «Природа», Казохотрыболовсоюзе, занимался учётами животных и охотустроительными работами в различных областях Казахстана. С 1994 г. В.А. жил в Алтайском крае, где продолжал по мере сил совершать экскурсии в природу и сделал несколько интересных зоологических находок, опубликовав эти материалы (при содействии орнитолога Н.Н. Березовикова) в казахстанских и российских журналах и материалах конференций. Всего В.А. опубликовал около 80 работ, большинство из которых посвящено птипам.

Владимир Александрович постоянно поддерживал связи и дружеские контакты с более молодыми зоологами и охотоведами из различных организаций, являясь в чём-то для них примером или помогая квалифицированным советом. Моя судьба как младшего брата В.А. (разница в возрасте 13 лет) без его участия, возможно, сложилась бы иначе. После окончания средней школы в Нижегородской области у меня были колебания с выбором будущей профессии, но оказавшись вместе с ним в 1956 г. в дельте р. Или и окунувшись в этот «затерянный мир», я уже не сомневался. Выбор был сделан, и моя дальнейшая жизнь оказалась связанной с Институтом зоологии и изучением животных. Из многочисленной семьи В.А. по стопам отца пошли и некоторые из детей. Старший сын Александр, с детства сопровождавший отца во многих походах и помогавший ему в работе, получил среднетехническое образование, но проработал в Институте зоологии (в лабораториях орнитологии и териологии), вплоть до пенсии, опубликовал ряд интересных научных сообщений о птицах и зверях. Дочь Нина окончила факультет охотоведения Кировского сельскохозяйственного института по специальности «звероводство» и работала на Алакульской звероферме в Казахстане, затем на звероводческой ферме в Черкасской области на Украине. Внук Алексей окончил естественногеографический факультет Казахского национального педагогического университета им. Абая, затем магистратуру при том же университете и в настоящее время работает научным сотрудником в лаборатории териологии Института зоологии, возглавляет Совет молодых ученных, участвует в выполнении многих научных тем, активно собирает материал по экологии снежного барса, опубликовал около 20 работ.

В дополнение к воспоминаниям родственников, нам хочется привести слова о *В.А.* его более молодого коллеги Н.Н. Березовикова по случаю 75-летия юбиляра: «Владимир Александрович удивительно скромный, тактичный и доброжелательный человек. Он относится к редкой категории подвижников, самоотверженных и преданных тружеников, внёсших бесценный вклад в сокровищницу зоологической науки. Как и все зоологи старшего поколения, он отличный фаунист, неутомимый полевик, коллектор, отличающийся необыкновенной влюбленностью в свое дело, страстью к охоте и путешествиям. Коллекционные сборы и написанные красивым каллиграфическим почерком полевые дневники Владимира Александровича — образец аккуратности и скрупулезности. Он большой ценитель книг. Им собрана прекрасная библиотека биологической, географической и классической художественной литературы, богатству которой поражался всякий, кто её видел. *В.А.* замечательный собеседник и рассказчик. Его экспедиционные и охотничьи истории, рассказанные с колоритным волжским говором и юмором, передаются из поколения в поколение зоологов. *В.А.* отец большой семьи. Он воспитал трёх сыновей и двух дочерей, всем с детства привил любовь к природе и многие из них сейчас продолжают его дело».

Таким мягким, скромным, доброжелательным человеком и, в то же время, серьёзным ученым останется Владимир Александрович в памяти всех, кому приходилось встретиться с ним или работать.

Ю.А. Грачев, А.В. Грачев, А.А. Грачев Алматы

ХРОНИКА

Заповеднику Аксу-Джабаглы – 90 лет

Аксу-Жабаглинский заповедник — первый на территории Казахстана и всей Средней Азии. Он создан в июле 1926 г. по инициативе профессоров САГУ — Среднеазиатского (ныне Ташкентского) университета: гидробиолога А.Л. Бродского, ботаников М.Г. Попова, Е.П. Коровина и М.В. Культиасова, почвоведа Н.А. Димо и эколога Д.Н. Кашкарова. По составленному ими научному обоснованию, направленному в созданный в 1920 г. Туркестанский комитет по охране памятников старины, природы и

искусства (Туркомстарис, впоследствии Средазкомстарис), 12 октября 1925 г. принято «Определение особой комиссии ВЦИК по землеустройству Туркестанской республики», постановившей произвести землеустроительные работы по отводу территории заповедника в намеченных обследованием границах, а 14 июля 1926 г. Совет Народных Комиссаров Казахской АССР принял постановление об учреждении государственного заповедника Аксу-Жабаглы. Цель его организации — сохранить в неприкосновенном виде типичные ландшафты Западного Тянь-Шаня для изучения закономерностей развития природных комплексов этой горной страны. Так был создан первый в Средней Азии и Казахстане заповедник, положивший начало современной заповедной системе всего казахстанско-среднеазиатского региона.

Драматическая история первых 10 лет борьбы за существование этого совершенно нового для того временя природоохранного учреждения, возглавляемого его первым директором Борисом Петровичем Тризной, 60-летним пионером-энтузиастом охраны природы Южного Казахстана, подробно описана в сборнике научных трудов «Заповеднику Аксу-Джабаглы 50 лет» (Ковшарь, 1976). В этом очерке хорошо прослеживается борьба Бориса Петровича за сохранность самого природного эталона Западного Тянь-Шаня, а также за проведение научно-исследовательских работ в заповеднике.

За 90 лет своего существования заповедник Аксу-Джабаглы (который ни разу не был ликвидирован или преобразован, как многие заповедники в тяжёлые 50-е гг.) постоянно расширял свою территорию (с 29 тыс. га в 1926 г. до 128 тыс. га в 2016 г.). Благодаря непрерывной охране в течение столь длительного времени на его территории полностью восстановились естественные экосистемы, а результаты стационарных и экспедиционных исследований опубликованы в сотнях научных статей и монографий, часть этих публикаций составила 11 выпусков научных трудов заповедника (1948 – 2016 гг.). Последний выпуск, объёмом 31.2 п. л. (534 с.), вышел в мае 2016 г. – к юбилею заповедника.

Юбилейные торжества состоялись 20 мая 2016 г. в районном центре Тюлькубасского района Южно-Казахстанской области — селе Турар Рыскулов (бывшая Ванновка). Помимо представителей Госкомитета Лесного хозяйства и животного мира МСХ Республики Казахстан, областного и районного Акиматов, на них присутствовали руководители почти всех заповедников, национальных парков и других ООПТ Казахстана, руководители ПРООН в Казахстане, национальной комиссии РК по делам ЮНЕСКО и ИСЕСКО, представители научных учреждений (Институтов ботаники, географии, зоологии), вузов, общественных экологических и природоохранных организаций, гости из России, ветераны заповедника.

Научно-практическая конференция «От заповедника до биосферного резервата» открылась в 10 час приветственными словами от Министерства сельского хозяйства и Госкомлесхоза Республики Казахстан, а также представительства ПРООН в Казахстане. После этого Генеральный секретарь национальной комиссии РК по делам ЮНЕСКО и ИСЕСКО А.Е. Утегенова вручила заповеднику сертификат ЮНЕСКО о включении заповедника Аксу-Джабаглы в число биосферных резерватов. Затем состоялось торжественное награждение сотрудников и ветеранов заповедника (см. вклейку 3) памятными юбилейными медалями и небольшая концертная программа. После обеда заседание конференции продолжилось в с. Жабагылы (бывшая Новониколаевка). Здесь в конференц-зале центральной усадьбы заповедника были заслушаны доклады: «Аксу-Жабаглинский заповедник – кузница научных кадров» (А.Ф. Ковшарь), «Аксу-Жабаглинский заповедник как полигон для проведения научных экспедиций» (А.А. Иващенко), «Развитие программы МАБ в Казахстане» (Э.Р. Мальцева), «Специфика и перспективы научных исследований на особо охраняемых природных территориях» (Н.П. Огарь), «О создании визит-центра Аксу-Жабаглинского заповедника» (Я.М. Антонюк), «Происхождение яблока или вновь обретённый «райский сад» (Катрин Пекс, Франция), «Фитоклиматические исследования травяных фитоценозов в Аксу-Жабаглинском заповеднике» (Нестеренко В.П., Олонцева А.Х.), «Хищные и копытные млекопитающие Аксу-Жабаглинского заповедника и прилегающих территорий Западного Тянь-Шаня» (Ю.А. Грачёв).

На следующий день, 21 мая, участники конференции выехали на территорию заповедника в каньон реки Аксу для знакомства с флорой и фауной этого уникального природного объекта (см. вкл. 3).

Конференция к 20-летию Иле-Алатауского национального парка

В феврале 2016 г. исполнилось 20 лет со дня организации Иле-Алатауского государственного национального природного парка (ИА ГНПП), учрежденного Постановлением Правительства РК №228 от 22 февраля 1996 г. В конце 2015 г. был подготовлен и издан Первый выпуск научных Трудов (Астана, 2015), а также красочная фотокнига «Иле-Алатауский государственный национальный природный парк» (Алматы, 2015), текст в которой представлен на трех языках — казахском, русском и английском.

Запланированную научную конференцию решением коллектива перенесли на один из весенних месяцев, чтобы все её участники, особенно приезжие, смогли осуществить интересную и познавательную экскурсию по уникальной горной территории. По этой причине Республиканская научно-практическая конференция с Международным участием, посвященная знаменательной дате, состоялась 18-19 мая 2016 г.

На конференцию были приглашены ученые академических институтов и ВУЗов, коллеги из других национальных парков, заповедников и природных резерватов, а также представители курирующих ведомств, общественных организаций и ветераны ИА ГНПП, находящиеся на заслуженном отдыхе. Всего принимали участие более 100 человек, поэтому для проведения конференции был арендован зал в помещении Бизнес-Отеля г. Алматы.

Тематика конференции включала четыре основных раздела: 1. Леса и лесное хозяйство; 2. Животный мир; 3. Растительный мир; 4. Экологическое просвещение и туризм. По каждому из них были получены заявки на выступления с докладами, больше всего (19) — по первому («Леса и лесное хозяйство»»). По второму разделу заявлено 16 докладов, по третьему — 9, по четвертому — 8. Естественно, что в течение одного дня заслушать все представленные материалы не было возможности, поэтому Оргкомитет конференции отобрал только 16 из всех заявленных, по каждому разделу соответственно.

После торжественного открытия конференции и поздравлений гостей из различных уголков Казахстана, Генеральный директор ИА ГНПП М.С. Айнабеков выступил с докладом об итогах деятельности национального парка за 20-летний период и перспективах на ближайшее будущее. Большой интерес участников вызвал также доклад Председателя Казахстанского национального Комитета МАБ, д.б.н. Р.В. Ященко «Программа МАБ в Казахстане и перспективы включения Иле-Алатауского ГНПП в мировую сеть биосферных резерватов».

По тематике исследований лесов из четырех заслушанных докладов, кроме посвящённых территории ИАГНПП и Северного Тянь-Шаня, интересны были материалы по интродуцентам и соснякам рекреационного назначения Центрального Казахстана. Эти исследования проводятся в последние годы учеными Казахского научно-исследовательского института лесного хозяйства (г. Щучинск) совместно с российскими коллегами из университетов Томска, Омска, Екатеринбурга (доктора биологических и сельскохозяйственных наук М.А. Данченко, А.И. Григорьев, С.В. Залесов). По разделу «Растительный мир» на конференции было заслушано только два доклада, посвящённых мониторингу и сохранению генетических резерватов яблони Сиверса в Иле-Алатауском и Жонгар-Алатауском национальных парках (к.б.н. Р.М. Туреханова, С.Б. Игембаев). Очень разнообразную тематику отражали 6 докладов по разделу «Животный мир и проблемы его сохранения», среди которых особенно выделялись обзорные работы по млекопитающим ИАГНПП, ключевым орнитологическим территориям Северного Тянь-Шаня и аборигенной ихтиофауне Балхашского бассейна (Ю.А. Грачев, С.Л. Скляренко, Н.Ш. Мамилов).

Особую специфику деятельности национальных парков отражал заключительный раздел конференции «Экологическое просвещение и туризм», в рамках которого было заслушано четыре доклада, в том числе — начальника отдела туризма и экопросвещения А.М. Акаева «Туристско-рекреационная деятельность и экопросвещение в ИА ГНПП: результаты и перспективы развития», а также специалистов из Института географии МОН РК, Казахского Национального университета им. аль-Фараби и университета «Туран» (кандидаты географических наук В.В. Жданов, А.М. Артемьев и В.А. Кораблев).

В обсуждении докладов приняли участие директора национальных парков и природных резерватов (М.С. Айнабеков, К.О. Баядилов, Е.М. Ахметов, М.К. Давлетов) и представители научной общественности. Особенно детально и положительно высказался о работе научной конференции гость из России — проректор по научной работе Уральского государственного лесотехнического университета (г. Екатеринбург), доктор сельскохозяйственных наук, профессор С.В. Залесов. Он особо подчеркнул разнообразие научной тематики докладов, а также активное участие молодых специалистов (сотрудники ИА ГНПП, студенты и магистранты КазНУ им. Аль-Фараби).

Все представленные на конференцию 54 доклада были опубликованы в сборнике, вышедшем тиражом 250 экз. (Алматы, 2016). В целом в работе конференции (очное и заочное участие) приняли представители более 30 организаций и учреждений, пяти научно-исследовательских институтов, девяти высших учебных заведений, четырех заповедников, девяти национальных парков и двух природных резерватов, а также семи других научных и общественных организаций (ЦДЗ и ГИС «Терра», АСБК, Мензбировское орнитологическое общество, представительство ООН в Казахстане, Казахстанская туристическая ассоциация, Национальный Комитет МАБ, «Зелёное спасение»).

В визит-центре Иле Алатауского национального парка. Фото А.Ф. Ковшаря

На второй день конференции в посёлке Таусамалы, где расположено административное здание Иле-Алатауского национального парка, состоялось торжественное открытие визит-центра «Волшебный мир Алатау» (см. фото), а также экскурсия на территорию национального парка — в Большое Алматинское ущелье и центр по разведению хищных птиц «Сункар».

А.А. Иващенко, Иле-АлатаускийГНПП

К 20-летию национального парка «Алтын-Эмель»

В селе Басчи Кербулакского района Алматинской области 6 октября 2016 г. прошла республиканская научно-практическая конференция «Сохранение и устойчивое использование биоразнообразия пустынных экосистем Казахстана», посвящённая 20-летию ГНПП «Алтын-Эмель», созданного в апреле 1996 г. на правобережье реки Или. Конференция была организована Комитетом лесного хозяйства и животного мира МСХ РК и представительством ПРООН в Казахстане на средства проекта Правительства РК/ГЭФ/ПРООН «Повышение устойчивости системы охраняемых территорий в пустынных экосистемах через продвижение совместимых с биоразнообразием источников жизнеобеспечения внутри и вокруг охраняемых территорий».

До начала конференции были изданы: второй выпуск научных Трудов ГНПП «Алтын-Эмель» и фотоальбом «Алтын-Эмель» (составитель В.А. Ковшарь), а также «Атлас ключевых видов пустынь Казахстана: высшие растения и позвоночные животные» (В.А. Ковшарь и А.А. Иващенко). Эти три издания вместе с буклетами были розданы всем участникам конференции при регистрации.

В работе конференции приняли участие более 180 человек, включая руководство ПРООН (зам. представителя Мунхтуя Алтангерел, менеджер проектов по биоразнообразию Т. Кертешев); Комитета лесного хозяйства (главный эксперт по ООПТ М. Мужубаев); акимата Алматинской области (зам. акима С. Бескемпиров); директоров заповедников, национальных парков и иных ООПТ (более 20 человек); представителей вузов и НИИ (ботаники, географии, зоологии, почвоведения), общественных научных и природоохранных организаций — Казахстанской ассоциации сохранения биоразнообразия [АСБК], Мензбировского орнитологического общества, Союза охраны птиц Казахстана, МАЛ «Хан-Тенгри» и др.

До начала конференции состоялась церемония открытия визит-центра ГНПП «Алтын-Эмель», в залах которого, помимо обычной информации о национальном парке (в виде текстов, графиков, картосхем, фотографий, чучел птиц и других экспонатов) представлены оригинальные диорамы отдельных природных участков ГНПП, в их числе — знаменитый «Поющий бархан» (см. цветную вклейку 4).

После обзорного доклада «Современное состояние развития системы ООПТ в Казахстане» (М.М. Мужубаев) участники конференции заслушали ещё 6 докладов: «Функциональное зонирование как метод устойчивого управления территориями, на примере Балхашского района Алматинской области» (проф. Ф.Ж. Акиянова); «Вопросы проектирования и проблемы создания ООПТ в Казахстане» (член-корр. НАН РК Н.П. Огарь); «О необходимости совершенствования национальной политики и правовой базы в области сохранения биоразнообразия Казахстана» (Т.С. Кертешев); «О ходе результатов работы по созданию экологического коридора с использованием методов мониторинга» (С.Л. Скляренко); «Состояние популяций крупных млекопитающих Иле-Балхашской проектной территории и рекомендации по увеличению их численности» (К.Н. Плахов); «Птицы национального парка Алтын-Эмель» (О.В. Белялов). Кроме того, В.А. Ковшарь сделала краткую презентацию только что опубликованного «Атласа ключевых видов пустынной зоны Казахстана: высшие растения и позвоночные животные».

После окончания докладов и презентации фильма «Алтын-Эмель», снятого специально к юбилею, около часа продолжались торжественные поздравления национального парка в лице его директора К.О. Баядилова представителями ООПТ, науки и общественности с вручением подарков. Выступали директора заповедников Аксу-Джабаглинского, Барсакельмесского, Каратауского, Устюртского; национальных парков Иле-Алатауского, Баянаульского, «Бурабай», Жонгар-Алатауского; научных институтов — географии, зоологии, почвоведения; деканы биологического и географического факультетов КазНУ имени аль-Фараби; знаменитый покоритель Эвереста альпинист Казбек Валиев. После церемонии награждения сотрудников и победителей конкурсов по номинациям состоялась большая концертная программа (см. вклейку 4). Вечером состоялся товарищеский ужин, а на следующий день — экскурсия на знаменитый «Поющий бархан».

Во всех торжественных речах во время поздравлений многократно подчёркивалось богатство фауны национального парка, особенно крупных копытных — джейранов и куланов — и заслуга в этом работников национального парка. Однако ни слова не было сказано об истоках этого богатства и об истории создания самого парка. Один только его инициатор и первый директор Галым Турганбаевич Турганбаев в своём выступлении поведал о тех 5 годах (1991-1996), которые он потратил на создание этого парка. Даже в фильме история дана однобоко: диктор за кадром говорит, что парк создан на территории конесовхоза, и ни слова не сказано о второй составляющей его территории — Капчагайском заповедно-охотничьем хозяйстве, явившемся главным рефугиумом фауны для будущего национального парка. Поскольку эта предыстория не освещена и в научных трудах парка, я счёл своим долгом описать её — по крайней мере, 80-е годы и события, свидетелем и участником которых мне довелось быть (см. раздел «История зоологии»).

«Проблемы сохранения биоразнообразия Казахстана в природе и в коллекциях»

Международная научно-практическая конференция

В библиотеке КазНУ им. аль-Фараби 13-14 октября 2016 г. прошла Международная научнопрактическая конференция «Проблемы сохранения биоразнообразия Казахстана и сопредельных территорий в природе и в коллекциях», посвящённая 80-летию Биологического музея КазНУ имени аль-Фараби. Организаторами конференции стали Биологический музей и факультет биологии и биотехнологии, ТОО «Табиғат» и АСБК. К открытию были опубликованы материалы докладов, более 85 тезисов из 41 организации 5 стран — Казахстана, России, Украины, Узбекистана, Кыргызстана.

Участники конференции в холле библиотеки КазНУ им. аль-Фараби. 13 октября 2016 г.

В конференции приняли участие 93 человека, представляющие более 30 организаций в том числе: Институт эволюционной экологии НАН Украины (Киев, Украина), Биолого-почвенный институт НАН КР (Бишкек, Кыргызстан), ФГБОУ ВО «Уральский государственный лесотехнический университет» (Екатеринбург, Россия), Харьковский национальный педагогический университет имени Г.С. Сковороды (Харьков, Украина), Алтайский Университет (Барнаул, Россия), Евразийский университет им. Л.Н. Гумилева (Астана), Международный казахско-турецкий университет им. К.А. Ясауи (Туркестан,), Восточно-Казахстанский университет (Усть-Каменогорск), Павлодарский педагогический институт (Павлодар), Костанайский пединститут (Костанай), Национальный музей Казахстана (Астана), «Былым ордасы» Музей природы КН МОН РК (Алматы); Каратауский заповедник; национальные парки Казахстана – Жонгар-Алатауский, «Көлсай көлдері», Сайрам-Угамский, Иле-Алатауский и др.

На пленарном заседании заслушано два доклада: главного специалиста Биологического музея КазНУ К.С. Мусабекова и зав. музеем Биолого-почвенного института НАН КР С.Ж. Фёдоровой На 3 секционных заседаниях заслушали и обсудили 35 докладов. Были рассмотрены проблемы сохранения биоразнообразия в природе; сохранение и развитие коллекций; роль музеев в образовательном и воспитательном процессе; использование современных методик изучения биоразнообразия. На второй день участники ознакомились с экспозициями Биологического музея КазНУ, в том числе с новым экспонатом — лошадью Пржевальского. Здесь же, в музее, А.Ф. Ковшарь сделал презентацию «К 90-летию Эвальда Фёдоровича Родионова — создателя современной экспозиции биологического музея КазНУ им. аль-Фараби».

В рамках конференции прошло ещё два мероприятия. Заведующий таксидермической мастерской Б.П. Жуйко провёл мастер-класс по изготовлению чучел животных. В аудитории 35 М.А. Чирикова провела круглый стол «Проблемы сохранения редких и исчезающих животных на примере серого варана». Среди участников круглого стола были представители ПО Охотзоопром (Комитет лесного хозяйства и животного мира), Алматинского зоопарка, НПО «Wildlife Kazakhstan», Кызылординской противочумной станции, КазНУ им. Аль-Фараби, Жонгар-Алатауского ГНПП, Института зоологии Казахстана. На круглом столе были обсуждены основные меры, необходимые для сохранения редких и уязвимых видов животных.

Участники конференции отметили полезность и научную значимость проведенного мероприятия, способствующего развитию музейного дела. Особое внимание обратили на проблемы сохранения музейных коллекций и необходимости созданию условий хранения государственного музейного фонда.

К.С. Мусабеков, Чирикова М.А. Музей природы КазНУ, Институт зоологии

РЕЦЕНЗИИ

О науке языком науки, или Как не надо писать научные статьи

(открытое письмо авторам журнала «Растительность России») **Н.В. Матвеева**. Журнал «Растительность России», СПБ, 2016, № 28. С. 3-12.

Сама проблема «научного языка» возникла очень давно, когда учёные перешли с «мёртвого» латинского языка (на котором печатались все научные труды) на живые национальные языки. При этом, с одной стороны, доступ к содержанию научных текстов получили широкие слои населения, а с другой стороны, появились первые затруднения с обменом научной информацией между учёными разных национальностей. Бурное развитие научной терминологии постепенно вело к некоторой изоляции научного языка и внутри общего национального языка, к его отличиям от языка художественной литературы, образность и эмоциональность которого всё больше вытеснялись сухой лаконичностью и деловитостью изложения фактов или результатов экспериментов. К сожалению, этот объективный процесс в своём крайнем выражении привёл в конечном счёте к пренебрежительному отношению к богатству и красоте родного языка, ведь главное – это донести до коллег по профессии результаты своих исследований, изложить факты и выводы, сформулировать свои идеи. Постепенно язык научных работ стал приближаться к убогому канцелярско-бюрократическому чиновничьему стилю, который начал проникать не только в публицистику, но и в научную литературу, о чём стали бить тревогу ещё в середине ХХ ст. некоторые наши выдающиеся учёные (Калесник, 1958) и писатели (Чуковский, 1966); об этом же написал и 50 лет спустя известный ландшафтовед А.Г. Исаченко (2009). В наше время убогость словарного запаса и стиля в ряде научных публикаций усугубляется ещё халатностью и небрежностью авторов, не дающих себе труда перечитать написанное ими, чтобы устранить повторы, грамматические несоответствия и прочие недочёты.

Автор рецензируемой статьи Н.В. Матвеева – биолог, более 15 лет посвятившая редактированию и рецензированию ботанических рукописей, поступающих в авторитетный ботанический журнал, накопила и проанализировала огромный негативный материал, систематизация которого позволила ей высказать своё авторитетное мнение об истоках этих ошибок и путях их искоренения. Приведенные ею многочисленные примеры полностью подтверждаются моим собственным опытом 23-летнего редактирования нашего издания «Selevinia» (1993-2016), и я уверен, что многие наши авторы-зоологи могут увидеть и себя в этих примерах. Для пользы дела я постараюсь использовать как можно больше её примеров в виле питат.

Прежде всего автор статьи, ссылаясь на К.И. Чуковского (1966), даёт основную характеристику канцелярско-бюрократического чиновничьего стиля: «Этот канцелярско-бюрократический, чиновничий стиль почти полвека (в 1962 г.) назад Корней Чуковский (цит. по: 1966) в замечательной книге «Живой как жизнь» буквально припечатал убийственным названием «канцелярит» в главе, которая так и называлась «Канцелярит». Вот только некоторые его характеристики:

- сложный и запутанный строй фразы;
- обилие придаточных предложений и сложных словосочетаний (плеоназмы), которые можно заменить простыми словами;
- длинные цепи существительных в одном и том же (чаще всего в родительном) падеже;
- замена глаголов причастиями, деепричастиями;
- использование глаголов в пассивной форме и вытеснение активных оборотов пассивными, всегда более тяжелыми;
- расщепление сказуемого (это вот, когда ... нами было сделано столько-то описаний ... вместо ...мы сделали);
- предпочтение длинного слова короткому, книжного разговорному, сложного простому, штампа живому образу;
 - неоправданное использование иностранных слов (типа ветланды в наших текстах)» (Матвеева, 2016, с. 7).

Классифицируя авторские ошибки и недочёты, Н.В. Матвеева заметила, что они кочуют из одной рукописи в другую и присущи не какой-то группе авторов, а большинству из них. Сгруппировав их по степени сложности, она начинает их демонстрацию с наиболее простых.

«Повторы слов. Первое, что просто обязан сделать сам автор, это — снизить повторы одних и тех же слов и тем более словосочетаний, как в непосредственной близости, так и в целом по тексту. В эру компьютерных технологий это легко сделать, автоматически выделив (опция: Правка—Найти—Выделить ... в основном документе—Окрасить в цвет) во всем тексте слово, которое при чтении встретилось более 3 раз. Те авторы, которым досталось от моего бесчинства, знают, что я окрашиваю такие повторы в жёлтый цвет. Сразу становится видно, где таких слов излишне много и обычно не по делу (в докомпьютерную эпоху, а

иногда и сейчас при чтении версии на бумаге, использую фломастер). Когда-то редакторы издательства «Наука» рекомендовали — не более 3 повторов на одной странице (но, естественно, не в одном абзаце). В моей практике рекордом могу назвать пару случаев: 1) когда глагол является (без которого в большинстве случаев легко обойтись) на одной странице был повторен 26 раз, и 2) когда термин местоположение встретился (хотя и в большом тексте) 110 раз! Такой прием (выделение цветом) помогает видеть, где слово можно оставить, где достаточно просто убрать, а где необходимо заменить, подобрав синоним или близкий по смыслу термин. Если хоть на минуту об этом задуматься, то в подавляющем большинстве случаев избавиться от бесконечных повторов не просто необходимо, но и легко. Это позволит не только сохранить мысль или информацию, но и сделать их более доступными для потенциального читателя. Воспользуюсь случаем и приведу слова, которые обычно приходится убирать из-за их неоправданно частого применения: встречается, преобладает, составляет, характерный, формируется, является» (Матвеева, 2016, с. 3-4).

Должен сказать, что когда-то, приступая к изданию журнала «Selevinia», в его первом, пилотном выпуске 1993 г., в обращении к будущим авторам я обещал (скорее угрожал) им, что их тексты мы не будем редактировать (как говорил Пётр I — «чтобы глупость каждого была видна»), однако уже с первых номеров 1994 г. пришлось приступить к редактированию рукописей, потому что авторская небрежность не знала границ. И с тех пор мне уже более 20 лет приходится заниматься многим из того, о чём пишет автор рецензируемой статьи. Хотя должен признать, что у многих из наших наиболее активных авторов качество рукописей улучшалось с каждым номером журнала. Но вернёмся к рецензируемой статье Н.В. Матвеевой.

«Возвратная форма глаголов с окончаниями «-ся» и «-сь». Это – бич научных статей, в которых постоянна такая форма: что-то анализировалось, изучалось, использовалось, исследовалось, оценивалось, применялось, проводилось. Уйти от этого и вернуться к нормальному русскому языку просто: в большинстве случаев достаточно убрать окончание, заменив его на «и» (анализировали, изучали, использовали, исследовали), и почти всегда легко изменить (исследовано, проведено, оценено). Лучше [...] избегать такой формы, а если совсем не получается (в последнем слове такая форма легализована правилами), то где-то можно (придётся) оставить.

Страдательный залог. Не легче и с такими формами как: нами сделаны расчеты, нами было описано, нами были повторены, нами были отобраны, которые так легко заменить на: мы рассчитали, мы описали, мы повторили, мы отобрали.

Кстати о Мы, которые уместны и не вызовут никаких нареканий (и просто замечаний), если авторов несколько, но смотрятся немного странно (мы согласны, мы полагаем, мы имеем ... и т. д.), когда автор один. Так и напрашивается известное: «Мы, Николай II», но что дозволено императору ... Из-за опасения показаться нескромным (но это – ложная скромность) нежелание использовать естественное я, может быть, и понятно – хотя, чего ж уходить от личной ответственности, перекладывая её на плечи туманных мы, логичнее писать, как есть. Варианты: можно изменить предложение так, чтобы не начинать его с я; нормально избрать безличную форму типа ... проведен расчет, образцы отобраны. Я стараюсь избегать и формальнобюрократического «Автор выражает благодарность». Всегда можно сделать попытку искренне сказать спасибо тем, кто помог, не говоря о себе в третьем лице (боюсь, в этом мне не удастся вас убедить, дорогие будущие авторы, но вдруг!)» (Матвеева, 2016, с. 4)

Особо скажу о пресловутой роли (сниженной, возрастающей, понижающейся, заметной, высокой, низкой, существенной или несущественной, значительной или незначительной, малой, большой), которую играют разные вилы (да ещё не просто роль, а активную или высокую) или их группы, фракции флоры, сообщества и синтаксоны. Она становится выше или ниже, больше или меньше, сильно варьирует и т. д. Когда в 5 (!) строках написано «... высока роль кустарничков ..., мала роль тундр (в чем она?), сниженная роль кустарников ..., возрастающая роль кустарников ..., заметную роль играют...мхи..., снижена роль ... трав ...» диву даешься, как можно такое написать и не осознать, что это — полный абсурд. Или вот такая понижающаяся роль в предложении: ... в ценозах господствуют мхи, существенно ниже роль трав, ещё ниже — кустарников, кустарничков и лишайников. Если кто-то захочет сравнить свои данные с теми, которые приводит автор, как это удастся сделать? Никакую роль никто-ничто (виды, синтаксоны) не играют. Все, что авторы могут и пишут на эту тему, если про виды, то это — число видов (много/мало), их проективное покрытие, обилие или встречаемость (высокие/низкие); если про сообщества, синтаксоны, то они обычны, редки, постоянны, часты, занимают большие/малые площади, отсутствуют, присутствуют — причем тут *играют роль*? Не отстают от геоботаников и флористы, у которых роль постоянно играют то семейства (в одной фразе: ... высокая роль семейств ..., которые играют высокую роль в спектрах ... семейств), то группы и фракции, то виды. Причем, иногда под ролью подразумевается число видов, а иногда — их обилие в покрове, правда никак не оцененное. Если не приведены цифры, то вся эта мифическая *роль* вообще ничего не стоит; если приведены, то уже легко обойтись и без роли. Если ничего, кроме данных о числе видов или их обилии/покрытии, вы не сообщаете и не обсуждаете, в чем же эта самая роль заключается (что-то на что-то влияет или что-то изменяет, причем установленное в вашем исследовании, а не вообще), то это — просто проходная фраза, заполняющая пространство, когда сказать нечего. Потому, давайте оставим играть роли представителям других профессий!» (Матвеева, 2016,

Далее автор статьи подвергает столь же придирчивому анализу ещё ряд неоправданно часто встречающихся слов-паразитов, подробно останавливаясь, например, на слове «характер»: сообщества носят характер; граница носит характер; работы носят характер (попутно замечая, что носить характер нельзя, его можно только иметь). При этом приводит массу производных от этого слова (характерно, характерный, характеризует, характеристика) и образуемых ими штампов типа:

характеризуют наличие, характеризуется сложным строением, охарактеризованные и т.д. – вплоть до такого «шедевра» словесности как характер... характеристики. Совершенно справедливо автор выделяет в отдельную рубрику погрешностей ненужные словосочетания типа: более того, в то же время, в той или иной степени, в целом необходимо отметить, в этом отношении, имеет место (и даже имеет место быть), исходя из этого, можно считать, можно отметить, необходимо отметить, представляет из себя (правильнее – представляет собой), представляется возможным, при этом необходимо отметить, таким образом, тем не менее и др. Каждое их них не является грамматической ошибкой, но излишне частое, постоянное употребление их ухудшает текст, приближая его к настоящему канцеляриту. И автор справедливо призывает пишущую братию избегать частого употребления всех этих оборотов, пользуясь ими лишь изредка и только там, где они совершенно необходимы. Также необязательны и завершающие фразы Таким образом, Исходя из вышеизложенного (вот яркий пример: В связи с вышеизложенным представляется возможным...); вместо этого автор предлагает просто начинать итоги с красной строки.

Очень существенным для зоологов считаю замечание Н.В. Матвеевой о неоправданно частом употреблении слов *наблюдаются*, *отмечаются*, *отмечены* (я бы к ним добавил *встречаются*, *встречены*). Здесь нельзя не согласиться с её объяснением: «Если мы что-то наблюдаем или отмечаем (например, в таком несуразном тексте как ... *в них отмечено произраствание*, когда так легко написать, что где-то что-то растёт), значит, это явление в природе существует, и можно сразу описывать сам феномен (или процесс), а не сообщать, что мы это наблюдали. Ведь важно, что сообщества или виды есть, имеются или что-то в сообществах произошло и т. д., а не то, что эти факты или события были кем-то отмечены. Они существуют и без нашего наблюдения, а мы сообщаем о них после того, как увидели. Но к чему это пояснение? Ведь очевидно, что пока никто не видел, то никто и не знает, что там и как» (Матвеева, 2016, с. 5).

Столь же легко автор статьи показывает нелепость таких выражений как «виды достигают» (или ассоциация достигает оптимума), а такое распространённое клише как глагол «насчитывают» она предлагает вообще исключить из своего лексикона. Предложение справедливое, однако авторам в каждом конкретном случае придётся потрудиться, чтобы найти адекватную замену этому привычному клише. Так же верным кажется мне предложение отказаться от употребления модального глагола должен (должна, должны), поскольку «наши объекты ничего не должны ни своим собратьям, ни нам» (Матвеева, 2016, с. 6). Пристального внимания заслуживает замечание по поводу часто употребляющегося всуе прилагательного определённый: «Более неопределенного слова, чем определённый, когда после него не следует пояснение, в чем же состоит эта самая определённость, наверное, найти трудно» (там же, с. 5). Подобные замечания заставляют задуматься над смыслом написанного. И ещё одно существенное замечание по поводу лишних, ненужных в большинстве текстов слов: «Представители — просто какая-то бюрократическая напасть в биологических текстах (у всех и всегда). Почему не писать по сути — не представители рода, а виды, таксоны ... Как-то раз в одном абзаце из 13 строк это слово-паразит было написано 10 (десять!) раз. Да ещё там же они чего-то представляли, и по этому поводу у автора было представление. А когда представители еще и имеют долю (процент в каких-то спектрах) или того хуже обладают долей ... Это все дежурные слова, от которых по возможности (и без особого труда) надо избавляться, потому что они провоцируют канцелярско-чиновничий стиль там, где можно и необходимо говорить языком науки» (с. 6).

Следующая категория недостатков – неоправданное усложнение текста. Сюда относятся, прежде всего, выражения «как показано на таблице... (или на рисунке...) \mathbb{N}_{2} », бесконечные повторения фраз «проведенные нами исследования», «полученных нами в результате проведенных учётов» и т.д. Любую из этих фраз достаточно привести только раз – в самом начале повествования. Очень к месту автор напоминает нам крылатую (и очень справедливую!) фразу А.П. Чехова: «Краткость - сестра таланта» и столь же верное общеизвестное суждение, что о сложных вещах, хоть и трудно, но можно рассказать (написать) просто и тем более необходимо это делать о простых вещах, к которым относятся наши научные тексты – хоть по флоре, хоть по фауне. Не надо только вместо «растения завяли» писать «растения произвели завядание», а вместо «вид доминирует» - витиеватое «вид выступает доминантом»... Ведь главное требование к стилю научного текста – простота и ясность изложения, чтобы его понимали коллеги по профессии (а ещё лучше – чтобы текст был доступен и непрофессионалам, которых также может заинтересовать эта тема). Здесь автор очень кстати цитирует слова нашего крупного учёного-географа, первым обратившего внимание общественности на проблемы научного языка: «Через статью или книгу автор обращается к тысячам людей, которые судят о нём на основании не только того, что он пишет, но и как он пишет. От последнего во многом зависит и продвижение всякой научной идеи. Если о ней сказано понятно – для её шествия открываются прямые и широкие дороги... если коряво или заумно – она ползёт по извилистым тропинкам... Следовательно, автор должен быть кровно заинтересован и в полноценности содержания своего произведения, и в наилучшей форме его изложения» (Калесник, 1958, с. 265).

Бесценны, на мой взгляд, суждения автора статьи о терминологической точности, причём основаны они на примерах, в которых многие пишущие до сих пор путаются: «Количество (курсив мой – АК) уместно для объектов, которые нельзя сосчитать, поэтому про виды — только число видов, и никак не количество. Численность — это не просто число видов, но и какое-то их количественное воплощение в покрове. Слово разнообразие в последнее время используют, где и как попало. Если всё же относиться к нему как к термину, то понятие разнообразие (в том числе и видовое, а тем

более биоразнообразие) — шире, чем просто число видов, а уж применительно к пробной площадке вообще претенциозно. Диагноз синтаксона — не та ситуация, когда аналогичные вещи надо описывать каждый раз другими словами. В данном эпизоде надо чётко писать о числе видов (в сообществе, в ассоциации), что, кстати, очень облегчает текст, потому что так будет и проще, и короче» (Матвеева, 2016, с. 8).

Столь же интересна и важна мысль автора о том, что при перечислении латинских названий видов, если не оговорен какой-то особый порядок, лучше приводить их по алфавиту: «При любом другом решении должна просматриваться (а лучше быть объявлена) логика: по обилию, по жизненным формам, по ярусам и т. д., исходя из принципа, что логика нужна во всем. Хоть какая-то, кроме той, что автор об этом просто не думал» (Матвеева, 2016, с. 9).

В тексте статьи затронута также важная для нашего региона тема - «использование для природных феноменов местных названий, заимствованных из языков, говоров, наречий народов, проживающих на территории, где мы что-то изучаем. Такой пример: днища осущенных (спущенных) мелких термокарстовых озер на Европейском Севере и севере Западной Сибири — хасыреи, в Якутии — аласы. А если работу читают геоботаники, работающие в других зонах? Какие-то местные названия прочно вошли в научный обиход как устойчивые термины, например, северный термин для специфического бугристого рельефа мерзлотного происхождения — байджарахи (якутск.), которые только так и называют. У других, например, булгуннях (тоже мерэлотная форма рельефа) есть и научное название — гидролакколит, а в английском языке — pingo. Работающим в Арктике это пояснять не надо, но наш журнал Арктикой не ограничен. То же можно сказать и про местные названия разных природных объектов из других районов. Приходят на ум едома (элемент рельефа субарктических равнин Восточной Сибири небольшие возвышенности, содержащие погребённый ископаемый лёд, и она же в бассейне р. Печоры — лесная глушь) и арена (песчаные массивы речных террас в Ростовской обл., может и еще где-то) и образованные от нее аренные леса. Такие термины при первом упоминании нужно расшифровывать» (с. 10) Для нашего ежегодника, печатающего статьи с обширной территории Казахстана, Средней и Центральной Азии и прилежащих районов Сибири, подобные местные термины и названия могут быть на десятках языков, поэтому без расшифровки их читатели так и не узнают - о чём хотел сказать автор. Между тем наши авторы нередко грешат даже отсутствием расшифровки местных географических названий, известных только жителям одной какой-то области (Восточно-Казахстанской, Самаркандской или Ошской), не думая о том, что тексты их работ могут читать специалисты и в России, Белоруссии или странах Европы.

Следующая важная тема – сокращения слов и, в частности, аббревиатуры (образование из начальных частей или букв двух и более слов: в прошлом – не требующая расшифровки СССР, в настоящее время – широко распространённая ООПТ – особо охраняемая природная территория). Казалось бы, здесь всё ясно: имеются общепринятые сокращения, о которых можно узнать в словарях, все остальные необходимо расшифровывать при первом упоминании, а дальше пользоваться только ими. Однако и здесь автор статьи преподносит нам много полезной информации, в том числе и казусной. Оказывается: «В геоботанические работы потихоньку проникают аббревиатуры, внедряемые флористами. Когда в одном абзаце, а иногда и во фразе, написано $K\Phi$, $J\Phi$, $I\Phi$ да еще и вместе с $P\Phi$ или вот такая шарада — ... очень узкое $T\Pi$ в пределах СЗВЕ имеет CK, а ... $T\phi\Pi$ CK характеризуется несколько более значительной ролью ... по сравнению с их ролью в $T\phi\Pi$ VK(намеренно не расшифровываю), то даже если в начале статьи однажды сказано, что эти буквы обозначают, читателю трудно все время держать их в голове. Это мешает чтению и восприятию текста, зато позволяет авторам многократно (и далеко не всегда оправданно) повторять одни и те же аббревиатуры на небольшом пространстве, т. е. не слишком заботиться о построении предложений таким образом, чтобы не было частого повторения одних и тех же слов. Такого рода аббревиатуры удобны только самим авторам. Да и без сокращения двухсловных сочетаний, право, можно обойтись» (Матвеева, 2016, с. 10). Потихоньку стали появляться сокращения и в терминах: например, «д. в.» (диагностические виды) или «х. в.» (характерные виды), что на мой взгляд – тревожный симптом. Но даже о стандартных, общепринятых (хорошо нам известных) сокращениях типа г. (город), с. (село), оз. (озеро), р. (река), обл. (область), хр. (хребет), применяемым только перед именем собственным (г. Норильск, р. Или), я узнал из статьи Н.В. Матвеевой нечто новое для себя: они используются только в единственном числе, а при перечислении нескольких объектов надо писать их полностью во множественном числе: города, сёла, озёра, реки, области, хребты! Не менее важна информация о словах, которые не сокращаются: гора, сопка, хутор, становище, окрестности (а ведь сплошь и рядом мы урезаем последнее до «окр.»!).

Немало трудностей испытывает каждый сочинитель в стандартных словосочетаниях, одни из которых сокращаются (так далее = т.д., то есть = т.е., и другие = и др. тому подобное = т.п., многое другое = мн.др.), а другие пишутся только полностью: *так как, в том числе, более или менее, таким образом.* Ещё сложнее — такое правило: «Перед именем собственным слова остров, полуостров сокращаем соответственно до о-в (о-в Колгуев) и п-ов (п-ов Ямал), и не сокращаем, если речь идет о нескольких островах или полуостровах. Слово полуостров в постпозиции (после названия) пишем полностью: Кольский полуостров, Чукотский полуостров, Югорский полуостров» (Матвеева, 2016, с. 10). Не забыла автор статьи и про высоты над уровнем моря (очень актуально для нашего региона!), предлагая при первом упоминании делать сноску: «Здесь и далее все высоты над ур. м.», после чего при всех показателях абсолютной высоты можно писать просто м (без точки).

Важнейшая тема — *географические названия* — рассмотрена автором довольно демократично: она допускает даже использование устоявшихся разговорных названий: «В научных статьях уместны официальные названия, которые можно узнать из специализированных словарей и карт. За редким исключением возможно использование устоявшегося разговорного названия, отличающегося от словарного. Но тогда во всей статье придется придерживаться этого избранного наименования. Нельзя, чтобы на одной странице были *Крым, Крымский полуостров и полуостров Крым*, в крайнем случае, только 2 первые (третье название неверное). То же про *горы Крыма* и *Крымские горы* (правильно последнее). Хоть *Тиман* и короче, но все-таки это *Тиманский кряж* (!), а потому не *Сред. Тиман*, а средняя часть *Тиманского кряжа*. Хотя *Канадский*

архипелаг короче, но правильно Канадский арктический архипелаг. Не Каспий, а Каспийское море! И Ладогу, вместо Ладожского озера, не принимаем (а милое сердцу петербуржцев-ленинградцев слово *Ладога* оставляем для песни: «Эх. Ладога, родная Ладога ...»). Хотя какие-то устоявшие исключения можно (?) принять: например, крупные полуострова — Камчатка, Таймыр, Ямал обычно пишут так, а иногда с прибавлением п-ов. Тут главное — не варьировать в одной статье, тем более на одной странице (тогда и редактор не обратит внимание). Названия островов лучше всё же предварять сокращением о-в. Разве что в виде исключения не писать его для Гренландии [...] Несколько слов о сокращениях географических названий. Лучше всё же не сокращать первое слово в 2-словных названиях, особенно материков (Северная Америка, Южная Америка). И части материков тоже имеют официальные географические названия, например, Африка — материк, его части: Южная, Северная, Центральная, которые тоже надо писать с заглавной буквы и полностью. Да и в остальных случаях тоже, поскольку нет общепринятых правил для сокращений. Вот и появляется такой разнобой как Поляр. и Приполяр., Сред. и Средн. Урал. Всё есть в географических энциклопедиях, словарях и на картах, следуя которым надо всё писать полностью с заглавной буквы: Урал — Полярный, Приполярный, Северный, Средний, Южный» (Матвеева, 2016, с. 11). В условиях нашего региона этот вопрос осложнён массовыми переименованиями в ставших в 90-х гг. суверенными странах Средней Азии географических названий, утверждённых на уровнях правительств. А поскольку многие реки и горные хребты расположены на территориях нескольких государств, то соответственно разные участки их носят разные названия. Так, один и тот же хребет на территории Казахстана носит название Терскей Алатау, а его продолжение на территории Киргизии (Кыргызстана) – Тескей Ала-тоо. Некоторые географические названия изменились в корне. Так Джунгарский хребет в Казахстане теперь называется Жетысуский Алатау, а река Эмба – р. Жем. Читателю за пределами Казахстана будет невозможно понять – о каких местах идёт речь. По всей вероятности, теперь в текстах наших научных работ не обойтись без двойных географических названий – нового, современного и старого (в скобках), что касается и огромного числа переименованных населённых пунктов.

Возвращаясь к рецензируемой статье, хочу отметить ещё один полезный для читателей момент, названный автором скромно — *мелкие «блохи»*: «Хорошо бы, написав статью, прежде чем отправить её в редакцию, всё-таки внимательно прочитать «Правила для авторов», которые приведены в каждом номере журнала. И убедиться, что соблюдены хотя бы чисто технические требования (которые приходится «вылавливать» редакторам). Обычны и массовы такие мелкие погрешности:

- лишние пробелы или их отсутствие там, где надо (в инициалах после точки и вообще после любого знака препинания);
- в десятичных дробях ставим точки, не запятые;
- различаем дефис «-» и тире «—»; в страницах в списке литературы только тире «-» и то же тире при обозначении пределов (метров, градусов и т. д.): 2–3 м, а не 2-3 м, и не 2—3 м;
- если в десятичных дробях хотя бы одно значение дается после запятой в 2 знаках, то, увы, и второе тоже надо давать до второго знака нельзя 2.25-2.3, приходится 2.25-2.30, и то же 1.0-1.5, а не 1-1.5;
 - \bullet то же про метры и сантиметры: либо 30 см, либо 0.3 м т. е. надо избрать какую-то единую шкалу;
 - все цифры пишем цифрами, а не словами; слова можно оставить в редких исключениях» (Матвеева, 2016, с. 11).

В заключение не могу не отметить, с какой доброжелательностью заканчивает свою статью автор:

«По поводу возможных возражений по каким-то конкретным примерам, которые я здесь привела. Готова обсудить любые, и приму любой аргумент, кроме одного: «все так пишут». Увы, так-таки действительно пишут все. И даже говорят. Канцелярско-бюрократический стиль речи, заполнивший государственные каналы телевидения, которым грешат даже популярные телеведущие, чиновничий язык потока официальных бумаг, обрушивающийся на наши головы во всё увеличивающемся потоке распоряжений, требований, перешёл в повседневную практику в наших ответах на эти запросы, в отчеты о нашей деятельности. Этому надо сопротивляться, а для начала хотя бы осознать, что это уже проникает и в научные статьи, которые буквально заполнены штампами, не несущими ни мысли, ни информации. Как очень негативное явление отмечу возрастающее обилие формализованных фраз, слов и словосочетаний, пришедших в тексты научных статей из заявок и отчетов по разным грантам и программам, когда пишущие их авторы не слишком задумываются о реальном смысле используемых слов. Иногда видно, что практически не адаптированный к публикации в научном журнале текст отчета механически перенесён в статью, читать которую не только трудно, но отнимает громадное время у редакторов нашего журнала. То есть, не слишком утруждая себя работой с текстом, авторы надеются на редактирование (именно на редактирование, а не рецензирование узких профессионалов, которые делают замечания только по существу).

Могу с сожалением констатировать, что пишут сейчас почти все (за редчайшим исключением) плохо. И отнюдь не потому, что вот мол «не дано». Нет, совсем нет. А только потому, что после того, как статья написана, никто не берёт на себя труд отложить её котъ ненадолго, а потом посмотреть на неё глазами не только узкого профессионала (что, впрочем, тоже не лишнее, как минимум надо бы сверить все цифры в тексте и таблицах), но и с позиций простой грамматики, синтаксиса, хорошего литературного языка, уважения к будущему читателю, не обязательно ближайшего коллеги по профессии. Поработав в своё время с великолепными редакторами, я многому у них научилась, и свою работу со статьями стараюсь завершать именно так. Но когда современные редакторы, даже на последнем этапе, находят в них ляпы, пропуски, повторы, неточности, противоречия и т. д., то ничего, кроме благодарности с моей стороны, это не вызывает» (Матвеева, 2016, с. 12).

Как знакомо то, о чём здесь написано! И казённый язык всех этих заявок на гранты, порождающий в ответ ничуть не лучший язык наших отчётов, и стремление потом к публикации этих отчётов (которые ни в коей мере не предназначались для обнародования!), и спешка при сдаче рукописей в печать [50 лет назад ни один из нас не посылал в печать рукопись, пока кто-нибудь из более опытных коллег на прочитал её и не высказал своих замечаний; а сейчас рукопись чаще всего отправляют в журнал в тот же вечер или ночь, когда поставлена последняя точка в тексте, и коллеги видят текст уже опубликованной статьи...] – всё это написано так, как будто автор статьи работает в нашем институте... И последний этап – прохождение этих рукописей через издательство, где не осталось опытных редакторов, а сам издательский процесс упрощён до предела – описан в статье совершенно правильно: «Если редактор сделал замечания, есть 3 варианта здоровой на них реакции. Первый — принять правку, предложенную редактором. Второй —

согласиться, что да, не очень хорошо, но исправить по-своему. Третий — объяснить редактору, что он чего-то не понял; в таком случае можно оставить, как было, но лучше что-то изменить или привести соответствующее пояснение, поскольку на пустом месте у грамотного редактора замечания не возникают.

Увы, редакторов, каковыми в теперь уже столь отдаленное время были профессионалы ленинградского отделения издательства «Наука», не осталось. В подавляющем большинстве изданий эту ношу вынужденно взвалили на себя немногие энтузиасты, которым, во-первых, не хватает опыта и специализированных знаний; во-вторых, они делают это, как говорят, на общественных началах, затрачивая время, которое могли бы потратить на сочинение собственных статей. Исчезла, как явление, и работа корректоров, о которой многие никогда не слышали и не подозревают, в чем она заключалась (откройте любое доперестроечное научное издание на последней странице и посмотрите, сколько разных профессионалов отвечало за его публикацию)» (Матвеева, 2016, с. 12).

И это пишет редактор одного из центральных российских журналов, издающегося в Санкт-Петербурге, знаменитом своими традициями качества научных изданий! Что же говорить о других более мелких изданиях, выходящих в иных городах и весях или печатании книг прямо в типографиях, минуя всякие издательства? Здесь вся ответственность – на единственном редакторе, взвалившем на себя это бремя наравне со своей научной работой, на которую, в том числе и на подготовку собственных рукописей, остаётся тем меньше времени, чем больше тратится на редактирование чужих статей (учитывая, что они написаны кое-как, в надежде что редактор «поправит»). Об этом же пишет и автор статьи в самом её конце:

«Все высказанные в этом письме замечания относятся к форме подачи материалов, а не к сути работы. Но! — плохая первая может очень затруднить оценку хорошей второй. Бывает досадно видеть, что материал собран большой, обработан хорошо, а написано обо всём тем самым канцеляритом: что-то играет роль, что-то имеет значение, все носят характер, они же представляют из себя и выступают в роли, куда-то идут, иногда вторгаются, чего-то достигают, чего-то избегают, все являются представителями, которые ко всему адаптированы. Это, конечно, шутка, но очень близкая к реальности. Если после того, как в готовом (с вашей точки зрения) тексте вы высветите, а затем и избавитесь от всего этого мусора, в статье останутся только цифры — это повод задуматься. А потом и подумать, чем же содержательным заполнить образовавшееся пространство. Успехов!

Р. Ѕ. Надеюсь, мне удалось, чтобы это послание не было менторско-назидательным. Редактированием я занимаюсь по обстоятельствам. Мои профессиональные интересы те же, что и у вас. Чем лучше вы будете писать ваши статьи, тем больше времени у меня останется на свои. Ваш редактор, Н. В. Матвеева».

Могу сказать, что надежды автора оправдались — статья ни в коей мере не имеет назидательного оттенка. Мне кажется, что автору статьи удалось «достучаться» до тех, кто не задумывался над тем, как же плохо мы пишем и можно ли это изменить к лучшему. Более того, Н.В. Матвеева в своём тексте показала не только негатив и вскрыла его причины, но и дала целый ряд подсказок — как надо действовать, чтобы найти правильный путь к исправлению существующего положения. Я бы сравнил эту статью с глотком свежего воздуха, который поможет многим желающим улучшить качество своих научных текстов. Побольше бы таких искренних и конструктивных «открытых писем»! А ещё я очень советую всем нашим авторам найти в интернете вебсайт журнала «Растительность России» и прочитать статью Н.В. Матвеевой целиком.

Исаченко А.Г. 2009. О языке научных работ в области географии//Изв. РГО. Т. 141. Вып. 1. С. 3–8. **Калесник** С.В. 1958. О языке научных работ//Изв. ВГО. Т. 90. Вып. 3. С. 265–268. **Чуковский** К.И. 1966. Живой как жизнь//Собрание сочинений в 6 томах. Т. 3. С. 7–236.

А.Ф. Ковшарь

НОВЫЕ КНИГИ

Ақсу-Жабағылы қорығына 90 жыл. Труды Аксу-Жабаглинского государственного природного заповедника. Выпуск 11. Отв. редактор А.Ф. Ковшарь. Алматы, 2016. 536 с.: илл.

Этот выпуск Трудов Аксу-Жабаглинского государственного природного заповедника, 11-й по счёту, посвящён 90-летнему юбилею старейшего заповедника Казахстана и всего региона Средней Азии. В первом разделе помещены

статьи о роли заповедника в воспитании научных кадров и в организации научных исследований Западного Тянь-Шаня экспедициями научных учреждений Казахстана и стран СНГ, об истории создания Музея и Визит-центра заповедника, о съёмках научнопопулярных фильмов о заповеднике, а также научные статьи по геоморфологии его территории. Второй раздел посвящён описанию флоры и растительности заповедника, особенностям биологии наиболее полезных видов, в частности — предковых форм культурных растений. В третьем разделе помещены статьи о животном мире — птицах, млекопитающих, насекомых и др. Завершают выпуск дополнения к библиографии публикаций по материалам, собранным на территории заповедника. Всего в сборнике опубликованы 32 работы:

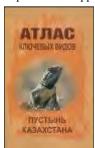
Ковшарь А.Ф. Аксу-Жабаглинский заповедник – кузница научных кадров (с. 7-36); Ковшарь А.Ф., Иващенко А.А., Чаликова Е.С. Аксу-Жабаглинский заповедник как полигон для проведения научных экспедиций (37-62); Огарь Н.П. Специфика и перспективы научных

исследований на особо охраняемых природных территориях (63-71); Иващенко А.А. История создания музея природы в Аксу-Жабаглинском заповеднике (72-83); Буланов С.А. Геоморфологические исследования Института географии АН СССР в Аксу-Жабаглинском заповеднике (84-93); Буланов С.А. Рельеф Аксу-Жабаглинского заповедника (94-107); Вагапов Р.Р., Джуманов С.Д. Ледники Майдантала (108-112); Иващенко А.А. В.А. Белялов и его фильмы об Аксу-Жабаглинском заповеднике (113-131); Чаликова Е.С., Вагапов Р.Р., Джуманов С.Д. Фотомониторинг в долине реки Аксай (132-137); Антонюк Я.М., Вудворд Д.Б. Опыт создания визит-центра в Аксу-Жабаглинском заповеднике (138-143); Адильбаев Ж.А., Сакауова Г.Б., Абдурасулова Л.С. Аспекты развития заповедного дела в Каратауском заповеднике (144-148); Рачковская Е. И. Растительный покров Аксу-Жабаглинского заповедника (149-170); Иващенко А.А. Эколого-фитоценотическая характеристика и биологические особенности живокости спутанной (Delphinium confusum M. Pop) в Аксу-Жабаглинском заповеднике (171-223); Кармышева Н.Х. О необходимости особой охраны уникальных растительных объектов Аксу-Жабаглинского заповедника и его ближайших окрестностей (224-230); Нестеренко В.П., Олонцева А.Х. Фитоклиматические исследования травяных фитоценозов в Аксу-Жабаглинском заповеднике (231-245); Олонцев И.Ю., Олонцева А.Х. Опыт применения комплексных фенологических показателей для оценки сезонной и многолетней динамики фитоценозов Аксу-Жабаглинского заповедника (246-250); Черемушкина В.А., Гусева А.А., Асташенков А.Ю., Джуманов С.Д. Особенности развития Scutellaria cordifrons Juz. в Аксу-Жабаглинском заповеднике (251 – 244); Пекс Катрин (Catherine Peix) Происхождение яблока или вновь обретённый «райский сад (Неоценимый вклад академика А.Д. Джангалиева в изучение Malus sieversii) (256-272); Олонцева А.Х. Потапенко Н.Х. Виды флоры Аксу-Жабаглинского заповедника в коллекции Ботанического сада ННГУ (Нижний Новгород) (273-282); Белоусова Л.К., Огарь Н.П., Верзилов М.А. Ареал груши Регеля в Казахстане (283-287); Жарықбасова К.С., Силыбаева К.С., Қыдырмолдина А.Ш., Хромов В.А. Джуманов С.Д., Полевик В.В. Аксу-Жабағлыаймағында таралған Регель күшәласының биологиялық ерекшеліктері және химиялық құрамы (288-295); Сакауова <u>Г.Б., Ермекба</u>ев К.А., Асатуллаев Н.Ш. О новых местонахождениях эндемичных растений в Каратау (296-302); Шульпин Л.М. (1905-1942) Ландшафтные зоны Аксу-Жабаглинского заповедника и их авифаунистическое население (303-413); А.Ф. Ковшарь, Е.С. Чаликова, В.Г. Колбинцев. Список птиц Аксу-Жабаглинского заповедника (на фоне авифауны северного макросклона и подгорной равнины Западного Тянь-Шаня) (414-436); Грачев Ю.А. Хищные и копытные млекопитающие Аксу-Жабаглинского заповедника и прилегающих хребтов Западного Тянь-Шаня (437-456); Грачев А.А., Грачев Ю.А. Наблюдения за млекопитающими в Западном Тянь-Шане с помощью фотоловушек (457-461); Менлібеков С.А. Ұзынқұйрықты қызыл суырлардың Ақсу-Жабағылы қорығының аумағында таралуы мен саныныңқазіргі кездегі жағлайы (462-465); Бескокотов Ю.А. Дополнение к каластру насекомых Аксу-Жабаглинского заповелника (466-499); Бескокотов Ю.А., Кендыбаева К.Е. К истории энтомологических исследований Аксу-Жабаглинского заповедника (500-508); Кендыбаева Қ.Е. Ақсу-Жабағылы қорығындағы омыртқасыздардың индикаторлы түрлерін бакылау (509-514); Дополнение к библиографии работ по изучению природы Аксу-Жабаглинского заповедника (2007-2015 гг.). Чаликова Е.С. (515-530).

Труды государственного национального природного парка «Алтын-Эмель». Выпуск 2. Составитель и отв. редактор В.А. Ковшарь. Алматы, 2016. 256 с.: илл.

Первый выпуск трудов ГНПП «Алтын-Эмель» вышел в 2006 г. и отразил лишь часть вопросов изучения и охраны национального парка. В настоящий, второй выпуск, посвящённый 20-летию ГНПП, вошли работы подводящие итоги 20-летних исследований. В сборнике содержатся статьи по геологии и палеонтологии национального парка, описание его почв, а также аннотированные списки отмеченных на его территории грибов, растений, насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Вся эта информация послужит фундаментом для дальнейших

исследований биоразнообразия национального парка «Алтын-Эмель». Данный сборник научных трудов создан в рамках проекта «Повышение устойчивости системы охраняемых территорий в пустынных экосистемах через



продвижение совместимых с биоразнообразием источников жизнеобеспечения внутри и вокруг охраняемых территорий», осуществляемого при поддержке ПРООН и финансируемого ГЭФ и Правительством РК. Содержание сборника: Нигматова С.А. Алтын-Эмель — геологический музей под открытым небом (с. 11-32); Пачикин К.М., Насыров Р.М., Соколов А.А. Почвы и почвенный покров Алтын-Эмельского национального парка (33-44); Рахимова Е.В., Нам Г.А., Ермекова Б.Д., Джетигенова У.К., Есенгулова Б.Ж., Асылбек А.М., Такиева Ж.М. К изучению микобиоты национального парка «Алтын-Эмель» и сопредельных территорий (45-62); Данилов М.П., Веселова П.В., Кудабаева Г.М. Список видов сосудистых растений флоры ГНПП «Алтын-Эмель» (63-118); Иващенко А.А. О некоторых редких растениях национального парка «Алтын-Эмель» и прилегающих территорий (119-130); Кадырбеков Р.Х., Казенас В.Л., Митяев И.Д., Джанокмен К.А., Кащеев В.А., Ященко Р.В., Чильдебаев М.К., Жданко А.Б., Тлеппаева А.М.,

Таранов Б.Т., Темрешев И.И., Колов С.В. Насекомые ГНПП «Алтын-Эмель» (131-162); Мамилов Н.Ш., Беккожаева Д.К., Салимбаева А.С. Ихтиофауна ГНПП «Алтын-Эмель» и прилежащих территорий (163-170); Чирикова М.А. Фаунистический обзор земноводных и пресмыкающихсягосударственного национального природного парка «Алтын-Эмель» (171-182); Белялов О.В. Аннотированный список птиц национального парка «Алтын-Эмель» (183-236); Ахметов Х.А., Байтанаев О.А. Аннотированный список млекопитающих ГНПП «Алтын-Эмель» (237-253).

Ковшарь В.А., Иващенко А.А. Атлас ключевых видов пустынь Казахстана: высшие растения и позвоночные животные. – Астана, 2016. 144 с.: илл. *Рисунки Ф.Ф. Карпова, фото В.А. Ковшарь*.

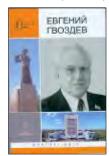
Аннотация: Атлас создан в рамках Проекта Правительства РК/ГЭФ/ПРООН «Повышение устойчивости системы охраняемых территорий в пустынных экосистемах через продвижение совместимых с биоразнообразием источников

жизнеобеспечения внутри и вокруг охраняемых территорий». В атлас внесены ключевые виды высших растений (54 вида) и позвоночных животных (пресмыкающиеся – 3, птицы – 44, звери – 25 видов). Ключевыми видами являются редкие и исчезающие, занесенные в Красные Книги различных уровней; ресурсные, охотничье-промысловые, а также средообразующие, т. е. те, которые нуждаются в специальном внимании со стороны людей и охране. Очерк о каждом из них снабжен рисунком, описанием внешнего вида, которое поможет отличить его в живой природе, краткой характеристикой образа жизни, а также информацией о распространении и статусе. Атлас создан в помощь людям, живущим и работающим на проектных территориях, а также в других регионах Казахстана, и является наглядным пособием для дальнейшего наблюдения за особо важными видами растений и животных. Предназначен для школьников, студентов, преподавателей, людей, занятых в охране природы и других заинтересованных лиц.

Кадастр генетического фонда Кыргызстана (колл. авт.). Том IV. Тип Chordata – Хордовые. Бишкек, 2015. 128 с.

Аннотация: «Кадастр генетического фонда Кыргызстана – официальный справочник по биоразнообразию, видовому составу и распространению живых организмов Кыргызской Республики, отражающий современное состояние

инвентаризации биоты. Том IV Кадастра генетического фонда Кыргызстана представляет собой аннотированный список представителей пяти классов позвоночных животных: класс Actinopterygii – лучепёрые рыбы, Amphibia – земноводные, Reptilia – пресмыкающиеся, Aves – птицы и Mammalia – млекопитающие. Этот список завершает инвентаризацию фауны Кыргызской Республики (списки представителей царства Животные Animalia представлены также в томах II и III). Всего в том IV Кадастра вошли 602 вида, принадлежащих к 325 родам из 119 семейств. В список также включены 14 видов, обитание которых в Кыргызстане сомнительно. 36 видовых названий исключены из списка фауны. Для каждого таксона даны: основная синонимика, наиболее распространённые названия на русском, киргизском и английском языках, а для каждого вида (подвида) – сведения по современному распространению на территории Кыргызстана и степени эндемичности, а также библиография. Справочник


иллюстрирован 74 цветными фотографиями в приложении. Для специалистов экологов, зоологов, работников в области охраны природы и сферы образования».

- ©Биолого-почвенный институт Национальной Академии наук Кыргызской Республики, 2015.
- ©Государственное агентство охраны окружающей среды и лесного хозяйства при Правительстве КР, 2015.

Евгений Гвоздев (колл. авторов). Под ред. Г.М. Мутанова. Серия «Өнегелі өмір», выпуск 84. [сост.: *М.В. Виноградова, Н.В. Ниретина, С.Т. Нуртазин, А.Ф. Ковшарь*]. Алматы: Қазақ университеті, 2016. 313 с.: илл.

Выпуск 84-й серии «Өнегелі өмір» (о выдающихся деятелях науки и образования) посвящён жизни и деятельности одного из классиков паразитологии в Казахстане, действительного члена Национальной Академии наук Республики Казахстан, много лет (1971-1989) возглавлявшего Институт зоологии АН КазССР и работавшего первым вицепрезидентом Академии наук Казахстана (1976-1989), заслуженного деятеля наука Казахской ССР, почётного члена ряда иностранных научных обществ, доктора биологических наук, профессора Евгения Васильевича Гвоздева (1918-2012). Краткий очерк жизни и творчества учёного (с. 12-17), написанный его учениками, докторами биологических наук Е.Г. Сидоровым и Д.М. Жатканбаевой, значительно дополняют и конкретизируют ещё 5 статей: М.Д. Зверев.

От юнната до учёного (с. 192-207); *С. Воробьёва*. Выбор цели (208-212); *Е. Брусиловская*. Мир открытий академика Гвоздева (213-222) и Эпоха академика Гвоздева (223-226); *С.Т. Нуртазин*. Судьба, созвучная эпохе (227-237).

Завершает книгу большой раздел «Воспоминания о Е.В. Гвоздеве» (238-295), в котором его близкие, ученики и последователи, а также хорошо знавшие Е.В. многолетние сослуживцы дополняют портрет этого крупного учёного и замечательного человека. Особую ценность представляет центральный раздел — «Избранные труды» (64-191), в котором наряду с публиковавшимися ранее научными обзорами и статьями Е.В. Гвоздева («Развитие биологической науки в Казахстане в ХХ веке», «Международное научное сотрудничество Института зоологии АН КазССР», «История Института зоологии АН КазССР» и др.) опубликованы и его личные воспоминания: «О себе», «Семья Гвоздевых», «Жизнь в Новосибирске», «Великая Отечественная война», «Учёба в КазГУ», «О моих учителях и коллегах» и некоторые другие, дающие более полное представление об их авторе. Книга богато иллюстрирована фотографиями автора и его коллег, а также фотокопиями документов. Эта книга — хороший памятник всеми нами уважаемому и любимому Евгению Васильевичу.

Кстати, среди 84 героев этой серии он – первый из зоологов и всего пятый биолог (после М.Х. Шигаевой, С.Б. Балмуханова, Т.Б. Дарканбаева и М.А. Айтхожина).

«Ветер странствий. Казахстан» [Охота•Рыбалка•Альпинизм•Туризм]. 2016. № 1 (56) - № 6 (61). 600 с.: илл.

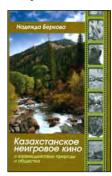
Этот популярный иллюстрированный журнал, выходящий в Казахстане с 2006 г. по 6 выпусков в год (каждый выпуск ровно 100 страниц), и в 2016 г. часто печатал материалы о животных и проблемах охраны животного мира, в частности - очерки и статьи о заповедниках, национальных парках и других особо охраняемых природных территориях (ООПТ). Наиболее интересны для зоолога, на наш взгляд, следующие публикации этого года. В № 1 (с. 60-65) «Талантливые» виды – материалы доклада В.М. Галушина с соавт. «Адаптационный потенциал птиц и современные условия его реализации» на XIV Международной орнитологической конференции Северной Евразии (Алматы, август 2015), иллюстрированного фотоматериалами казахстанских авторов на эту же тему. В этом же номере (с. 70-75) опубликован фоторепортаж о птицах «Хранитель» Малика Жусупбекова, орнитолога-любителя из Джамбулской области. В № 2 - очерк Алексея Мальченко «Соколиная охота - часть культуры» (с. 14-18); Риты Климовой «Уязвимые пустыни» (с. 54-56); Юрия Грачёва и Сырымгуль Зариповой «Экзотический зверь Устюрта» (о медоеде, с. 58-59); Фёдора Карпова «Самый обыкновенный» (о скворцах в Казахстане, с. 92-95). В № 3 – очерк Насихата Джумагулова «Сокровища Сырдарьи» (с. 50-53, о Сырдарья-Туркестанском региональном природном парке); А.Ф. Ковшаря «За журавлями – в Даурию и Северную Монголию» (с. 60-67); Фёдора Карпова «Птицы на палубе» (с. 68-71, о птицах над Каспием); Константина Прокопова «Кабарга... что в имени её?» (с. 72-75); Максима Левитина «Полуостров Туп-Караган» (76-80). В № 4 – очерк Фёдора Карпова «Объекты страсти» (с. 12-13, об охоте и её объектах); Максима Левитина «Прибалхашье – сложный живой организм» (с. 26-29); Марка Пестова «Здравствуй, варан» (с. 60-67); Константина Прокопова «Охота за мышовками» (с. 68-74); А.Ф. Ковшаря «Пустыня Гоби глазами орнитолога» (с. 76-85). В № 5 - Натальи Боровой «Споры о дикой природе или Как сделать охоту прибыльной отраслью» (с. 14-17); Расмуса Овесена «Погружаемся, снимаем, изучаем» (с. 30-33, о хищных рыбах); Фёдора Карпова «В краю разноцветных цапель» (с. 68-73); Максима Левитина «Только кедры, озёра и медведи» (с. 74-79): А.Ф. Ковшаря «По заповедным местам Байкала» (с. 80-87). В № 6 – очерк Вадима Виноградова «Его величество Фазан» (с. 12-16); Тимура Ковалёва «Задесяточка» (с. 28-33, о трофейной рыбалке в Прииртышье); Дианы Виноградовой и Константина Маскаева «Как примерить «Золотое седло» (с. 48-51, к 20-летнему юбилею национального парка «Алтын-Эмель»); Елены Лямкиной «Заповедная летопись» (с. 52-56).

Кроме того, в этих номерах журнала немало публикаций по истории альпинизма, туризма и просто по истории края, в том числе — замечательный очерк *Владимира Проскурина* «Манят вёрсты атамана» (№ 6, с. 58-62) — к 170-летию бывшего военного губернатора и наказного атамана Семиречья, покорителя Памира генерала М.Е. Ионова.

Современные проблемы сохранения редких, исчезающих и малоизученных животных Узбекистана. Материалы Республиканской научно-практической конференции 9-10 сентября 2016 года. Ташкент, 2016. 178 с.

В книге опубликованы тезисы 53 докладов, сгруппированных в 4 раздела: проблемные вопросы охраны природы и роль охраняемых природных территорий; угрозы видам и их местообитаниям; уточнение современного природоохранного статуса редких видов животных и усовершенствование Красной книги Республики Узбекистан; разведение, содержание и реинтродукция. Перечислю названия наиболее общих и наиболее интересных, с моей точки зрения, докладов: Редкие и исчезающие виды рукокрылых Средней Азии и проблемы их охраны

(Т.К. Хабилов); К вопросу о терминах в охране природы (Е.А. Черногаев); Современное состояние устюртской популяции сайгака в Узбекистане по данным мониторинга 2012-2016 гг. (Е.А. Быкова, А.В. Есипов, Д.Е. Головцов); Редкие птицы системы озёр Судочье и их охрана (М.А. Жуманов, Я.И. Аметов, И.М. Арепбаев, С. Тлеумуратов);



Категории угроз для птиц в среднеазиатском регионе и их применение в национальных Красных книгах (Е.Н. Лановенко); Дрофа-красотка в Голодной степи (С.Э. Фундукчиев); Современные встречи поперечнополосатого волкозуба (Lycodon striatus bicolor, Nikolsky, 1903) на территории Республики Узбекистан (Т.В. Абдураупов, Д.А. Нуриджанов, Б.Ш. Мухаммадиев, С.О. Чеботарёв); О жёлтой цапле Ardeola ralloides в Южном Приаралье (Т.В. Абдураупов, В.О. Сударев, Ф.К. Жумаев); Снежный барс в Гиссарском государственном заповеднике (Б. Аромов); Среднеазиатская выдра в Гиссарском заповеднике (Т.Б. Аромов); Динамика численности зарафшанского фазана в Зарафшанском заповеднике (Л.Э. Белялова, С.Э. Фундукчиев); Некоторые редкие фаунистические находки млекопитающих на территории Узбекистана (М.А. Грицына, Д.А. Нуриджанов, Н.В. Мармазинская, Т.В. Абдураупов, В.А. Солдатов); Обзор встреч редких видов позвоночных на территории Северо-Западного Кызылкума (М.А. Грицына, А.В. Есипов, Т.В. Абдураупов, В.А. Солдатов);

О распространении афганского литоринха (Lythorhynchus ridgewayi) в Узбекистане (Ф.К. Жумаев, Э.Ш. Нерназаров); Новые данные по распространению серого варана (Varanus griseus) на северо-восточной границе ареала в Казахстане (Ю.А. Зима); Современное состояние популяции туркестанского белого аиста Ciconia ciconia asiatica в Узбекистане (Р.Д. Кашкаров, А.А. Атаходжаев, В.О. Сударев, Л.Э. Белялова, С.Э. Фундукчиев, Ж.М. Гадаев); О современной численности мраморного чирка, белоглазого нырка, савки и малого баклана в Узбекистане (Е.Н. Лановенко, Э. Шерназаров, А.К. Филатов); Современное состояние популяции бухарского оленя (Cervus elaphus bactrianus L., 1900) Нижне-Амударьинского государственного биосферного резервата (С.М. Мамбетуллаева, З.О. Бекбергенова, А.М. Туреев); Полосатая гиена, переднеазиатский леопард и азиатский гепард в Узбекистане и сопредельных странах, возможности сохранение (Н. Мармазинская); Редкие копытные Центрального, Южного Устюрта и Сарыкамышской впадины: современное состояние (Н. Мармазинская, М. Грицына, М. Митропольский, Р. Мурзаханов, Й. Вундерлих); Новые данные по распространению медоеда на плато Устюрт и в Сарыкамышской впадине (*Н. Мармазинская*, *М. Грицына*); Редкие хищные млекопитающие Самаркандской области (*Н. Мармазинская*, *Л.Б. Мардонова*); Хищные млекопитающие – кандидаты для включения в Красную книгу Узбекистана (Ю.О. Митропольская, Р.Д. Кашкаров); Современное состояние популяций эндемичных видов рептилий в Ферганской долине и возможные меры по их сохранению (Р.А. Назаров, Д.А. Нуриджанов, Э.В. Вашетко); Данные по состоянию популяции круглоголовки Молчанова Phrynocephalus moltschanovi (Nikolsky, 1913) в Узбекистане (Д.А. Нуриджанов); Новые сведения о состоянии среднеазиатского серого варана Varanus griseus caspius (Eichwald, 1831) в Узбекистане (Д.А. Нуриджанов, М.А. Чирикова, М.В. Пестов, Ю.А. Зима); К распространению гиены в Восточном Туркменистане (Э.А. Рустамов, Е. Агрызков, Б. Таганов); О статусе медведя, леопарда и рыси в туркменской части Койтендага (Э.А. Рустамов, Ш. Менглиев); Встреча белолобых гусей Anser albifrons и пискулек Anser erythropus на водохранилище Талимарджан (А.Г. Тен, В.А. Солдатов, М.Г. Митропольский); Изменение численности обыкновенной горлицы в Узбекистане (С.Э. Фундукчиев); Динамика численности белого аиста на юго-западе Узбекистана (С.Э. Фундукчиев, Л.Э. Белялова); Некоторые встречи редких видов птиц в Ферганской долине (В.Е. Юсупов).

Беркова Н.Н. Казахстанское неигровое кино о взаимодействии природы и общества. Учебное пособие. Казахская национальная академия искусств им. Т. Жургенова. Алматы, 2016. 156 с.

Содержание: Вводная лекция. Экологический кризис XX и XXI веков (с. 14-21). Лекция 1. Становление и развитие неигрового кино о взаимодействии природы и общества в Европе и США (с. 22-38). Лекция 2. Становление и

развитие неигрового кино о взаимодействии природы и общества в советский и постсоветский периоды (с. 339-54). Лекция 3. Периодизация развития неигрового кино о взаимодействии природы и общества в Казахстане, вторая половина 1920-х годов XX века — 2010 годы (с. 55-66). Лекция 4. Формирование и развитие школы научно-популярного кино о взаимодействии природы и общества, 1960-е годы — первая половина 1970-х годов (с. 67-76). Лекция 5. Формирование модели экологического фильма, середина 70-х середина 80-х гг. (с. 77-93). Лекция 6. Развитие экологического кино: середина 80-х гг. — конец 90-х гг. (с. 94-107). Лекция 7. Утрата традиции и опыта казахстанской школы неигрового кино о природе. Новые тенденции в развитии неигрового кино о взаимодействии природы и общества, конец 90-х гг. XX ст. — 2010 г. (с. 108-118).

Наиболее интересны в книге сведения об авторах фильмов о природе: *Александре Литвинове* (1898-1977), *Александре Згуриди* (1904-1998), *Юрии Ледине* (1928-2013), *Юрии Климове*

(1936-1999), Рейне Маране (Rein Maran, род. 1931), Феликсе Соболеве (1931-1984) и наших казахстанцах — Вячеславе Белялове (1936-2004) и Эльзе Дильмухамедовой. И особенно ценно — Приложение 2 «Избранная фильмография» (с. 133-148), в котором перечислены все фильмы, в том числе Вячеслава Белялова (Любовь моя, Каратау, 1963; Горы и люди, 1964; Идёт по кручам молодость моя, 1965; Край далёкий, «ау-у-у!», 1965; Тигр снегов, 1970; Забытая песнь, 1971; Джунгарские встречи, 1973; Большая кочёвка, 1974; Низовье Или: времена года, 1975; АксуОДжабаглы, 1976; Беркуты, 1976; Зачарованный лес, 1977; Нужны ли дали голубые? 1977; Джунгарский тритон, 1978; Каракурт, 1979; Беркутчи, 1979; Устюртский муфлон, 1980; Дом для серпоклюва, 1980; Земля чудес, 1981; Приметы осени

глубокой, 1981; Вечная, зовущая природа, 1983; Сурок Мензбира, 1984; Каспия зимний мотив, 1984; Гепард возвращается, 1985; Ожерелье голубки, 1985; Бабочки высокогорья, 1986; Сайгаки, 1987; Красавчик джек, 1988; Солёные слёзы Турана, 1988; Фламинго, 1989; Кудрявый пеликан и другие, 1990; Зов, 1990; Стрепет, 1991; Бакланы, 1991; Беркуты, 1991; Там, за облаками (Синяя птица), 1992; Орёл-стервятник (Орлиная степь), 1993; Райские птицы, 1993; Тугайный олень, 1995; Алтын-Эмель, 1997; Весенние плёсы, 1997) и Эльзы Дильмухамедовой (Кто где живёт? 1976; На острове Барса-Кельмес, 1978; Скворцы прилетели, 1978; Острова белых птиц, 1979; Три дня в пустыне, 1981; В дельте Или, 1983).

Алтын-Эмель. Популярное издание. Сост. В.А. Ковшарь. Основная фотосъемка О.В. Белялова. Алматы, 2016. 72 с.

Этот миниатюрный (формат всего 15x15 см) красочный фотоальбом выпущен к 20-летнему юбилею одноименного национального парка. Государственный национальный природный парк «Алтын-Эмель» занимает территорию более

300 тыс. га и располагается в Илийской котловине, от поймы реки Или и побережья Капчагая до водоразделов южных отрогов Джунгарских гор (высшая отметка в верховьях Узунбулака – 2925 м), охватывая различные экосистемы: от тугайных лесов, пустынь, полупустынь, засушливых низкогорий до настоящего высокогорья. Благодаря этому животный и растительный мир очень богат: здесь отмечено 864 вида высших растений, 39 видов грибов (микро и макромицетов), 1474 вида насекомых (при дальнейших исследованиях прогнозируется 3-4 тысячи видов), 27 видов рыб, 5 – амфибий, 25 рептилий, 298 видов птиц и 70 видов млекопитающих. На территории парка расположены памятник природы Поющий бархан, горы

Актау и Катутау, погребальные курганы Бесшатыр, петроглифы и многое другое. С этими местами связано множество преданий и легенд.

Обзор подготовил А.Ф. Ковшарь

Конференция «РОССИЙСКИЕ ГИМАЛАЙСКИЕ ИССЛЕДОВАНИЯ: ВЧЕРА, СЕГОДНЯ, ЗАВТРА»

Санкт-Петербургский союз учёных планирует провести в Санкт-Петербурге ориентировочно в ноябре 2017 года совместно с Русским географическим обществом всероссийскую междисциплинарную научную конференцию «Российские гималайские исследования: вчера, сегодня, завтра».

В задачи конференции входит:

- показать вклад российских исследователей и путешественников в изучение Гималаев в период Российской империи, Советского Союза и Российской Федерации;
- продемонстрировать широкий спектр современных научных исследований, проводимых российскими учёными по гималайской тематике;
- выявить корпус российских учёных, изучающих Гималаи в области естественных, гуманитарных и социальных наук;
- обсудить перспективы будущих исследований в Гималаях, включая подготовку и проведение комплексных научных экспедиций;
- содействовать сотрудничеству учёных и развитию междисциплинарных гималайских исследований.

В конференции могут принять участие представители *любых естественных, гуманитарных и социальных наук*, направленных на изучение различных аспектов живой и неживой природы, населения, культуры, религиозных воззрений, искусства, истории, экономики, политики, народной медицины и т.д. Принимаются также заявки на выступления по истории полевых исследований (экспедиций) в Гималаях, проведенных как отечественными, так и зарубежными путешественниками.

Обращаться: Лев Яковлевич Боркин, руководитель Центра гималайских научных исследований Санкт-Петербургского союза учёных. Leo.Borkin@zin.ru

II Международная конференция

«Пространственно-временная динамика биоты и экосистем Арало-Каспийского бассейна», посвященная памяти выдающегося натуралиста и путешественника Николая Алексеевича Зарудного

Организаторы: Оренбургский государственный педагогический университет, Зоологический институт РАН, Институт проблем экологии и эволюции им. А.Н. Северцова РАН, Институт экологии растений и животных УрО РАН, Уфимский институт биологии РАН, Институт зоологии КН МОН Республики Казахстан, Институт генофонда растительного и животного мира Академии наук Республики Узбекистан, Министерство образования Оренбургской области, Национальный университет Узбекистана имени Мирзо Улугбека, Министерство природных ресурсов, экологии и имущественных отношений Оренбургской области, ФГБУ «Заповедники Оренбуржья», Мензбировское орнитологическое общество, Териологическое общество при РАН, Герпетологическое общество им. А.М. Никольского при РАН, Ассоциация сохранения биоразнообразия Казахстана, Общество охраны птиц Узбекистана, Союз охраны птиц России, Союз охраны птиц Казахстана.

Даты проведения: 9-13 октября 2017 г.

Место проведения: Оренбургский государственный педагогический университет, г. Оренбург, Российская Федерация

Основные направления работы конференции:

- История естественнонаучных исследований в Арало-Каспийском бассейне;
- Научное наследие А.Н. Зарудного;
- Исторические, природные и антропогенные факторы формирования биоты, ландшафтов и экосистем региона;
- Пространственно-временная динамика, современное состояние и охрана биоты и экосистем Арало-Каспийского бассейна;
 - Роль зоологических и ботанических коллекций и музеев в изучении фауны и флоры;
 - Гуманитарные, социально-экономические и образовательные аспекты экологии.

По всем возникшим вопросам обращаться к заместителям председателя Оргкомитета Сафонову Максиму Анатольевичу, <u>safonovmaxim@yandex.ru</u>, тел. моб. — +7-905-888-60-94 Давыгоре Анатолию Васильевичу, <u>davygora@esoo.ru</u>, тел. моб. — +7-922-625-67-10 к ученым секретарям Программного комитета:

Елиной Елене Евгеньевне, <u>elinaee@yandex.ru</u>, тел. моб. – +7-903-393-59-21 Леневой Елене Александровне, <u>leneva@yandex.ru</u>, тел. моб. – +7-961-929-44-28

Правила для авторов «Selevinia»

Тематика. Ежегодник публикует работы по теоретическим и прикладным вопросам зоологии. Предпочтение отдается работам, посвященным казахстанско-среднеазиатскому региону. Публикуется также информация о научных конференциях, семинарах, встречах, экспедициях и памятных датах, а также о вышедших зоологических изданиях. От зарубежных авторов принимаются рукописи работ, содержащих результаты исследований, проведенных на территории Казахстана и Средней Азии, или посвященных видам животных, обитающих в Казахстане и на сопредельных территориях.

Язык. Статьи подаются на русском или английском (британская орфография) языках. Все переводы осуществляются авторами. В случае подачи англоязычной статьи, для авторов которой английский язык не является родным, требуется адекватный вариант статьи на русском языке. При транслитерации кириллицы в латиницу необходимо придерживаться следующих переходов: $e, 9 - e; \pi - h; \pi - y; \kappa - h; \pi - h;$

Объем и структура публикаций. Рукописи представляются в редакцию в электронном варианте (в т.ч. по электронной почте) и в одном отпечатанном на принтере экземпляре.

Объем статей – до 6 страниц, кратких сообщений – до 3, а заметки – 1 компьютерная страница. Рукописи большего объема публикуются по согласованию с главным редактором. Текст должен быть набран в текстовом редакторе MS WORD и доступен для редактирования (формат «только для чтения» не принимается!), шрифт Times New Roman, размер 12 пт, межстрочный интервал – одинарный. Форматирование (вынос на центр заголовков, красная строка) с помощью табуляции или пробелов не допускается, так же, как и перенос в словах (автоматический или принудительный). Десятичные знаки в цифрах отделяются точкой. Наличие вставленных символов (♀, ♂, °, ') оговаривается при сдаче рукописи. Курсивом в тексте выделяются только родовые, видовые и подвидовые названия животных, растений, микроорганизмов. Примерная структура готовой рукописи:

Название статьи;

Фамилии, имена и отчества (полностью) авторов

Место работы (название организации, город, страна)

Основной текст статьи (включая таблицы)

Литература

Резюме на английском языке (начинается с фамилий авторов и названия статьи)

Место работы и адрес на английском языке (приводится в конце резюме)

Подписи к иллюстрациям

Иллюстрации (прилагаются отдельно рисунки и фотографии) в электронном виде (jpg).

Таблицы не должны быть громоздкими и превышать одну компьютерную страницу при размере шрифта 10 пт. Набираются в программе MS WORD в опции – ТАБЛИЦА (ТАВLЕ). Рисованные (на компьютере) или от руки таблицы **не принимаются**. Рекомендуется избегать частого и неоправданного использования таблиц, особенно развернутых – т.н. «лежачих».

Иллюстрации. Выполненные черной тушью штриховые и точечные рисунки подаются в одном экземпляре и нумеруются по порядку их упоминания в тексте. Тоновые рисунки не принимаются. Чернобелые фотографии представляются в двух экземплярах размером не более А4 формата (21х29 см). На обороте каждого рисунка или фотографии тонким карандашом должны быть указаны фамилия автора, название статьи, номер рисунка, а также стрелкой обозначена верхняя сторона иллюстрации. Принимаются качественно сканированные иллюстрации с разрешением не менее 300 точек на дюйм (dpi). Подписи к пронумерованным рисункам присылаются отдельным файлом или печатаются в конце основного текстового файла (после резюме).

Литература. В русскоязычном варианте статьи ссылки приводятся в круглых скобках на языке оригинала в хронологическом порядке. Например: (Holman, 1980; Кадырбеков, 1993), или Я. Хольман (Holman, 1980). В англоязычном варианте ссылки на авторов русскоязычных публикаций необходимо приводить латинскими буквами, например: R. Kadyrbekov (1993) или (Kadyrbekov, 1993). В списке литературы название этой публикации дается в переводе на английский язык, а источник транслитерируется в латиницу. В списке литературы сначала приводятся публикации на кириллице, а затем на латинице в алфавитном порядке. Никакая нумерация в списке литературы не допускается, как и ссылки в тексте на номера – типа [1] или [7]. Оформленные так рукописи приниматься не будут.

Авторы несут полную ответственность за содержание статьи. Редакция оставляет за собой право отклонять оформленные не по правилам статьи и вносить незначительные изменения в рукописи без согласования с авторами. Рукописи статей авторам не возвращаются.

Рукописи высылаются на имя главного редактора по электронным адресам:

E-mail главного редактора: <u>ibisbilkovshar@mail.ru</u> E-mail зам.главного редактора: <u>victoria_kovshar@mail.ru</u>

Над выпуском работали: В.А. Ковшарь (компьютерный дизайн и верстка) Э.Р. Мальцева (редакция английского текста) Ф.Ф. Карпов (рисунки)

При перепечатке ссылка на данное издание обязательна Мнение редакции не всегда совпадает с мнением авторов

Учредитель профессор А.Ф. Ковшарь Регистрационное свидетельство № 1113 от 5 июля 1993 г. Министерства печати и массовой информации РК

Издатель «Союз охраны птиц Казахстана» Алматы, ул. Курмангазы 20, кв. 16

Подписано в печать 20 февраля 2017 г. Тираж 500 экз.